

OS/390 IBM

MVS Programming: Assembler Services
Reference

 GC28-1910-08

OS/390 IBM

MVS Programming: Assembler Services
Reference

 GC28-1910-08

 Note

Before using this information and the product it supports, be sure to read the general information under Appendix A, “Notices” on
page 1137.

Ninth Edition, September 1999

This is a major revision of GC28-1910-07.

This edition applies to Version 2 Release 8 of OS/390 (5647-A01) and to all subsequent releases and modifications until otherwise indicated in
new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the address
below.

IBM welcomes your comments. A form for readers' comments may be provided at the back of this publication, or you may address your
comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
522 South Road

 Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+914+432-9405
FAX (Other Countries):

Your International Access Code +1+914+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/s390/os390/

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

� Title and order number of this book
� Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate
without incurring any obligation to you.

 Copyright International Business Machines Corporation 1988, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

About This Book . xi
Who Should Use This Book . xi
How to Use This Book . xi
Where to Find More Information . xi

Summary of Changes . xiii

Using the Services . 1

ABEND — Abnormally Terminate a Task . 27

ALESERV — Control Entries in the Access List . 31

ASASYMBM — Substitute Text for Symbols . 43

ATTACH and ATTACHX — Create a New Task . 47

BLDMPB — Build a Message Parameter Block . 63

BLSABDPL — Map Dump Formatting Exit Data . 67

BLSACBSP — Map the Control Block Status (CBSTAT) Parameter List 71

BLSADSY — Map the Add Symptom Service Parameter List 73

BLSAPCQE — Map the Contention Queue Element (CQE) Create Service Parameter
List . 75

BLSQFXL — Map the Format Exit Routine List (FXL) 77

BLSQMDEF — Define a Control Block Format Model 79

BLSQMFLD — Specify a Formatting Model Field . 83

BLSQSHDR — Generate Model Subheader . 95

BLSRDRPX — Map Dump Record Prefix . 97

BLSRESSY — Map IPCS Symbol Table Data . 99

BLSRNAMP — Map the Name Service Parameter List 101

BLSRPRD — Map Dump Record . 103

BLSRPWHS — Map the WHERE Service Parameter List 105

BLSRSASY — Map IPCS Storage Map Data . 107

BLSRXMSP — Map the Storage Map Service Parameter List 109

BLSRXSSP — Map the Symbol Service Parameter List 111

BLSUPPR2 — Map the Expanded Print Service Parameter List 113

CALL — Pass Control to a Control Section . 115

 Copyright IBM Corp. 1988, 1999 iii

CHAP — Change Dispatching Priority . 119

CONVCON — Retrieve Console Information . 123

CONVTOD — Convert to Time-of-Day Clock Format 131

CPOOL — Perform Cell Pool Services . 139

CPUTIMER — Provide Current CPU Timer Value 151

CSRCESRV — Compress and Expand Data . 155

CSRCMPSC — Compress and Expand Data . 161

CSREVW — View an Object and Sequentially Access It 167

CSRIDAC — Request or Terminate Access to a Data Object 171

CSRL16J — Transfer Control with All Registers Intact 175

CSRPACT — Activate Previously Connected Storage 179

CSRPBLD — Build a Cell Pool and Initialize an Anchor 183

CSRPCON — Connect Cell Storage to an Extent 187

CSRPDAC — Deactivate an Extent . 191

CSRPDIS — Disconnect the Cell Storage for an Extent 195

CSRPEXP — Expand a Cell Pool . 199

CSRPFRE — Return a Cell to a Cell Pool . 203

CSRPFR1 — Return a Cell to a Cell Pool . 207

CSRPGET — Allocate a Cell from a Cell Pool . 211

CSRPGT1 — Allocate a Cell from a Cell Pool . 215

CSRPQCL — Query a Cell . 219

CSRPQEX — Query a Cell Pool Extent . 223

CSRPQPL — Query the Cell Pool . 227

CSRPRFR — Return a Cell to a Cell Pool (Register Interface) 231

CSRPRFR1 — Return a Cell to a Cell Pool (Register Interface) 235

CSRPRGT — Allocate a Cell from a Cell Pool (Register Interface) 239

CSRPRGT1 — Allocate a Cell from a Cell Pool (Register Interface) 243

CSRREFR — Refresh an Object . 247

CSRSAVE — Save Changes Made to a Permanent Object 251

CSRSCOT — Save Object Changes in a Scroll Area 255

iv OS/390 V2R8.0 MVS Assembler Services Reference

CSRSI — System Information Service . 259

CSRVIEW — View an Object . 277

CSVAPF — Query the List of APF-Authorized Libraries 281

CSVINFO — Obtain Information about Loaded Modules 291

CSVQUERY — Contents Supervisor Query Service 303

CSVRTLS — Define the RTLS Configuration . 313

DELETE — Relinquish Control of a Load Module 345

DEQ — Release a Serially Reusable Resource . 349

DETACH — Detach a Subtask . 357

DIV — Data-in-Virtual . 361

DOM — Delete Operator Message . 383

DSPSERV — Create, Delete, and Control Data Spaces 387

DSPSERV — Create, Delete, and Control Hiperspaces 401

EDTINFO — Obtain Eligible Device Table Information 415

ENQ — Request Control of a Serially Reusable Resource 437

ESPIE — Extended SPIE . 447

ESTAE and ESTAEX — Extended Specify Task Abnormal Exit 457

EVENTS — Wait for One or More Events to Complete 469

FREEMAIN — Free Virtual Storage . 477

GETMAIN — Allocate Virtual Storage . 485

GQSCAN — Extract Information From Global Resource Serialization Queue . . . 497

HSPSERV — Read from and Write to a Hiperspace 509

IARR2V — Convert a Central Storage Address to a Virtual Storage Address . . . 519

IARVSERV — Request to Share Virtual Storage . 525

IDENTIFY — Add an Entry Name . 535

IEAFP — Floating Point Services . 537

IEAINTKN — Build Incident Token . 541

IEALSQRY — Linkage Stack Query . 543

IEANTCR — Create a Name/Token Pair . 547

IEANTDL — Delete a Name/Token Pair . 553

 Contents v

IEANTRT — Retrieve the Token from a Name/Token Pair 557

IEATDUMP — Transaction dump request . 563

| IEAVAPE — Allocate_Pause_Element . 579

| IEAVDPE — Deallocate_Pause_Element . 583

| IEAVPSE — Pause Service . 587

| IEAVRLS — Release . 591

| IEAVXFR — Transfer Service . 595

IEFDDSRV — Receive Device Information For an Allocation Request 601

IEFPRMLB — Logical Parmlib Support . 607

IEFSSI — Dynamically Query a Subsystem . 631

IOCINFO — Obtain MVS I/O Configuration Information 639

IOSCHPD — IOS CHPID Description Service . 645

IXGBRWSE — Browse/Read a Log Stream . 651

IXGCONN — Connect/Disconnect to Log Stream 687

IXGDELET — Deleting Log Data from a Log Stream 705

IXGIMPRT — Import Log Blocks . 719

IXGINVNT — Managing the LOGR Inventory Couple Data Set 731

IXGOFFLD — Initiate Offload to DASD Log Data Sets 775

IXGQUERY — Query a Log Stream for Information 783

IXGUPDAT — Update Log Stream Control Information 791

IXGWRITE — Write Log Data to a Log Stream . 799

LINK and LINKX — Pass Control to a Program in Another Load Module 813

LOAD — Bring a Load Module into Virtual Storage 823

LSEXPAND — Expand a Linkage Stack to a Specified Size 829

PGLOAD — Load Virtual Storage Areas into Central Storage 833

PGOUT — Page Out Virtual Storage Areas from Central Storage 837

PGRLSE — Release Virtual Storage Contents . 841

PGSER — Page Services . 845

POST — Signal Event Completion . 849

QRYLANG — Determine Languages Available for Message Translation 853

vi OS/390 V2R8.0 MVS Assembler Services Reference

REFPAT — Define and End a Reference Pattern 859

RESERVE — Reserve a Device (Shared DASD) . 867

RETURN — Return Control . 875

SAVE — Save Register Contents . 877

SETRP — Set Return Parameters . 879

SNAP and SNAPX — Dump Virtual Storage and Continue 885

SPIE — Specify Program Interruption Exit . 899

SPLEVEL — Set Macro Level . 905

STAE — Specify Task Abnormal Exit . 909

STATUS — Start and Stop a Subtask . 915

STCKCONV — Store Clock Conversion Routine 921

STCKSYNC — Store Clock Synchronous Service 927

STIMER — Set Interval Timer . 931

STIMERM — Set, Test, Cancel Multiple Interval Timer 937

STORAGE — Obtain and Release Storage . 949

SYMRBLD — Building a Symptom Record . 961

SYMREC — Process a Symptom Record . 977

SYNCH and SYNCHX — Take a Synchronous Exit to a Processing Program . . . 983

SYSSTATE — Set Address Space Control (ASC) Mode 989

TCBTOKEN — Request or Translate the TTOKEN 993

TESTART — Tests the Validity of ALETs . 997

TIME — Obtain Time and Date . 1001

TIMEUSED — Obtain Accumulated CPU or Vector Time 1011

TRANMSG — Translate Messages . 1015

TTIMER — Test Interval Timer . 1029

UCBDEVN — Return EBCDIC Device Number for a UCB 1033

UCBINFO — Return Information from a UCB . 1037

UCBSCAN — Scan UCBs . 1071

UPDTMPB — Update a Message Parameter Block for Substitution Data 1081

VRADATA — Update Variable Recording Area Data 1087

 Contents vii

WAIT — Wait for One or More Events . 1093

WTL — Write To Log . 1097

WTO — Write to Operator . 1103

WTOR — Write to Operator with Reply . 1117

XCTL and XCTLX — Pass Control to a Program in Another Load Module 1129

Appendix A. Notices . 1137

Index . 1139

viii OS/390 V2R8.0 MVS Assembler Services Reference

 Figures

1. Passing User Parameters in AR Mode . 4
2. Sample User Parameter List for Callers in AR Mode 4
3. Issuing the Correct Macro Version at Execution Time 10
4. Sample Macro Syntax Diagram . 16
5. Continuation Coding . 19
6. Sample Callable Service Syntax Diagram . 20
7. Service Summary . 21
8. Return Codes for the CONVTOD Macro . 135
9. Hexadecimal Return Codes for CPOOL LIST 144

10. Return and Reason Codes for the CPUTIMER Macro 153
11. Return Codes for SERVICE=QUERY . 159
12. Return Codes for SERVICE=COMPRESS . 159
13. Return Codes for SERVICE=EXPAND . 160
14. Return Codes for the CSRL16J Service . 177
15. CSRSIC from SYS1.SAMPLIB . 263
16. Return and Reason Codes for the CSVAPF Macro 284
17. Return Codes for the CSVINFO Macro . 295
18. Return and Reason Codes for the CSVRTLS Macro 337
19. Return Code Area Used by DEQ . 353
20. Return Codes for the DEQ Macro with the RET=HAVE Parameter 353
21. Return Code Area Used by ENQ . 442
22. Return Codes for the ENQ Macro with the RET=TEST Parameter 442
23. Return Codes for the ENQ Macro with the RET=USE Parameter 443
24. Return Codes for the ENQ Macro with the RET=CHNG Parameter 443
25. Return Codes for the ENQ Macro with the RET=HAVE Parameter 443
26. Creating a Table . 472
27. Parameter List Format . 473
28. Posting the Parameter List . 474
29. Processing One Event At a Time . 475
30. Return Codes for the FREEMAIN Macro . 482
31. Return Codes for the GETMAIN Macro . 492
32. Return Codes for the GQSCAN Macro . 502
33. Characteristics and Restrictions for Standard Hiperspaces 511
34. Return and Reason Codes for the IARR2V Macro 522
35. Return and Reason Codes for the IARVSERV Macro 530
36. Return and Reason Codes for the IEAFP Macro 539
37. Return Codes for IEALSQRY . 545
38. Return and Reason Codes for the IEATDUMP Macro 572
39. Return and Reason Codes for the IEFDDSRV Macro 604
40. Return and Reason Codes for the IEFPRMLB Macro 615
41. Return and Reason Codes for the IEFSSI Macro 636
42. Return and Reason Codes for the IOSCHPD Macro 649
43. Return and Reason Codes for the IXGBRWSE Macro 675
44. Return and Reason Codes for the IXGCONN Macro 695
45. Return and Reason Codes for the IXGDELET Macro 711
46. Return and Reason Codes for the IXGIMPRT Macro 724
47. Return and Reason Codes for the IXGINVNT Macro 760
48. Return and Reason Codes for the IXGOFFLD Macro 779
49. Return and Reason Codes for the IXGQUERY Macro 787
50. Return and Reason Codes for the IXGUPDAT Macro 795
51. Return and Reason Codes for the IXGWRITE Macro 804
52. Return and Reason Codes for the LSEXPAND Macro 831
53. Return Code Area Used by RESERVE . 870
54. Return Codes for the RESERVE Macro with the RET=TEST Parameter 871
55. Return Codes for the RESERVE Macro with the RET=USE Parameter 871
56. Return Codes for the RESERVE Macro with the RET=HAVE Parameter 871

 Copyright IBM Corp. 1988, 1999 ix

57. Return Codes for the STATUS Macro . 917
58. Return Codes for the STCKCONV Macro . 924
59. Return Codes for the STCKSYNC Macro . 929
60. Return Codes for the STIMERM Macro . 943
61. Return Codes for STORAGE OBTAIN . 955
62. Return Codes for the STORAGE RELEASE 959
63. Valid SDB Key Names and Literals . 966
64. Valid Section 5 Key Names and Literals . 972
65. Return Codes for the TCBTOKEN Macro . 995
66. Return Codes for the TESTART Macro . 999
67. Return Codes for the TIME Macro . 1004
68. Return and Reason Codes for the TIMEUSED Macro 1013
69. Return Codes for the TTIMER Macro . 1031
70. MCSFLAG Flag Names . 1108
71. MCSFLAG Flag Names . 1121

x OS/390 V2R8.0 MVS Assembler Services Reference

About This Book

This book describes some of the macros (or macro instructions) that the system provides.
The macros described in this book are available to any assembler language program.

Programmers who code in assembler language can use these macros to invoke the system
services that they need. This book includes the detailed information — such as the function,
syntax, and parameters — needed to code the macros.

Who Should Use This Book
This book is for any programmer who is coding an assembler language program. However,
if the program resides on an APF-authorized library, runs in supervisor state or with system
key 0-7, or if it performs functions that are more system than application-oriented, the
programmer should also refer to the following books:

� OS/390 MVS Programming: Authorized Assembler Services Reference, Volume 1
(ALESERV-DYNALLO)

� OS/390 MVS Programming: Authorized Assembler Services Reference, Volume 2
(ENFREQ-IXGWRITE)

� OS/390 MVS Programming: Authorized Assembler Services Reference, Volume 3
(LLACOPY-SDUMPX)

� OS/390 MVS Programming: Authorized Assembler Services Reference, Volume 4
(SETFRR-WTOR)

Programmers using this book should have a knowledge of the computer, as described in
Principles of Operation, as well as a knowledge of assembler language programming.

Assembler language programming is described in the following books:

� HLASM Programmer's Guide

� HLASM Language Reference

Using this book also requires you to be familiar with the operating system and the services
that programs running under it can invoke.

How to Use This Book
This book is one of the set of programming books for MVS. This set describes how to write
programs in assembler language or high-level languages, such as C, FORTRAN, and
COBOL. For more information about the content of this set of books, see OS/390
Information Roadmap.

Where to Find More Information
Where necessary, this book references information in other books, using shortened versions
of the book title. For complete titles and order numbers of the books for all products that are
part of OS/390, see OS/390 Information Roadmap (GC28-1727). The following table lists
titles and order numbers for books related to other products.

Short Title Used in This Book Title Order Number

Principles of Operation ESA/370: Principles of Operation
ESA/390: Principles of Operation

SA22-7200
SA22-7201

 Copyright IBM Corp. 1988, 1999 xi

xii OS/390 V2R8.0 MVS Assembler Services Reference

Summary of Changes

| Summary of Changes
| for GC28-1910-08
| OS/390 Version 2 Release 8

| The book contains information previously presented in GC28-1910-06, which supports
| OS/390 Version 2 Release 7.

| New Information

| � Five new callable services provide enhanced techniques for synchronizing tasks:
| – Allocate_Pause_Element (IEAVAPE)
| – Deallocate_Pause_Element (IEAVDPE)
| – Pause (IEAVPSE)
| – Release (IEAVRLS)
| – Transfer (IEAVXFR)

| � Information to support Parallel Access Volumes (PAV) is added to the following macros:
| – UCBDEVN - Return EBCDIC Device Number for a UCB
| – UCBINFO - Return Information from a UCB
| – UCBSCAN - Scan UCBs

| Support for the following APARs is included:

| � OW25438

| This book includes terminology, maintenance, and editorial changes. Technical changes or
| additions to the text and illustrations are indicated by a vertical line to the left of the change.

| Summary of Changes
| for GC28-1910-07
| as Updated June, 1999
| online only for SK2T-6700-13

| The following changes appear only in the online version of this publication. A vertical bar
| (|) in the left margin indicates changes to the text and illustrations.

| New Information

| � The CSRSI service is added to retrieve the system information.

| This revision reflects the deletion, addition, or modification of information to support
| miscellaneous maintenance items.

Summary of Changes
for GC28-1910-06
OS/390 Version 2 Release 7

The book contains information previously presented in GC28-1910-05, which supports
OS/390 Version 2 Release 6.

Support for the following APARs is included:

 � OW25438
 � OW30729
 � OW33706
 � OW34546

This book includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations are indicated by a vertical line to the left of the change.

Summary of Changes
for GC28-1910-05

 Copyright IBM Corp. 1988, 1999 xiii

as Updated December, 1998
online only for SK2T-6700-11

The following changes appear only in the online version of this publication. A vertical bar
(|) in the left margin indicates changes to the text and illustrations.

This revision reflects the deletion, addition, or modification of information to support
miscellaneous maintenance items.

Summary of Changes
for GC28-1910-04
OS/390 Version 2 Release 6

The book contains information previously presented in OS/390 MVS Programming:
Assembler Services Reference, GC28-1910-03, which supports OS/390 Version 2 Release
4.

New Information

� The IEAFP macro is added to request the system stop its status saving of Floating Point
registers and Floating Point Control register.

Complete support for IEEE floating point requires PTFs to OS/390 Release 6 and specific
releases of some software. See OS/390 Planning for Installation for the software
requirements for IEEE floating point.

This book also includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to the left of
the change.

Summary of Changes
for GC28-1910-03
OS/390 Version 2 Release 4

The book contains information previously presented in OS/390 MVS Programming:
Assembler Services Reference, GC28-1910-02, which supports OS/390 Version 1 Release
3.

New Information

� “IEATDUMP — Transaction dump request” on page 563 contains reference information
for new service, IEATDUMP.

� The CSVRTLS macro is added to request functions of run-time library services (RTLS).

Changed Information

� “IXGINVNT — Managing the LOGR Inventory Couple Data Set” on page 731 contains
changes to support DASD-only log streams, including:

 – New restrictions

– The STRUCTNAME parameter on the REQUEST=DEFINE TYPE=LOGSTREAM
request is no longer required if you are defining a DASD-only log stream.

– New use of the STRUCTNAME parameter on the REQUEST=UPDATE request to
associated a coupling facility structure with a DASD-only log stream to upgrade it to
a coupling facility log stream.

– New DASDONLY parameter on the REQUEST=DEFINE TYPE=LOGSTREAM
request lets you specify if the log stream being defined is a DASD-only one.

– New use of the MAXBUFSIZE parameter on DEFINE or UPDATE
TYPE=LOGSTREAM requests let you specify the largest log block that can be
written to a DASD-only log stream.

xiv OS/390 V2R8.0 MVS Assembler Services Reference

– New information on how system logger determines staging data set size for a log
stream if the STG_SIZE parameter is omitted on the REQUEST=DEFINE
TYPE=LOGSTREAM request.

– New PLISTVER value of 2 for the DASDONLY parameter.

– New reason codes.

� “IXGCONN — Connect/Disconnect to Log Stream” on page 687 contains changes to
support DASD-only log streams, including:

– The STRUCTNAME, AVGBUFSIZE, and ELEMENTSIZE output fields will return
zeros if you are connecting to a DASD-only log stream.

– New reason codes.

This book also includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to the left of
the change.

Summary of Changes
for GC28-1910-02
OS/390 Version 1 Release 3

The book contains information previously presented in OS/390 MVS Programming:
Assembler Services Reference, GC28-1910-01, which supports OS/390 Version 1 Release
2.

New Information

� Four new callable cell pool services — CSRPFR1, CSRPGT1, CSRPRFR1, and
CSRPRGT1 — that provide slightly improved performance for cell pool functions.

� “IXGIMPRT — Import Log Blocks” on page 719 contains reference information for new
service, IXGIMPRT.

� “IXGOFFLD — Initiate Offload to DASD Log Data Sets” on page 775 contains reference
information for new service, IXGOFFLD.

� “IXGQUERY — Query a Log Stream for Information” on page 783 contains reference
information for new service, IXGQUERY.

� “IXGUPDAT — Update Log Stream Control Information” on page 791 contains
reference information for new service, IXGUPDAT.

New Information

� “IXGBRWSE — Browse/Read a Log Stream” on page 651 contains changed
parameters.

� “IXGCONN — Connect/Disconnect to Log Stream” on page 687 contains changed
parameters.

� “IXGDELET — Deleting Log Data from a Log Stream” on page 705 contains changed
parameters.

� “IXGINVNT — Managing the LOGR Inventory Couple Data Set” on page 731 contains
changed parameters.

� “IXGWRITE — Write Log Data to a Log Stream” on page 799 contains changed
parameters.

This book includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations are indicated by a vertical line to the left of the change.

Summary of Changes
for GC28-1910-01
OS/390 Release 2

 Summary of Changes xv

This book contains information previously presented in OS/390 MVS Programming:
Assembler Services Reference, GC28-1910-00, which supports OS/390 release 1.

The following summarizes the changes to that information.

New Information

� IEFPRMLB macro which allows you to partition access to parmlib and isolate members,
which have been customized, from IBM maintenance and product level upgrades.

Changed Information

� New parameter for GQSCAN macro

This book includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations are indicated by a vertical line to the left of the change.

Summary of Changes
for GC28-1910-00
OS/390 Release 1

This book contains information previously presented in MVS/ESA Programming: Assembler
Services Reference, GC28-1474, which supports MVS/ESA System Product Version 5.

This book includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations are indicated by a vertical line to the left of the change.

xvi OS/390 V2R8.0 MVS Assembler Services Reference

Using the Services

Macros and callable services are programming interfaces that application programs may use
to access MVS system services. This chapter provides general information and guidelines
about how to use the macros and callable services accurately and efficiently. For more
specific and detailed information about coding a particular macro or callable service, see the
individual service description in this book.

Some of the topics covered in this chapter apply only to macros, some apply only to callable
services, and some apply to both. This chapter uses the word "services" when referring to
information that applies to both service types. When information applies only to one type or
the other, the particular service type is specified.

The following table lists the topics covered in this chapter and whether the topic applies to
macros, callable services, or both:

Topic Service Type
“Addressing Mode (AMODE)” Both
“Address Space Control (ASC) Mode” on page 2 Both

“ALET Qualification” on page 3 Both
“User Parameters” on page 3 Macros

“Register Use” on page 4 Both
“Handling Return Codes and Reason Codes” on page 5 Both

“Handling Program Errors” on page 6 Both
“Handling Environmental and System Errors” on page 6 Both

“Selecting the Macro Level” on page 7 Macros
“Using X-Macros” on page 12 Macros
“Macro Forms” on page 13 Macros
“Coding the Macros” on page 15 Macros
“Coding the Callable Services” on page 20 Callable Services

“Including Equate (EQU) Statements” on page 20 Callable Services
“Link-Editing Linkage-Assist Routines” on page 20 Callable Services

“Service Summary” on page 21 Both

Addressing Mode (AMODE)
A program can execute in 24-bit addressing mode or 31-bit addressing mode. Regardless of
the addressing mode that a program executes in, it can invoke most of the services
described in this book.

In general, a program executing in 24-bit addressing mode cannot pass parameter
addresses that are higher than 16 megabytes. However, there are exceptions. For
example, a program executing in 24-bit addressing mode can:

� Free storage above 16 megabytes using the FREEMAIN macro

� Allocate storage above 16 megabytes using the GETMAIN macro

� Use cell pool services for cell pools located in storage above 16 megabytes using the
CPOOL macro

� Use page services for storage locations above 16 megabytes using the PGSER macro.

In general, if a program running in 31-bit addressing mode issues a service, parameter
addresses can be above or below 16 megabytes unless otherwise stated in the individual
service description.

All callable services must pass 31-bit addresses to the system service regardless of what
addressing mode your program is running in. If your program is running in 24-bit mode and
you use a callable service, you must set the high-order byte of parameter addresses to
zeros.

 Copyright IBM Corp. 1988, 1999 1

A program running in 31-bit addressing mode must use the MVS/SP Version 2 or later of the
following macros:

ATTACH SETRP
CALL STIMER
ESTAE SYNCH
EVENTS WTOR
LINK XCTL

Address Space Control (ASC) Mode
A program can run in either primary ASC mode or access register (AR) ASC mode. In
primary mode, the processor uses the contents of general purpose registers (GPRs) to
resolve an address to a specific location. In AR mode, the processor uses the contents of
ARs as well as the contents of GPRs to resolve an address to a specific location. See
OS/390 MVS Programming: Assembler Services Guide for more detailed information about
AR mode.

Because the processor must resolve addresses differently for AR mode programs, IBM
recommends that:

� All programs issue the SYSSTATE macro before issuing any other macros. Programs
in primary mode must issue SYSSTATE ASCENV=P. Programs in AR mode must issue
SYSSTATE ASCENV=AR.

� If your program switches from one ASC mode to another, your program should issue
SYSSTATE immediately after the mode switch to indicate the new ASC mode.

Through the SYSSTATE macro, a program sets the SYSSTATE global variable
(&SYSASCE) to indicate whether the program runs in primary or AR mode. Once a program
has issued SYSSTATE, there is no need to reissue it unless the program switches ASC
mode.

Some macros can generate code that is appropriate for programs in either primary mode or
AR mode. These macros check &SYSASCE to determine which type of code to generate.
If your program does not set &SYSASCE, any macros that check the variable set it to a
default of primary mode upon assembly. Figure 7 on page 21 lists the macros that check
&SYSASCE.

Some services can generate code that is appropriate for programs in primary mode only. If
you write a program in AR mode that invokes one or more services, check the description in
this book for each service your program issues. Unless the description indicates that a
service supports callers in AR mode, the service does not support callers in AR mode. In
this case, use the SAC instruction to change the ASC mode of your program and issue the
service in primary mode.

Notes:

1. Whether the caller is in primary or AR ASC mode, the system uses ARs 0-1 and 14-15
as work registers across any service call.

2. You can issue the SYSSTATE macro within your own user-written macro to determine
whether your macro should generate code appropriate for primary or AR mode. See the
SYSSTATE macro description “SYSSTATE — Set Address Space Control (ASC) Mode”
on page 989 for further details.

3. Callable services do not check &SYSASCE. To determine whether a callable service
supports callers in AR or primary mode, check the individual service description.

2 OS/390 V2R8.0 MVS Assembler Services Reference

 ALET Qualification
The address space where you can place parameters varies with the individual service:

� All services allow you to place parameters in the current primary address space.
� Some services require you to place parameters in the current primary address space.
� Some services allow you to place parameters in any address space.

To identify where a service allows parameters to be located, read the individual service
description.

Programs in AR mode that pass parameters must use an access register and the
corresponding general purpose register together (for example, access register 1 and general
purpose register 1) to identify where the parameters are located. The access register must
contain an access list entry token (ALET) that identifies the address space where the
parameters reside. The general purpose register must identify where, within the address
space, the parameters reside.

The only ALETs that MVS services accept are:

� Zero (0), which specifies that the parameters reside in the caller's primary address
space

� An ALET for a public entry on the caller's dispatchable unit access list (DU-AL).

MVS services do not accept the following ALETs, and you must not attempt to pass them to
a service:

� One (1), which signifies that the parameters reside in the caller's secondary address
space

� An ALET that is on the caller's primary address space access list (PASN-AL).

Throughout, this book uses the term AR/GPR n to mean an access register and its
corresponding general purpose register. For example, to identify access register 1 and
general purpose register 1, this book uses AR/GPR 1.

 User Parameters
Some macros that you can issue in AR mode include control parameters, user parameters,
or both. Control parameters refer to the macro parameter list, and to the parameters whose
addresses are in the parameter list. Control parameters control the operation of the macro
itself. User parameters are parameters that the user provides to be passed through to a
user routine. For example, the PARAM parameter on the ATTACHX macro defines user
parameters. The ATTACHX macro passes these parameters to the routine that it attaches.
All other parameters on the ATTACHX macro are control parameters that control the
operation of the ATTACHX macro.

Notes:

1. User parameters are sometimes referred to as problem program parameters.

2. Control parameters are sometimes referred to as system parameters or control program
parameters.

 Using the Services 3

The macros shown in Figure 1 allow a caller in AR mode to pass information in the form of
a parameter list (or parameter lists) to another routine. Figure 1 on page 4 identifies the
parameter that receives the ALET-qualified address of the parameter list and tells you where
the target routine finds the ALET-qualified address.

When a caller in AR mode passes ALET-qualified addresses to the called program through
PARAM,VL=1 on the ATTACH/ATTACHX, LINK/LINKX, or XCTL/XCTLX macros, the system
builds a list formatted as shown in Figure 2. The addresses passed to the called program
are at the beginning of the list, and their associated ALETs follow the addresses. The last
address in the list has the high-order bit on to indicate the size of the list. For example,
Figure 2 shows the format of a list where an AR mode issuer of ATTACHX codes the
PARAM parameter as follows:

PARAM=(A,B,C),VL=1

Figure 1. Passing User Parameters in AR Mode

Macro Parameter Location of User Parameter List Address

ATTACH/ATTACHX
LINK/LINKX
XCTL/XCTLX

PARAM,VL=1 AR/GPR 1 contains the address of a list of
addresses and ALETs. (See Figure 2 for the format
of the list.)

ESTAEX PARAM SDWAPARM contains the address of an 8-byte area,
which contains the address and ALET of the
parameter list.

@

ALET

@A

@B

@C

GPR1
AR1

0

0

1

ALET A

ALET B

ALET C

Figure 2. Sample User Parameter List for Callers in AR Mode

 Register Use
Some services require that the caller place information in specific general purpose registers
(GPRs) or access registers (ARs) prior to issuing the service. If a service has such a
requirement, the “Input Register Information” section for the service provides that information.
The section lists only those registers that have a requirement. If a register is not specified
as having a requirement, then the caller does not have to place any information in that
register unless using it in register notation for a particular parameter, or using it as a base
register.

Once the caller issues the service, the system can change the contents of one or more
registers, and leave the contents of other registers unchanged. When control returns to the
caller, each register contains one of the following values or has the following status:

� The register content is preserved and is the same as it was before the service was
issued.

� The register contains a value placed there by the system for the caller's use. Examples
of such values are return codes and tokens.

� The system used the register as a work register. Do not assume that the register
content is the same as it was before the service was issued.

4 OS/390 V2R8.0 MVS Assembler Services Reference

Note that the system uses ARs 0, 1, 14, and 15 as work registers for every service,
regardless of whether the caller is in primary or AR address space control (ASC) mode. The
system does not use ARs 2 through 13 for any service.

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

Many macros require that the caller have a program base register and assembler USING
instruction in effect when issuing the macro; that is, the caller must have program
addressability. AR mode programs also require that the AR associated with the caller's base
GPR be set to zero. IBM recommends the following:

� When issuing a macro, the caller should always have program addressability in effect.

� When establishing addressability, the caller should use only registers 2 through 12.

Handling Return Codes and Reason Codes
Most of the services described in this book provide return codes and reason codes. Return
and reason codes indicate the outcome of the service in one of the following ways:

� Successful completion: you do not need to take any action.

� Successful or partially successful completion, with additional information supplied: you
should evaluate the additional information in light of your particular program and
determine if you need to take any action.

� Unsuccessful completion: some type of error has occurred, and you must take some
action to correct the error.

The errors that cause unsuccessful completion fall into three broad categories:

Program errors Errors that your program causes: you can correct these.

Environmental errors Errors not caused directly by your program; rather, your program's
request caused a limit to be exceeded, such as a storage limit, or
the limit on the size of a particular data set. You might or might not
be able to correct these.

System errors Errors caused by the system: your program did nothing to cause the
error, and you probably cannot correct these.

In some cases, a return or reason code can result from some combination of these errors.

The return and reason code descriptions for the services in this book indicate whether the
error is a program error, an environmental error, a system error, or some combination.
Whenever possible, the return and reason code descriptions give you a specific action that
you can take to fix the error.

IBM recommends that you read all the return and reason codes for each service that your
program issues. You can then design your program to handle as many errors as possible.
When designing your program, you should allow for the possibility that future releases of
MVS might add new return and reason codes to a service that your program issues.

 Using the Services 5

Handling Program Errors
The actions to take in the case of program errors are usually straightforward. Typical
examples of program errors are:

1. Breaking one of the rules of the service. For example:

� Passing parameters that are either in the wrong format or not valid

� Violating one of the environment requirements (addressing mode, locking
requirements, dispatchable unit mode, and so on)

� Providing insufficient storage for information to be returned by the system.

2. Causing errors related to the parameter list. For example:

� Coding an incorrect combination of parameters
� Coding one or more parameters on the service incorrectly
� Inadvertently overlaying an area of the parameter list storage
� Inadvertently destroying the pointer to the parameter list.

3. Requesting a service or function for which the calling program is not authorized, or
which is not available on the system on which the program is running.

In each of the first two cases, you can correct your program. For completeness, the return
and reason code descriptions give you specific actions to perform, even when it might seem
obvious what the action should be.

In the third case, you might have to contact your system administrator or system
programmer to obtain the necessary authorization, or to request that the service or function
be made available on your system, and the return or reason code description asks you to
take that step.

Note: Generally, the system does not take dumps for errors that your program causes
when issuing a system service. If you require such a dump, then it is your responsibility to
request one in your recovery routine. See the section on providing recovery in OS/390 MVS
Programming: Assembler Services Guide for information about writing recovery routines.

Handling Environmental and System Errors
With environmental errors, often your first action should be to rerun your program or retry the
request one or more times. The following are examples of environmental errors where
rerunning your program or retrying the request is appropriate:

� The request being made through the service exceeds some internal system limit.
Sometimes, rerunning your program or retrying the request results in successful
completion. If the problem persists, it might be an indication of a larger problem
requiring you to consult your system programmer, or possibly IBM support personnel.
Your system programmer might be able to tune the system or cancel users so that the
limit is no longer exceeded.

� The request exceeds an installation-defined limit. If the problem persists, the action
might be to contact your system programmer and request that a specification in an
installation exit or parmlib member be modified.

� The system cannot obtain storage, or some other resource, for your request. If the
problem persists, the action might be to check with the operator to see if another user in
the installation is causing the problem, or to see if the entire installation is experiencing
storage constraint problems.

You might be able to design your program to anticipate certain environmental errors and
handle them dynamically.

With system errors, as with environmental errors, often your first action should be to rerun
your program or retry the request one or more times. If the problem persists, you might
have to contact IBM support personnel.

6 OS/390 V2R8.0 MVS Assembler Services Reference

Whenever possible for environmental and system errors, the return or reason code
description gives you either a specific action you can take, or a list of recommended actions
you can try.

For some errors, providing a specific action is not possible, because the action you should
take depends on your particular application, and on what is happening in your installation. In
those cases, the return or reason code description gives you one or more possible causes of
the error to help you to determine what action to take.

Some system errors result in return and reason codes that are provided for IBM diagnostic
purposes only. In these cases, the return or reason code description asks you to record the
information and provide it to the appropriate IBM support personnel.

Selecting the Macro Level
When MVS introduces a new version or a new release of an existing version, the new
version or release usually supports all MVS macros from previous versions and releases. In
general, programs assembled on an earlier version and release of MVS that issue macros
will run on later versions and releases of MVS.

In most cases, the reverse is also true. When you assemble programs that issue macros on
a particular version and release of MVS, those programs can run on earlier versions and
releases of MVS, provided you request only those functions that are supported by the earlier
version and release. This is useful for installations that write applications that might be
assembled on one level of MVS, but run on a different level. When this is not true, it is
called a downward incompatibility .

Placed in your program, the SPLEVEL macro helps you to deal with these downward
incompatibilities. See “Service Summary” on page 21 for a description of the ways in which
individual macros interact with the SPLEVEL macro. There are three categories of
information provided in the summary table:

none The macro has no downward incompatibilities. SPLEVEL is not examined.

n A number in the range 2 to 4, indicating the release in which a downward
incompatibility was introduced:

2 The macro is downward-incompatible betweem MVS/XA SP2.1.0 and prior
releases

3 The macro is downward-incompatible betweem MVS/ESA SP3.1.0 and prior
releases

4 The macro is downward-incompatible betweem MVS/ESA SP4.1.0 and prior
releases

AR The macro is downward incompatible between MVS/ESA SP3.1.0 and prior releases
when the program specifies SYSSTATE ASCENV=AR.

Note: The problem of downward compatibility is not the same as selecting a macro version
via the PLISTVER parameter to ensure the correct parameter list size for a macro. For
selecting a parameter list version number, see “Specifying a Macro Version Number” on
page 11.

Some MVS macros are downward incompatible between MVS/XA SP2.1.0 and prior
releases of MVS. When you assemble a program that issues these macros on an MVS/XA
SP2.1.0 or higher system and attempt to run the program on version 1, these macros
produce downward-incompatible statements, even though your program requests only
function supported by version 1. Consequently, the program might not run as expected.
Also, the version 1 expansions of these macros do not run on an MVS/XA SP2.1.0 or higher
system if the caller is in 31-bit addressing mode. So, programs in 31-bit addressing mode
must always use the MVS/XA SP2.1.0 or higher expansion of these macros.

The macros described in this book that are downward incompatible are:

 Using the Services 7

 � ATTACH
 � ESTAE
 � EVENTS
 � STIMER
 � WTOR

Many macros are sensitive to the difference between MVS/ESA SP3.1.0 and prior releases
when SYSSTATE ASCENV=AR. Set SYSSTATE ASCENV=AR when your program runs
in AR ASC mode, and not otherwise.

If you use installation- or vendor-written macros, some of these macros might have
incompatibilities between versions and releases as well. Check your installation or vendor
documentation to determine if such incompatibilities exist.

To manage the problem of incompatibilities between versions and releases of macros, use
the SPLEVEL macro. The SPLEVEL macro with the SET=n parameter allows your program
to select which level of a macro the assembler will generate.

Before issuing a downward-incompatible macro (for example, WTOR) , a program can
specify the macro level by issuing SPLEVEL SET=n. For example, you could assemble the
program using the OS/390 macro library, but indicate that you want to make sure the WTOR
expansion will work on a release prior to MVS/XA SP2.1.0 by issuing SPLEVEL SET=1.

You can also use SPLEVEL with the TEST parameter when you write your own macros to
ensure that the macro level for your macro is set. See the SPLEVEL macro description,
“SPLEVEL — Set Macro Level” on page 905, for more information.

According to the indication in the service summary table for a particular macro, use
SPLEVEL as follows:

Indication SPLEVEL

none Specify SPLEVEL SET

2 If you need the expansion to work on a release prior to MVS/XA SP2.1.0,
specify SPLEVEL SET=1

3 If you need the expansion to work on a release prior to MVS/ESA SP3.1.0,
specify SPLEVEL SET=2

4 If you need the expansion to work on a release prior to MVS/ESA SP4.1.0,
specify SPLEVEL SET=3

AR If you need the expansion to work on a release prior to MVS/ESA SP3.1.0,
specify SPLEVEL SET=1 or SPLEVEL SET=2 and specify (or default to)
SYSSTATE ASCENV=P

A program must select the level of the macro at execution time, based on the level of MVS
on which the program runs. The example in Figure 3 on page 10 shows one method of
doing this. The example uses the WTOR macro but would work for any
downward-incompatible macro. The WTOR macro downward incompatibility was introduced
in MVS/XA SP2.1.0, and the macro has had new function added in each of MVS/XA
SP2.1.0, MVS/ESA SP3.1.0, MVS/ESA SP4.1.0, and MVS/ESA SP5.1.0. So in this
example, you could actually code the WTOR macro with different parameters depending on
the level of MVS on which the program runs. This example assumes that you assemble the
program on an OS/390 system. If you were coding WTOR with only version 1 parameters,
you could simply use SPLEVEL SET=1 for programs that run on version 1, and SPLEVEL
SET (take the default) for programs that run on any other version of MVS.

The program in this example tests various bits in the CVT data area:

1. The program first tests the CVTOSEXT bit in CVTDCB to see if the CVT extension,
which contains the bits that indicate whether the operating system is version 3 or higher,
is present.

8 OS/390 V2R8.0 MVS Assembler Services Reference

a. If the extension is present, the program then determines if the operating system
supports the MVS/ESA SP5.1.0 functions by testing the CVTH5510 bit in the
CVTOSLV1 field. The CVTH5510 bit is 1 when the operating system is MVS/ESA
SP5.1.0 or later. In the path where the CVTH5510 bit is 1, the WTOR macro can
specify functions made available in MVS/ESA SP5.1.0 or a prior release.

b. If the extension is present, but the MVS/ESA SP5.1.0 indicator is 0, then the
program determines if the operating system supports the MVS/ESA SP4.1.0
functions by testing the CVTH4410 bit in CVTOSLV0. The CVTH4410 bit is 1 when
the operating system is MVS/ESA SP4.1.0 or later. In the path where the
CVTH4410 bit is 1, the WTOR macro can specify functions made available in
MVS/ESA SP4.1.0 or a prior release.

c. If the extension is present, but the version is neither 5 nor 4, then the program
determines if the operating system supports the MVS/ESA SP3.1.0 functions by
testing the CVTH3310 bit in CVTOSLV0. The CVTH3310 bit is 1 when the
operating system is MVS/ESA SP3.1.0 or later. In the path where the CVTH3310
bit is 1, the WTOR macro can specify functions made available in MVS/ESA
SP3.1.0 or a prior release.

2. If the extension is not present, the program tests the CVTMVSE bit in CVTDCB to
determine if the operating system is version 2 or version 1. If the CVTMVSE bit is 1,
the operating system is version 2; if the CVTMVSE bit is 0, the operating system is
version 1. In the path where the CVTMVSE bit is 1, the WTOR macro can specify
functions made available in MVS/XA SP2.1.0 or a prior release.

In the path where the CVTMVSE bit is 0, it is important to specify SYSSTATE SET=1,
because the downward incompatibility lies between MVS/XA SP2.1.0 and earlier
releases. The WTOR macro can specify only functions made available prior to MVS/XA
SP2.1.0.

 Using the Services 9

SPLEVEL SET Set to current SPLEVEL
\
\ Determine which system is executing.

TM CVTDCB,CVTOSEXT Is extension present?
BNO SP2CHK No, check for version 2.
TM CVTOSLV1,CVTH551ð Is the operating system version 5?
BO SP5 Yes, use version 5 macro.
TM CVTOSLVð,CVTH441ð Is the operating system version 4?
BO SP4 Yes, use version 4 macro.
TM CVTOSLVð,CVTH331ð Is the operating system version 3?
BO SP3 Yes, use version 3 macro.

\
SP2CHK EQU \

TM CVTDCB,CVTMVSE Is the operating system version 2?
BO SP2 Yes, use version 2 macro.
B SP1 The operating system is version 1.

\
\ Issue the version 5 expansion of the macro.
SP5 EQU \
 WTOR version-5-function(s)
 B CONTINUE
\
\ Issue the version 4 expansion of the macro.
SP4 EQU \

WTOR version-4-functions(s) Note: use only parameters that X
are supported in version 4.

 B CONTINUE
\
\ Issue the version 3 expansion of the macro.
SP3 EQU \

WTOR version-3-functions(s) Note: use only parameters that X
are supported in version 3.

 B CONTINUE
\
\ Issue the version 2 expansion of the macro.
SP2 EQU \

WTOR version-2-functions(s) Note: use only parameters that X
are supported in version 2.

 B CONTINUE
\
\ Issue the version 1 expansion of the macro.
SP1 EQU \
 SPLEVEL SET=1

WTOR version-1-functions(s) Note: use only parameters that X
are supported in version 1.

\
\ Reset SPLEVEL for macro expansion to default.
\
CONTINUE EQU \
 SPLEVEL SET

Figure 3. Issuing the Correct Macro Version at Execution Time

10 OS/390 V2R8.0 MVS Assembler Services Reference

Specifying a Macro Version Number
Often there is more than one version of a macro, differentiated by additional parameters or
new or expanded function. For example, version 1 of the IXGCONN macro provides
connection to a log stream, while version 2 adds new parameters in support of resource
manager programs. Note that this is different than using the SPLEVEL macro to select a
macro version level to solve problems of downward compatibility. See “Selecting the Macro
Level” on page 7 for more information on selecting a macro level.

You can request a specific version of a macro based on the parameters you need to use in
your application, but you should also be attuned to the storage constraints of the installation.
The version of a macro might affect the length of the parameter list generated when the
macro is assembled, because when new parameters are added to a macro, the paramater
list must be large enough to fit them. The size of the parameter list might grow from release
to release of OS/390, perhaps affecting the amount of storage your program needs.

How to Request a Macro Version Using PLISTVER
Many macros that have one or more versions supply the PLISTVER parameter. For those
that do, use the PLISTVER parameter to request a version of the macro. PLISTVER is the
only parameter allowed on the list form of a macro (MF), and it determines which parameter
list the system generates. PLISTVER is optional. If you omit it, the system generates a
parameter list for the lowest version that will accomodate the parameters specified. This is
the IMPLIED_VERSION default. Note that on the list form, the default will cause the
smallest parameter list to be created.

You also have the option of coding a specific version number using plistver, or of specifying
MAX:

� plistver allows you to code a decimal value corresponding to the version of the macro
you require. The decimal value you provide determines the amount of storage allotted
for the parameter list.

� MAX allows you to request that the system generate a parameter list for the highest
version number currently available. The amount of storage allotted for the parameter list
will depend on the level of the system on which the macro is assembled.

IBM recommends, if your program can tolerate additional growth, that you always
specify PLISTVER=MAX on the list form of the macro. MAX ensures that the list form
parameter list is always long enough to hold whatever parameters might be specified on
the execute form when both forms are assembled using the same level of the system.

Hints for Using PLISTVER
There are some general considerations that you should keep in mind when specifying the
version of a macro with PLISTVER:

� If PLISTVER is omitted, the macro generates a parameter list of the lowest version that
allows all the parameters specified to be processed.

� If you code plistver='n' and then specify any version 'n+1' parameters, the macro will not
assemble.

� If you code plistver='n' and do not specify any version 'n' parameters, the macro will
generate a version 'n' parameter list.

� If you are using the standard form of the macro (MF=S), there is no reason you need to
code the PLISTVER parameter.

� Not all macros in OS/390 have the same version numbers. The version numbers need
not be contiguous.

The PLISTVER parameter appears in the syntax diagram and in the parameter descriptions.
Within each macro description, the PLISTVER parameter description specifies the range of
values and lists the parameters applicable for each version of the macro.

 Using the Services 11

 Using X-Macros
Some MVS services support callers in both primary and AR ASC mode. When the caller is
in AR mode, macros must generate larger parameter lists; the increased size of the list
reflects the addition of ALETs to qualify addresses, as described under “ALET Qualification”
on page 3. For some MVS macros, two versions of a particular macro are available: one
for callers in primary mode and one for callers in AR mode. The name of the macro for the
AR mode caller is the same as the name of the macro for primary mode callers, except the
AR mode macro name ends with an “X”. This book refers to these macros as X-macros .
The X-macros described in this book are:

 � ATTACHX
 � ESTAEX
 � LINKX
 � SNAPX
 � SYNCHX
 � XCTLX

The only way these macros know that a caller is in AR mode is by checking the global
symbol that the SYSSTATE macro sets. Each of these macros (and corresponding
non-X-macro) checks the symbol. If SYSSTATE ASCENV=AR has been issued, the macro
issues code that is valid for callers in AR mode. If it has not been issued, the macro
generates code that is not valid for callers in AR mode. When your program returns to
primary mode, use the SYSSTATE ASCENV=P macro to reset the global symbol.

IBM recommends that you use the X-macro regardless of whether your program is running
in primary or AR mode. However, you should consider the following before deciding which
macro to use:

The rules for using all X-macros, except ESTAEX, are:

� Callers in primary mode can invoke either macro.

Some parameters on the X-macros, however, are not valid for callers in primary mode.
Some parameters on the non-X-macros are not valid for callers in AR mode. Check the
macro descriptions for these exceptions.

� Callers in AR mode should issue the X-macros.

If a caller in AR mode issues the non-X-macro, the system substitutes the X-macro and
sends a message describing the substitution.

IBM recommends you always use ESTAEX unless your program and your recovery routine
are in 24-bit addressing mode, in which case, you should use ESTAE.

12 OS/390 V2R8.0 MVS Assembler Services Reference

 Macro Forms
You can code most macros in three forms: standard, list, and execute. Some macros also
have a modify form. When you code a macro, you use the MF parameter to select one of
the forms. The list, execute and modify forms are for reenterable programs that need to
change values in the parameter list of the macro. The standard form is for programs that
are not reenterable, or for programs that do not change values in the parameter list.

When a program wants to change values in the parameter list of a macro, it can make the
change dynamically.

However, using the standard form and changing the parameter list dynamically might cause
errors. For example, after storing a new value into the inline, standard form of the parameter
list, a reenterable program operating under a given task might be interrupted by the system
before the program can invoke the macro. In a multiprogramming environment, another task
can use the same reenterable program, and that task might change the inline parameter list
again before the first task regains control. When the first task regains control, it invokes the
macro. However, the inline parameter list now has the wrong values.

Through the use of the different macro forms, a program that runs in a multiprogramming
environment can avoid errors related to reenterable programs. The techniques required for
using the macro forms, however, are different for some macros, called alternative list form
macros, than for most other macros. For the alternative list form macros, the list form
description notes that different techniques are required and refers you to the information
under “Alternative List Form Macros.”

Conventional List Form Macros
With conventional list form macros, you can use the macro forms as follows:

1. Use the list form of the macro, which expands to the parameter list. Place the list form in
the section of your program where you keep non-executable data, such as program
constants. Do not code it in the instruction stream of your program.

2. In the instruction stream, code a GETMAIN or a STORAGE macro to obtain some virtual
storage.

3. Code a move character instruction that moves the parameter list from its non-executable
position in your program into the virtual storage area that you obtained.

4. For macros that have a modify form, you can code the modify form of the macro to
change the parameter list. Use the address parameter of the modify form to reference
the parameter list in the virtual storage area that you obtained. Thus, the parameter list
that you change is the one in the virtual storage area obtained by the GETMAIN or
STORAGE macro.

5. Invoke the macro by issuing the execute form of the macro. Use the address parameter
of the execute form to reference the parameter list in the virtual storage area that you
obtained.

With this technique, the parameter list is safe even if the first task is interrupted and a
second task intervenes. When the program runs under the second task, it cannot access
the parameter list in the virtual storage of the first task.

Alternative List Form Macros
Certain macros, called alternative list form macros, require a somewhat different technique
for using the list form. With these macros, you do not move the area defined by the list form
into virtual storage that you have obtained; instead, you place the area defined by the list
form into a DSECT. Also, it is the list form, not the execute form, that you use to specify the
address parameter that identifies the address of the storage for the parameter list. Note that
no modify form is available for these macros.

 Using the Services 13

You can use the macro forms for the alternative list form macros as follows:

1. Use the list form of the macro to define an area of storage that the execute form can
use to store the parameters. As with other macros, do not code the list form in the
instruction stream of your program.

2. In the instruction stream, code a GETMAIN or a STORAGE macro to obtain virtual
storage for the list form expansion.

3. Place the area defined by the list form into a DSECT that maps a portion of the virtual
storage you obtained.

4. Invoke the macro by issuing the execute form of the macro. The address parameter
specified on the list form references the parameter list in the virtual storage area that
you obtained.

14 OS/390 V2R8.0 MVS Assembler Services Reference

Coding the Macros
In this book, each macro description includes a syntax table near the beginning of the macro
description. The table shows how to code the macro. The syntax table does not explain the
meanings of the parameters; the meanings are explained in the parameter descriptions that
follow the syntax table.

The syntax tables assume that the standard begin, end, and continue columns are used.
Thus, column 1 is assumed as the begin column. To change the begin, end, and continue
columns, use the ICTL instruction to establish the coding format you want to use. If you do
not use ICTL, the assembler recognizes the standard columns. To code the ICTL
instruction, see HLASM Language Reference.

Figure 4 shows a sample macro, TEST, and summarizes all the coding information that is
available for it. The table is divided into three columns, A, B, and C.

� The first column, A, contains those parameters that are required for that macro. If a
single line appears in that column, A1, the parameter on that line is required and you
must code it. If two or more lines appear together, A2, the parameters on those lines
are mutually exclusive, so you must code only one of those parameters.

� The second column, B, contains those parameters that are optional for that macro. If a
single line appears in that column, B1, the parameter on that line is optional. If two or
more lines appear together, B2, the parameters on those lines are mutually exclusive,
so if you elect to make an entry, you must code only one of those parameters.

� The third column, C, provides additional information about coding the macro.

 Using the Services 15

A B C

A1

A2

B1

B2

TEST

b One or more blanks must precede TEST.

b One or more blanks must follow TEST.

MATH
HIST
GEOG

,DATA=

,LNG=

symbol. Begin in column 1.

symbol or decimal digit, with a maximum value of 256.

,FMT=HEX
,FMT=DEC
,FMT=BIN

Default: FMT=HEX

,PASS=
Default: PASS=65

symbol, decimal digit, or register (1) or (2) - (12).

symbol, decimal digit, or register (1) or (2) - (12).

RX-type address, or register (2) - (12)

Figure 4. Sample Macro Syntax Diagram

16 OS/390 V2R8.0 MVS Assembler Services Reference

When substitution of a variable is required in column C, the following classifications are
used:

Variable Classification

Symbol Any symbol valid in the assembler language. The symbol can be as
long as the supported maximum length of a name entry in the assembler
you are using.

Decimal digit Any decimal digit up to and including the value indicated in the
parameter description. If both symbol and decimal digit are indicated, an
absolute expression is also allowed.

Register (2)-(12) One of general purpose registers 2 through 12, specified within
parentheses, previously loaded with the right-adjusted value or address
indicated in the parameter description. You must set the unused
high-order bits to zero. You can designate the register symbolically or
with an absolute expression.

Register (0) General purpose register 0, previously loaded with the right-adjusted
value or address indicated in the parameter description. You must set
the unused high-order bits to zero. Designate the register as (0) only.

Register (1) General purpose register 1, previously loaded with the right-adjusted
value or address indicated in the parameter description. You must set
the unused high-order bits to zero. Designate the register as (1) only.

Register (15) General purpose register 15, previously loaded with the right-adjusted
value or address indicated in the parameter description. You must set
the unused high-order bits to zero. Designate the register as (15) only.

RX-type address Any address that is valid in an RX-type instruction (for example, LA).

RS-type address Any address that is valid in an RS-type instruction (for example, STM).

RS-type name Any name that is valid in an RS-type instruction (for example, STM).

A-type address Any address that can be written in an A-type address constant.

Default A value that is used in default of a specified value; that is, the value the
system assumes if the parameter is not coded.

Use the parameters to specify the services and options to be performed, and write them
according to the following rules:

� If the selected parameter is written in all capital letters (for example, MATH, HIST, or
FMT=HEX), code the parameter exactly as shown.

� If the selected parameter is written in italics (for example, grade), substitute the
indicated value, address, or name.

� If the selected parameter is a combination of capital letters and italics separated by an
equal sign (for example, DATA=data addr), code the capital letters and equal sign as
shown, and then make the indicated substitution for the italics.

� Read the table from top to bottom.

� Code commas and parentheses exactly as shown.

� Positional parameters (parameters without equal signs) appear first; you must code
them in the order shown. You may code keyword parameters (parameters with equal
signs) in any order.

� If you select a parameter, read the third column before proceeding to the next
parameter. The third column often contains coding restrictions for the parameter.

 Using the Services 17

 Continuation Lines
You can continue the parameter field of a macro on one or more additional lines according
to the following rules:

� Enter a continuation character (not blank, and not part of the parameter coding) in
column 72 of the line.

� Continue the parameter field on the next line, starting in column 16. All columns to the
left of column 16 must be blank.

You can code the parameter field being continued in one of two ways. Code the parameter
field through column 71, with no blanks, and continue in column 16 of the next line; or
truncate the parameter field by a comma, where a comma normally falls, with at least one
blank before column 71, and then continue in column 16 of the next line. Figure 5 shows an
example of each method.

18 OS/390 V2R8.0 MVS Assembler Services Reference

NAME 1

NAME 2 OP2

OP1 OPERAND1,OPERAND2,OPERAND3,OPERAND4,OPERAND5,OPERAND6,OPX
ERAND7
OPERAND1,OPERAND2
OPERAND3,OPERAND4,
OPERAND5,OPERAND6,OPERAND7

THIS IS ONE WAY
THIS IS ANOTHER WAY X

X

1 1610 44 72

Figure 5. Continuation Coding

 Using the Services 19

Coding the Callable Services
A callable service is a programming interface that uses the CALL macro to access system
services. To code a callable service, code the CALL macro followed by the name of the
callable service, and a parameter list; for example, CALL service,(parameter list).
Figure 6 shows the syntax diagram for the sample callable service SCORE.

Figure 6. Sample Callable Service Syntax Diagram

CALL SCORE

,(test_type
,level
,data
,format_option
,return_code)

Considerations for coding callable services are:

� You must code all the parameters in the parameter list because parameters are
positional in a callable service interface. That is, the function of each parameter is
determined by its position with respect to the other parameters in the list. Omitting a
parameter, therefore, assigns the omitted parameter's function to the next parameter in
the list.

� You must place values explicitly into all input parameters, because callable services do
not set default values.

� You can use the list and execute forms of the CALL macro to preserve your program's
reentrancy.

Including Equate (EQU) Statements
IBM supplies sets of equate (EQU) statements for use with some callable services. These
statements, which you may optionally include in your source code, provide constants for use
in your program. IBM provides the statements as a programming convenience to save you
the trouble of coding the definitions yourself.

Note: Check the “Programming Requirements” section of the individual service description
to determine if the equate statements are available for the callable service you are using. If
the equate statements are available, that section will also provide a list of the statements
that are provided, along with a description of how to include them in your program.

Link-Editing Linkage-Assist Routines
Linkage-assist routines provide the connection between your program and the system
services that your program requests. When using callable services, link-edit the appropriate
linkage-assist routines into your program module so that, during execution, the linkage-assist
routines can resolve the address of, and pass control to, the requested system services. You
can also dynamically link to linkage-assist routines as an alternative to link-editing. For
example, issue the LOAD macro for the linkage-assist routine, then issue a CALL to the
loaded addresses.

20 OS/390 V2R8.0 MVS Assembler Services Reference

To invoke the linkage-editor or binder, code JCL as in the following example:

//userid JOB 'accounting-info','name',CLASS=x,
// MSGCLASS=x,NOTIFY=userid,MSGLEVEL=(1,1),REGION=4ð96K
//LINKSTEP EXEC PGM=HEWL,
// PARM='LIST,LET,XREF,REFR,RENT'
//SYSPRINT DD SYSOUT=x
//SYSLMOD DD DSN=userid.LOADLIB,DISP=OLD
//SYSLIB DD DSN=SYS1.CSSLIB,DISP=SHR
//OBJLIB DD DSN=userid.OBJLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(5,2))
//SYSLIN DD \
 INCLUDE OBJLIB(userpgm)
 ENTRY userpgm
 NAME userpgm(R)
/\

Note: Specifying SYS1.CSSLIB in the //SYSLIB statement, as shown, causes the
addresses of all required linkage-assist routines to be automatically resolved. This statement
saves you the trouble of having to specify individual linkage-assist routines in INCLUDE
statements.

 Service Summary
Figure 7 on page 21 lists the services described in the OS/390 MVS Programming:
Assembler Services Reference. For each service, the table indicates:

� Whether a program in AR ASC mode can issue the service
� Whether a program in cross memory mode can issue the service
� Whether the macro checks the SYSSTATE global variable
� Whether the macro checks the SPLEVEL global variable.

Notes:

1. Cross memory mode means that at least one of the following conditions is true:

PASN¬=SASN The primary address space (PASN) and the secondary address
space (SASN) are different.

PASN¬=HASN The primary address space (PASN) and the home address space
(HASN) are different.

SASN¬=HASN The secondary address space (SASN) and the home address space
(HASN) are different.

For more information about functions that are available to programs in cross memory
mode, see OS/390 MVS Programming: Extended Addressability Guide.

2. A program running in primary ASC mode when PASN=SASN=HASN can issue any of
the services listed in the table.

3. Callable services do not check the SYSSTATE or SPLEVEL global variables.

Figure 7 (Page 1 of 5). Service Summary

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Checks
SPLEVEL

ABEND Yes Yes Yes No

ALESERV Yes Yes No No

ASASYMBM No No Yes No

ATTACH Yes
(See note 1 on
page 25)

No Yes Yes

 Using the Services 21

Figure 7 (Page 2 of 5). Service Summary

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Checks
SPLEVEL

ATTACHX Yes No Yes No

BLDMPB Yes Yes No No

BLSABDPL Yes Yes N/A N/A

BLSACBSP Yes Yes N/A N/A

BLSADSY Yes Yes N/A N/A

BLSAPCQE Yes Yes N/A N/A

BLSQFXL Yes Yes N/A N/A

BLSQMDEF Yes Yes N/A N/A

BLSQMFLD Yes Yes N/A N/A

BLSQSHDR Yes Yes N/A N/A

BLSRDRPX Yes Yes N/A N/A

BLSRESSY Yes Yes N/A N/A

BLSRNAMP Yes Yes N/A N/A

BLSRPRD Yes Yes N/A N/A

BLSRPWHS Yes Yes N/A N/A

BLSRSASY Yes Yes N/A N/A

BLSRXMSP Yes Yes N/A N/A

BLSRXSSP Yes Yes N/A N/A

BLSUPPR2 Yes Yes N/A N/A

CALL Yes Yes Yes Yes

CHAP No No No No

CONVCON No No No No

CONVTOD Yes Yes No No

CPOOL No Yes No No

CPUTIMER No Yes No No

CSRCESRV Yes Yes No No

CSRCMPSC Yes Yes Yes Yes

CSREVW No No N/A N/A

CSRIDAC No No N/A N/A

CSRL16J No No N/A N/A

CSRPACT Yes Yes N/A N/A

CSRPBLD Yes Yes N/A N/A

CSRPCON Yes Yes N/A N/A

CSRPDAC Yes Yes N/A N/A

CSRPDIS Yes Yes N/A N/A

CSRPEXP Yes Yes N/A N/A

CSRPFRE Yes Yes N/A N/A

CSRPFR1 Yes Yes N/A N/A

CSRPGET Yes Yes N/A N/A

CSRPGT1 Yes Yes N/A N/A

CSRPQCL Yes Yes N/A N/A

CSRPQEX Yes Yes N/A N/A

22 OS/390 V2R8.0 MVS Assembler Services Reference

Figure 7 (Page 3 of 5). Service Summary

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Checks
SPLEVEL

CSRPQPL Yes Yes N/A N/A

CSRPRFR Yes Yes N/A N/A

CSRPRFR1 Yes Yes N/A N/A

CSRPRGT Yes Yes N/A N/A

CSRPRGT1 Yes Yes N/A N/A

CSRREFR No No N/A N/A

CSRSAVE No No N/A N/A

CSRSCOT No No N/A N/A

CSRVIEW No No N/A N/A

CSVAPF Yes
(See note 7 on
page 25)

Yes Yes No

CSVINFO No No No No

CSVQUERY Yes No Yes Yes

DELETE No No No No

DEQ No No No No

DETACH Yes No Yes No

DIV Yes No Yes No

DOM No No No No

DSPSERV Yes Yes Yes Yes

EDTINFO Yes Yes Yes Yes

ENQ No No No No

ESPIE No No No No

ESTAE
(See note 2 on
page 25)

No No Yes Yes

ESTAEX Yes Yes Yes Yes

EVENTS No No No Yes

FREEMAIN No
(See note 3 on
page 25)

Yes Yes No

GETMAIN No
(See note 3 on
page 25)

Yes Yes No

GQSCAN No Yes No No

HSPSERV Yes Yes
(See note 4 on
page 25)

(See note 5 on
page 25)

Yes

IARR2V Yes Yes No No

IARVSERV Yes Yes Yes Yes

IDENTIFY No No No No

IEAINTKN Yes Yes Yes No

IEALSQRY Yes Yes Yes No

IEANTCR Yes Yes N/A N/A

IEANTDL Yes Yes N/A N/A

 Using the Services 23

Figure 7 (Page 4 of 5). Service Summary

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Checks
SPLEVEL

IEANTRT Yes Yes N/A N/A

IEFDDSRV Yes Yes No No

IEFSSI Yes No No No

IOCINFO Yes Yes Yes Yes

IXGBRWSE Yes Yes Yes Yes

IXGCONN Yes Yes Yes Yes

IXGDELET Yes Yes Yes Yes

IXGINVNT Yes Yes Yes Yes

IXGWRITE Yes Yes Yes Yes

LINK Yes
(See note 1 on
page 25)

No Yes No

LINKX Yes No Yes No

LOAD Yes No No No

LSEXPAND Yes No No No

PGLOAD No No No No

PGOUT No No No No

PGRLSE No No No No

PGSER No No No No

POST No Yes No No

QRYLANG Yes Yes No No

REFPAT Yes No Yes Yes

RESERVE No No No No

RETURN No No No No

SAVE No No No No

SETRP Yes Yes Yes No

SNAP Yes
(See note 1 on
page 25)

No Yes No

SNAPX Yes No Yes No

SPIE No No No No

SPLEVEL Yes Yes No No

STAE No No No No

STATUS Yes Yes No No

STCKCONV Yes Yes No No

STCKSYNC Yes Yes Yes No

STIMER No No No Yes

STIMERM No No No No

STORAGE Yes Yes No No

SYMRBLD Yes Yes Yes No

SYMREC No Yes No No

SYNCH Yes
(See note 1 on
page 25)

No Yes No

24 OS/390 V2R8.0 MVS Assembler Services Reference

Figure 7 (Page 5 of 5). Service Summary

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Checks
SPLEVEL

SYNCHX Yes No Yes No

SYSSTATE Yes Yes No No

TCBTOKEN Yes Yes No No

TESTART Yes Yes No No

TIME Yes
(See note 6 on
page 25)

Yes
(See note 6 on
page 25)

No No

TIMEUSED Yes Yes No No

TRANMSG Yes Yes No No

TTIMER No No No No

UCBDEVN No No No No

UCBINFO Yes Yes Yes No

UCBSCAN Yes Yes Yes Yes

UPDTMPB Yes Yes No No

VRADATA Yes Yes Yes No

WAIT No Yes No No

WTL No No No No

WTO No No No No

WTOR No No No Yes

XCTL Yes
(See note 1 on
page 25)

Yes Yes No

XCTLX Yes Yes Yes No

Notes:

1. Callers can use either macro in the following macro pairs:

ATTACH or ATTACHX
LINK or LINKX
SNAP or SNAPX
SYNCH or SYNCHX
XCTL or XCTLX

IBM recommends that all callers in AR mode use the X-macros (ATTACHX, LINKX, SNAPX,
SYNCHX, and XCTLX). If a program in AR mode issues ATTACH, LINK, SNAP, SYNCH, or
XCTL after issuing SYSSTATE ASCENV=AR, the system substitutes the corresponding
X-macro and issues a message telling you that it made the substitution.

2. The only programs that can use ESTAE are programs that are in primary mode with
PASN=SASN=HASN. Callers in AR mode or in cross memory mode must use ESTAEX
instead of ESTAE.

IBM recommends you always use ESTAEX unless your program and your recovery routine
are in 24-bit addressing mode, in which case, you should use ESTAE.

3. Problem state AR mode callers must use the STORAGE macro instead of using GETMAIN or
FREEMAIN.

4. PASN=HASN=SASN for a non-shared standard hiperspace for which an ALET is not used (the
HSPALET parameter is omitted).

5. If you use the HSPALET parameter, the HSPSERV macro checks SYSSTATE.

6. Only TIME LINKAGE=SYSTEM can be issued in AR mode, and can be issued in cross
memory mode. TIME LINKAGE=SVC cannot be issued in AR mode or in cross memory mode.

7. For the QUERY request, CSVAPF can be issued only in primary mode. For all other requests,
CSVAPF can be issued in primary or AR mode.

 Using the Services 25

26 OS/390 V2R8.0 MVS Assembler Services Reference

 ABEND Macro

ABEND — Abnormally Terminate a Task

 Description
The ABEND macro is used to initiate error processing for a task. ABEND can request a full
or tailored dump of virtual storage areas and control blocks pertaining to the tasks being
abnormally terminated, and can specify that the entire job step is to be abnormally
terminated. If a user-written recovery routine was activated at the time the ABEND macro
was issued, it will get control before the task is terminated. This routine may recover the
task and allow it to retry. See OS/390 MVS Programming: Assembler Services Guide for
information on how to provide user-written recovery routines.

If the job step task is abnormally terminated or if ABEND specifies job step termination, the
completion code is recorded on the system output device, and the remaining job steps in the
job are either skipped or executed as specified in their job control statements.

If the job step is not to be terminated, the system takes the following actions:

� It terminates the task that was active when ABEND was issued and all of the subtasks
of that active task.

� It posts the completion code as indicated in the completion code parameter description
below.

� It selects the end-of-task exit routine specified in the ATTACH macro to receive control.
That end-of-task routine created the task that issued ABEND. The system gives the exit
routine control when the originating task of the task for which ABEND was issued
becomes active. It does not give control to any of the end-of-task exit routines specified
for any subtasks of the task for which ABEND was issued.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary, secondary, or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No locks held
Control parameters: None.

 Programming Requirements
If your program is in AR mode, issue the SYSSTATE ASCENV=AR macro before you issue
the ABEND macro. SYSSTATE ASCENV=AR tells the ABEND macro to generate code
appropriate for AR mode.

 Restrictions
None.

Input Register Information
Before issuing the ABEND macro, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter, or using it as a base
register.

 Copyright IBM Corp. 1988, 1999 27

 ABEND Macro

Output Register Information
None, because control does not return to the caller.

 Performance Implications
None.

 Syntax
The ABEND macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede ABEND.
 ABEND

␣ One or more blanks must follow ABEND.

comp code comp code: Symbol, decimal or hexadecimal digit, or register (1)

or (2) - (12).
Value range: 0 - 4095

 ,REASON=reason code reason code: Symbol, decimal or hexadecimal number, or register

(2) - (12).

 ,DUMP code type: USER or SYSTEM.
 ,,STEP Default: code type = USER.
 ,,,code type
 ,DUMP,STEP
 ,DUMP,,code type
 ,,STEP,code type
 ,DUMP,STEP,code type
 ,DUMP,DUMPOPT=parm
 list addr

parm list addr: RX-type address, or register (2) - (12).

 ,DUMP,DUMPOPX=parm
 list addr

 Parameters
The parameters are explained as follows:

comp code
Specifies the completion code associated with the abnormal termination. If the job step
is to be terminated, the decimal representation of the user completion code or the
hexadecimal representation of the system completion code is recorded on the system
output device. If the job step is not to be terminated, the completion code is placed in
the TCB of the active task, and in the ECB specified in the ECB parameter of the
ATTACH macro issued to create the active task. If you specify a hexadecimal digit, you
must use X‘dd’ format to distinguish the hexadecimal from decimal.

,REASON=reason code
Specifies the reason code that the user wants to pass to subsequent recovery exits.
The value range for the reason code is a 32-bit hexadecimal number or a 31-bit decimal
number. This reason code supplements the completion code associated with an
abnormal termination, allowing the user to uniquely identify the cause of the abnormal
termination. The reason code is propagated to each recovery exit.

28 OS/390 V2R8.0 MVS Assembler Services Reference

 ABEND Macro

,DUMP
,,STEP
,,,code type
,DUMP,STEP
,DUMP,,code type
,,STEP,code type
,DUMP,STEP,code type
,DUMP,DUMPOPT=parm list addr
,DUMP,DUMPOPX=parm list addr

Specifies options available with the ABEND macro:

DUMP specifies that a dump is requested of virtual storage areas assigned to the task
and control blocks pertaining to the task. A separate dump is provided for each of the
tasks being terminated as a result of ABEND. If a //SYSABEND, //SYSMDUMP, or
//SYSUDUMP DD statement is not provided, the DUMP parameter is ignored.

For OpenMVS, the system writes a core dump, which is a SYSMDUMP to an HFS file,
for errors following an exec or fork() function when the original address space had a
SYSMDUMP DD statement. For more information, see AD/Cycle LE/370 Debugging
and Run-Time Messages Guide.

STEP specifies that the entire job step of the active task is to be abnormally terminated.

Note: If the STEP parameter is coded in an ABEND macro under TSO, the TSO job
will be terminated.

code type specifies that the completion code is to be treated as a USER or SYSTEM
code.

DUMPOPT and DUMPOPX specify the address of a parameter list of options for a
tailored dump. To create the parameter list, use the list form of either the SNAP or
SNAPX macro, or code data constants in your program. DUMPOPT specifies the
address of a parameter list that the SNAP macro created. DUMPOPX specifies the
address of a parameter list that the SNAPX macro created.

The TCB, DCB, ID, and STRHDR options available on SNAP will be ignored if they
appear in the parameter list; the TCB used will be that of the task being terminated, the
DCB used will be provided by the ABDUMP routine. If a //SYSABEND, //SYSMDUMP,
or //SYSUDUMP DD statement is not provided, this parameter is ignored.

If the dump options specified include ranges of storage areas to be dumped, only the
storage areas in the first thirty ranges will be dumped. If SUBPLST is specified in the
SNAP or SNAPX parameter list passed to the ABEND macro via DUMPOPT or
DUMPOPX, the first seven subpools will be dumped.

The dump option parameter list, storage ranges, and subpools must be in the primary
address space.

 ABEND Codes
None.

Return and Reason Codes
None.

 ABEND — Abnormally Terminate a Task 29

 ABEND Macro

 Example 1
Terminate with a user completion code of 432.

ABEND 432

 Example 2
Terminate with the user completion code that is contained in register 5. The entire job step
is to be terminated.

ABEND (5),,STEP

 Example 3
Terminate with a system completion code of X‘0C4’.

ABEND X'ðC4',,,SYSTEM

30 OS/390 V2R8.0 MVS Assembler Services Reference

 ALESERV Macro

ALESERV — Control Entries in the Access List

 Description
The ALESERV macro manages the contents of access lists. An access list is a table in
which each entry identifies an address space, data space, or hiperspace to which a program
(or programs) has access. Access list entry tokens (ALETs) index the entries in the access
list. Use the ALESERV macro to:

� Add an entry to a DU-AL for an address space, data space, or nonshared standard
hiperspace (ADD parameter)

� Add an entry for the primary address space to the DU-AL (ADDPASN parameter)

� Add an entry for a SCOPE=SINGLE data space to the PASN-AL.

� Delete an entry from a DU-AL (DELETE parameter)

� Obtain a STOKEN for a specified ALET (EXTRACT parameter)

� Locate an ALET for a specified STOKEN (SEARCH parameter)

� Obtain the STOKEN of the home address space (EXTRACTH parameter).

A problem state program can use ALESERV to create an entry associated with an address
space only if it is running with an appropriate extended authorization index (EAX) value. To
set up EAX-authorization, a program must be in supervisor state. Information on
EAX-authorization appears in the books that are available to system programmers who write
programs in supervisor state.

On the ALESERV macro, address spaces, data spaces, and hiperspaces are identified
through STOKENs, an identifier similar to an address space identifier (ASID).

For information about access lists, ALETs, data spaces, and hiperspaces, see appropriate
chapters in OS/390 MVS Programming: Assembler Services Guide. That book contains
many examples of using ALESERV.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with any PSW key.
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31- bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts for ADD, ADDPASN, and

DELETE requests. Enabled or disabled for I/O and external
interrupts for requests other than ADD, ADDPASN, and DELETE

Locks: No locks held for ADD, ADDPASN, and DELETE requests. For
requests other than ADD, ADDPASN, and DELETE, the caller may
hold locks, but is not required to hold any.

Control parameters: Can reside in any addressable area

 Programming Requirements
For ADD and DELETE requests, the caller of the ALESERV macro must be one of the
following:

� The owner or creator of the data space
� The owner of the hiperspace.

To add a hiperspace entry to an access list, the processor must have the move-page facility
installed. If this facility is not on the processor, the ALESERV ADD request is rejected with

 Copyright IBM Corp. 1988, 1999 31

 ALESERV Macro

an error return code X'70'. In addition, the hiperspace cannot be currently DIV accessed as
a data object.

 Restrictions
None.

Input Register Information
Before issuing the ALESERV macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers contain:

Register Contents
0 Reason code associated with the return code for SEARCH and EXTRACT

requests; otherwise, used as a work register by the system
1 Address of the ALESERV parameter list
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers contain:

Register Contents
0 Used as a work register by the system
1 ALET for the parameter list
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

32 OS/390 V2R8.0 MVS Assembler Services Reference

 ALESERV Macro

 Syntax
The standard form of the ALESERV macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede ALESERV.

ALESERV

␣ One or more blanks must follow ALESERV.

Valid parameters (required parameters are underlined):

ADD AL, STOKEN, ACCESS, ALET, CHKPT, RELATED
ADDPASN ALET, CHKPT, RELATED
DELETE ALET, RELATED
EXTRACT ALET, STOKEN, RELATED
SEARCH ALET, STOKEN, AL, RELATED
EXTRACTH STOKEN, RELATED

 ,ACCESS=PUBLIC Default: ACCESS=PUBLIC
 ,ACCESS=PRIVATE

 ,AL=WORKUNIT Default: AL=WORKUNIT
 ,AL=PASN

 ,ALET=alet-addr alet-addr: RX-type address or register (2) - (12).

Note: If you specify register notation, the register contains the
ALET, rather than the address of the ALET.

 ,STOKEN=stoken-addr stoken-addr: RX-type address.

 ,CHKPT=FAIL Default: CHKPT=FAIL
 ,CHKPT=IGNORE

 ,RELATED=any-value

 Parameters
The parameters are explained as follows:

ADD
Requests that the system add an entry to the access list. You are required to use two
parameters:

� STOKEN specifies the address space, data space, or hiperspace that the entry
represents

� ALET specifies the address of the location where the system returns the ALET.

For access list entries that represent an address space, you can also specify whether an
entry is public or private (ACCESS parameter). To add an entry for an address space,
the caller must have EAX-authority to the target address space.

For access list entries that represent a data space or hiperspace, the entry must be
public.

A problem state program can add an entry for a SCOPE=SINGLE data space to the
PASN-AL if both of the following are true:

� The caller owns or created the data space.

� An entry for the data space is not already on the PASN-AL through the action of
another problem state program.

 ALESERV — Control Entries in the Access List 33

 ALESERV Macro

Adding an entry for a hiperspace requires that the processor have the move-page facility
installed. If a program issues ALESERV ADD for a hiperspace and the processor does
not have the facility, the ALESERV ADD request is rejected with a return code X'70'.
An unauthorized program can add only a nonshared standard hiperspace that it owns.

ADDPASN
Requests that the system add an entry for the primary address space to the DU-AL
without requiring a user to have EAX-authority to the address space. ALET, required
with ADDPASN, receives the ALET that indexes into the entry. The entry is a public
entry.

DELETE
Requests that the system delete an entry from the DU-AL. ALET, required with
DELETE, identifies the entry to be deleted.

EXTRACT
Requests that the system find the STOKEN of the specified ALET. The caller can
obtain the STOKEN for any address space, data space, or hiperspace that is
represented by a valid entry on the DU-AL or PASN-AL. ALET and STOKEN are
required parameters.

SEARCH
Requests that the system search through the DU-AL or PASN-AL for an ALET that
corresponds to a specified STOKEN. ALET and STOKEN are required parameters. AL
is an optional parameter; AL=DU-AL is the default.

EXTRACTH
Requests that the system find the STOKEN of the home address space. STOKEN is a
required parameter.

,ACCESS=PUBLIC
,ACCESS=PRIVATE

Specifies whether the access list entry you are adding is public or private. You cannot
add a private entry for a data space or hiperspace.

,AL=WORKUNIT
,AL=PASN

Specifies whether the access list is a DU-AL (WORKUNIT) or a PASN-AL (PASN). For
the ADD request, AL identifies the type of access list.

For the SEARCH request, AL specifies whether the system is to search through the
DU-AL or the PASN-AL.

,ALET=alet-addr
Specifies the 4-byte ALET that either you provide or the system returns, depending on
the other parameters you specify on ALESERV. When you use RX-type notation,
alet-addr specifies the address of the 4-byte field that contains the ALET. When you
use register notation, alet-addr specifies a register that contains the ALET itself, rather
than the address of the ALET.

For the ADD and ADDPASN requests, the system returns the ALET of the added entry.

For the DELETE request, you provide the ALET for the access list entry to be deleted.
Do not specify an ALET of 0, 1, or 2.

For the EXTRACT request, you provide the ALET whose STOKEN you require. The
system returns the STOKEN in stoken-addr.

For the SEARCH request, you specify where in the access list the system is to begin
the search:

� If you specify minus one (-1), the system starts searching at the beginning of the
DU-AL or PASN-AL.

� If you specify a valid ALET, the system starts searching with the next ALET in the
access list.

34 OS/390 V2R8.0 MVS Assembler Services Reference

 ALESERV Macro

The system then returns the searched-for ALET, if present. Otherwise, alet-addr is
unchanged and register 15 contains a return code that specifies that an ALET for the
STOKEN is not on the access list.

,STOKEN=stoken-addr
Specifies the 8-byte identifier of an address space, data space, or hiperspace. For the
ADD request, STOKEN identifies the space that the program wants to access.

For the EXTRACT request, the system returns the STOKEN that corresponds to the
specified ALET.

For the SEARCH request, STOKEN identifies the STOKEN for which the system is to
return the corresponding ALET.

For the EXTRACTH request, the system returns the STOKEN of the home address
space.

,CHKPT=FAIL
,CHKPT=IGNORE

Specifies how the system is to process a checkpoint request made through the CHKPT
macro, in relation to the access list entry being added. If you specify CHKPT=IGNORE,
the system ignores the access list entry added (DU-AL or PASN-AL) and processes the
checkpoint operation. If you specify CHKPT=FAIL, the system rejects the checkpoint
operation. The default is CHKPT=FAIL.

If you specify CHKPT=IGNORE, you assume full responsibility of managing the data
space or nonshared standard hiperspace storage. See OS/390 MVS Programming:
Assembler Services Guide for more information on using checkpoints with data spaces
and hiperspaces.

,RELATED=any-value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

 ABEND Codes
None.

Return and Reason Codes
When control is returned from ALESERV ADD, register 15 contains one of the following
hexadecimal return codes. A return code of 8 or greater means the system rejects the
request.

Hexadecimal
Return Code

Meaning and Action

0 Meaning : ALESERV ADD has completed successfully.

Action: None.

8 Meaning: Program error. The caller was not EAX-authorized to the specified
space. The entry is not added.

Action: Verify that the intended STOKEN is specified.

10 Meaning: Environmental error. ALESERV could not obtain storage for an
expanded access list.

Action: Retry the request.

18 Meaning: Program error. The caller in problem state with PSW key 8 - F tried
to add an entry to the PASN-AL for a space other than a SCOPE=SINGLE data
space.

Action: Change the request to add the data space as SCOPE=SINGLE or
change your program to run in supervisor state or key 0 - 7.

 ALESERV — Control Entries in the Access List 35

 ALESERV Macro

Hexadecimal
Return Code

Meaning and Action

1C Meaning: Program error. The caller is holding a lock.

Action: Release all locks before calling ALESERV.

20 Meaning: Program error. The caller is disabled.

Action: Enable your program before it issues ALESERV.

24 Meaning: Program error. AR 1 contained an ALET of 1 on input, or a PASN-AL
ALET.

Action: Verify that AR 1 contains either an ALET of 0 or the ALET for the
caller's DU-AL.

38 Meaning: Program error. The input STOKEN is not valid.

Action: Verify that the specified STOKEN is a valid STOKEN.

4C Meaning: Program or environmental error. The space represented by the input
STOKEN is not valid for cross memory access.

Action: None required. However, you may want to take some action based
upon your application.

50 Meaning: Program error. The ALESERV parameter list is not valid.

Action: Verify that your program is not overwriting the parameter list and that
the execute form of the macro correctly addresses the parameter list.

54 Meaning: Program error. The caller tried to add a data space or hiperspace to
an access list as a private entry.

Action: Specify ACCESS=PUBLIC instead of ACCESS=PRIVATE.

5C Meaning: Program error. The caller tried to add a data space or a hiperspace
to an access list without proper authority.

Action: Correct your program to specify STOKENs for spaces for which your
program is authorized.

60 Meaning: System error. An unexpected error occurred. The request was not
completed.

Action: Retry the request.

62 Meaning: Program error. A previous error in your program left the access list in
an unexpected format. The error might have occurred because the SRB
environment was not valid when the system dispatched an SRB. The system
did not perform the ALESERV ADD request.

Action: Determine the cause of the error that preceded the ALESERV ADD
request. Correct the error and rerun the program.

68 Meaning: Program error. The caller attempted to add a hiperspace that is not a
nonshared standard hiperspace owned by the caller.

Action: Verify that the options specified on your ADD request do not violate the
rules for adding entries for hiperspaces to access lists.

6C Meaning: Program error. The caller tried to add an entry for a
SCOPE=COMMON data space to a DU-AL.

Action: Change your program to request the ADD to be made to the PASN-AL.

70 Meaning: Environmental error. The caller attempted to add a hiperspace to an
access list. The request cannot be honored because the move-page facility is
not installed on the processor.

Action: Move your program to a processor that has the move-page facility or
modify your program to use the HSPSERV macro to access the data in the
hiperspace.

74 Meaning: Program error. A problem state program with PSW key 8 - F has
already added an entry for the data space to the PASN-AL and the entry still
exists.

Action: Change your program's logic so that it does not request the second
ADD.

36 OS/390 V2R8.0 MVS Assembler Services Reference

 ALESERV Macro

When control is returned from ALESERV ADDPASN, register 15 contains one of the
following hexadecimal return codes:

Hexadecimal
Return Code

Meaning and Action

78 Meaning: Program error. A problem state program with PSW key 8 - F tried to
add an entry to the PASN-AL. The program is neither the owner nor the creator
of the data space.

Action: Change your program's logic so that it does not add a data space it did
not create or does not own.

Hexadecimal
Return Code

Meaning and Action

0 Meaning: ALESERV ADDPASN has completed successfully.

Action: None.

C Meaning: Environmental error. The DU-AL cannot be expanded. There are no
free ALEs, and the maximum size has been reached.

Action: Delete unused entries and reissue the request.

10 Meaning: Environmental error. ALESERV could not obtain storage for an
expanded access list.

Action: Retry the request.

1C Meaning: Program error. The caller is holding a lock.

Action: Release all locks before calling ALESERV.

20 Meaning: Program error. The caller is disabled.

Action: Enable your program before it issues ALESERV.

24 Meaning: Environmental error. AR 1 contained an ALET of 1 on input, or a
PASN-AL ALET.

Action: Verify that AR 1 contains either an ALET of 0 or the ALET for the
caller's DU-AL.

50 Meaning: Program error. The ALESERV parameter list is not valid.

Action: Verify that your program is not overwriting the parameter list and that
the execute form of the macro correctly addresses the parameter list.

60 Meaning: System error. An unexpected error occurred. The request was not
completed.

Action: Retry the request.

62 Meaning: Program error. A previous error in your program left the access list in
an unexpected format. The error might have occurred because the SRB
environment was not valid when the system dispatched an SRB. The system
did not perform the ALESERV ADDPASN request.

Action: Determine the cause of the error that preceded the ALESERV ADD
request. Correct the error and rerun the program.

 ALESERV — Control Entries in the Access List 37

 ALESERV Macro

When control is returned from ALESERV DELETE, register 15 contains one of the following
hexadecimal return codes:

Hexadecimal
Return Code

Meaning and Action

0 Meaning: ALESERV DELETE has completed successfully.

Action: None.

8 Meaning: Program error. The caller is not EAX-authorized to the address space
specified by the ALET, or the space specified by the ALET is not the primary
address space. The entry is not deleted.

Action: Verify that the intended STOKEN is specified.

14 Meaning: Program or environmental error. The input ALET corresponds to an
ALE that is not valid.

Action: Verify that the specified ALET is valid.

1C Meaning: Program error. The caller is holding a lock.

Action: Release all locks before calling ALESERV.

20 Meaning: Program error. The caller is disabled.

Action: Enable your program before it issues ALESERV.

24 Meaning: Program error. AR 1 contained an ALET of 1 on input, or an ALET
associated with the caller's PASN-AL.

Action: Verify that AR 1 contains either an ALET of 0 or the ALET for the
caller's DU-AL.

28 Meaning: Program error. The caller specified an ALET that is not valid.

Action: Verify that the input ALET is valid.

2C Meaning: Program error. The caller attempted to delete ALET 0, 1, or 2.

Action: Verify that the specified ALET is not ALET 0, 1, or 2.

30 Meaning: Program error. A problem state caller with PSW key 8 - F tried to
delete an entry for a space other than a SCOPE=SINGLE data space.

Action: Verify that the ALET supplied represents the intended space.

40 Meaning: Program or environmental error. The space associated with the input
ALET is not valid for cross memory access.

Action: None required. However, you may want to take some action based
upon your application.

44 Meaning: Environmental error. The ALE associated with the input ALET
represents addressing capability to a deleted or terminated space.

Action: None required. However, you may want to discard the specified ALET
and possibly take some action based upon your application.

60 Meaning: System error. An unexpected error occurred. The request was not
completed.

Action: Retry the request.

78 Meaning: Program error. A problem state caller with PSW key 8 - F tried to
delete an entry from the PASN-AL. The caller is neither the owner nor the
creator of the data space, or the PSW key of the caller did not match the
storage key of the data space.

Action: Change your program's logic so that it does not have to try to delete a
data space it did not create or own.

38 OS/390 V2R8.0 MVS Assembler Services Reference

 ALESERV Macro

When control is returned from ALESERV EXTRACT, register 15 contains one of the
following hexadecimal return codes:

When control is returned from ALESERV SEARCH, register 15 contains one of the following
hexadecimal return codes:

Hexadecimal
Return Code

Meaning and Action

0 Meaning: ALESERV EXTRACT completed successfully. Register 0 contains
one of the following reason codes:

00 - The access list entry is a public entry.
04 - The access list entry is a private entry.

Action: None.

14 Meaning: Program or environmental error. The input ALET corresponds to an
access list entry that is not valid.

Action: Verify that the specified ALET is valid.

24 Meaning: Program error. AR 1 contained an ALET of 1 on input, or an ALET
associated with the caller's PASN-AL.

Action: Verify that AR 1 contains either an ALET of 0 or the ALET for the
caller's DU-AL.

28 Meaning: Program error. The caller specified an ALET that is not valid.

Action: Verify that the input ALET is valid.

3C Meaning: Program error. The caller specified an ALET value of 1.

Action: Verify that the specified ALET is other than 1.

40 Meaning: Program or environmental error. The space associated with the input
ALET is not valid for cross memory access.

Action: None required. However, you may want to take some action based
upon your application.

44 Meaning: Environmental error. The access list entry (ALE) associated with the
input ALET represents addressing capability to a deleted or terminated space.

Action: None required. However, you may want to discard the specified ALET
and possibly take some action based upon your application.

50 Meaning: Program error. The ALESERV parameter list is not valid.

Action: Verify that your program is not overwriting the parameter list and that
the execute form of the macro correctly addresses the parameter list.

58 Meaning: Program or environmental error. The ALET the caller specified
represents an STOKEN for a data space that is no longer accessible.

Action: None required. However, you may want to discard the specified ALET
and possibly take some action based upon your application.

60 Meaning: System error. An unexpected error occurred. The request was not
completed.

Action: Retry the request.

Hexadecimal
Return Code

Meaning and Action

0 Meaning: ALESERV SEARCH completed successfully. Register 0 contains
one of the following hexadecimal reason codes:

00 - The access list entry is a public entry.
04 - The access list entry is a private entry.

Action: None.

24 Meaning: Program error. AR 1 contained an ALET of 1 on input or an ALET
associated with the caller's PASN-AL.

Action: Verify that AR 1 contains either an ALET of 0 or the ALET for the
caller's DU-AL.

 ALESERV — Control Entries in the Access List 39

 ALESERV Macro

When control is returned from ALESERV EXTRACTH, register 15 contains one of the
following hexadecimal return codes:

Hexadecimal
Return Code

Meaning and Action

28 Meaning: Program error. The caller specified an ALET that is not valid.

Action: Verify that the input ALET is valid.

34 Meaning: Program error. The caller specified an STOKEN that is not
represented on the specified access list.

Action: Verify that the specified STOKEN is on the referenced access list.

48 Meaning: Program error. The caller specified AL=WORKUNIT but the input
ALET indexes into the PASN-AL, or the caller specified AL=PASN but the ALET
indexes into the DU-AL.

Action: Change the AL or the ALET parameters to specify the correct AL and
ALET combination.

60 Meaning: System error. An unexpected error occurred. The request was not
completed.

Action: Retry the request.

Hexadecimal
Return Code

Meaning and Action

0 Meaning: ALESERV EXTRACTH has completed successfully.

Action: None.

24 Meaning: Program error. AR 1 contained an ALET of 1 on input, or an ALET
associated with the caller's PASN-AL.

Action: Verify that AR 1 contains either an ALET of 0 or the ALET for the
caller's DU-AL.

60 Meaning: System error. An unexpected error occurred. The request was not
completed.

Action: Retry the request.

Example of Adding an Entry to a DU-AL
To add an entry to a DU-AL for a data space, issue the following:

 ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET
 \
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET

40 OS/390 V2R8.0 MVS Assembler Services Reference

 ALESERV Macro

 ALESERV—List Form
The list form of ALESERV assigns the correct amount of storage for an ALESERV parameter
list.

The list form is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede ALESERV.

ALESERV

␣ One or more blanks must follow ALESERV.

MF=L

 ,RELATED=any-value

 Parameters
The parameters are explained as follows:

MF=L
Specifies the list form of the ALESERV macro.

,RELATED=any-value
Specifies information used to self document macro by ‘relating’ functions or services to
corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid macro parameter
expression.

 ALESERV — Control Entries in the Access List 41

 ALESERV Macro

 ALESERV—Execute Form
A remote control parameter list is used in, and can be modified by, the execute form of the
ALESERV macro. The parameter list can be generated by the list form of the macro.

 Syntax
The execute form of the macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede ALESERV.

ALESERV

␣ One or more blanks must follow ALESERV.

Valid parameters (required parameters are underlined):

ADD AL, STOKEN, ACCESS, ALET, CHKPT, MF, RELATED
ADDPASN ALET, CHKPT, MF, RELATED
DELETE ALET, MF, RELATED
EXTRACT ALET, STOKEN, MF, RELATED
SEARCH ALET, STOKEN, AL, RELATED, MF
EXTRACTH STOKEN, MF, RELATED

 ,ACCESS=PUBLIC Default: ACCESS=PUBLIC
 ,ACCESS=PRIVATE

 ,AL=WORKUNIT Default: AL=WORKUNIT
 ,AL=PASN

 ,ALET=alet-addr alet-addr: RX-type address or register (2) - (12).

Note: If you specify register notation, the register contains the
ALET, rather than the address of the ALET.

 ,STOKEN=stoken-addr stoken-addr: RX-type address.

,MF=(E,cntl-addr) cntl-addr: RX-type address or register (2) - (12).

 ,CHKPT=FAIL Default: CHKPT=FAIL
 ,CHKPT=IGNORE
 ,RELATED=any-value

 Parameters
The parameters are explained under the standard form of the ALESERV macro, with the
following exception:

,MF=(E,cntl addr)
Specifies the execute form, which uses a remote parameter list. cntl addr specifies the
address of the remote parameter list, created by a list generated by the list form of the
macro.

42 OS/390 V2R8.0 MVS Assembler Services Reference

 ASASYMBM Service

ASASYMBM — Substitute Text for Symbols

 Description
 Note

ASASYMBM is a linkable system service.

Use the ASASYMBM service to substitute text for system symbols. You can explicitly call
ASASYMBM to substitute text for system symbols in application or vendor programs. The
system calls ASASYMBM automatically for system symbols that are specified in:

 � Dynamic allocations
� Job control language (JCL)

 � Parmlib members
 � System commands.

The caller of ASASYMBM provides an input string to be substituted (a pattern), an output
buffer, and optionally a table of system symbols and associated values. ASASYMBM
substitutes values for the system symbols that it finds in the input string. ASASYMBM
places the results of the substitution in the specified output buffer.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space.

 Programming Requirements
1. To build the parameter area required by ASASYMBM, you must include the ASASYMBP

mapping macro (see OS/390 MVS Data Areas, Vol 1 (ABEP-DALT)).

2. Before calling ASASYMBM, the caller must provide the following in the ASASYMBP
mapping macro:

� An input string to be substituted (a pattern) and its length

� An output buffer and its length

� An area in which to place the return code from ASASYMBM.

The caller can optionally provide a symbol table and a timestamp.

3. To determine the return code from ASASYMBM, the caller must examine the fullword
pointed to by the SYMBPRETURNCODE@ field in the ASASYMBP data area.

4. To determine the length of the output from ASASYMBM, the caller must examine the
fullword pointed to by SYMBPTARGETLENGTH@ in the ASASYMBP mapping macro.
The output itself is in the area provided by the caller, which is pointed to by
SYMBPTARGET@ in ASASYMBP.

For more information about providing input to ASASYMBM in the ASASYMBP mapping
macro, see the section on using the symbol substitution service in OS/390 MVS
Programming: Assembler Services Guide.

 Copyright IBM Corp. 1988, 1999 43

 ASASYMBM Service

 Restrictions
The caller cannot have any enabled, unlocked task (EUT) FRRs established.

Input Register Information
Before linking to ASASYMBM, the caller must ensure that the following general purpose
registers (GPRs) contain the specified information:

Register Contents
13 Address of a standard 72-byte save area in the primary address space

Before linking to ASASYMBM, the caller does not have to place any information into any
access register (AR).

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
This service is not appropriate for use in a performance-sensitive area.

 Syntax
Use the following form of the LINK macro to invoke the ASASYMBM service:

55─ ─label─ ──┬ ┬ ─LINK─ ─EP=ASASYMBM─ ─,MF=(E,parmarea)──────────────────────── ───────────────────────────────5%
 └ ┘ ─LINKX─ ─EP=ASASYMBM─ ─,MF=(E,parmarea)─ ──┬ ┬──────────────────
 └ ┘ ─,SF=(E,parmlist)─

Note: As an alternative to using LINK or LINKX, callers in 31-bit AMODE can also:

1. Issue the MVS LOAD macro to load the ASASYMBM service and obtain its entry
point address.

2. Issue the CALL macro to call the service. Specify MF=(E,your_parmlist) on the
call.

 Parameters
The parameters are explained as follows:

label
The name on the macro invocation.

LINK
LINKX

Names the system service that is to be used for linkage.

44 OS/390 V2R8.0 MVS Assembler Services Reference

 ASASYMBM Service

EP=ASASYMBM
Specifies the entry point name for the ASASYMBM service.

,MF=(E,parmarea)
Specifies the area that you built, mapped by the ASASYMBP macro, that contains the
parameter area and optionally points to the system symbol table ASASYMBM is to use.

,SF=(E,parmlist)
For use with LINKX when your program is reentrant. Before you call LINKX with this
parameter, define parmlist using the LIST form of LINKX.

Return and Reason Codes
When the ASASYMBM service returns control to your program, the area pointed to by the
SYMBPRETURNCODE@ field of the caller-provided ASASYMBP area contains a return
code.

Hexadecimal
Return Code

Meaning and Action

00 Meaning : The ASASYMBM request completed successfully. The system performed the
requested substitution.

Action : None required.

04 Meaning : Warning. The caller indicated that the system is to assign a substring of a
substitution text to a system symbol. One of the following occurred:

� The start position in the substring is either beyond the length of the substitution text or
zero.

� The length of the substring is either beyond the length of the substitution text or zero.

� The length of the substring exceeds the length of the substitution text beyond the
specified start position.

When the program called ASASYMBM, the SYMBTWARNSUBSTRINGS flag in the
ASASYMBP mapping macro indicated that ASASYMBM was to return this return code.

The system continues with symbolic substitution.

Action : None required. If necessary, see the section on errors in substringing in OS/390
MVS Initialization and Tuning Reference for information about specifying substrings in
system symbols. Ensure that the symbols in the input pattern conform to the rules for
substringing.

08 Meaning : Warning. The specified buffer is too small to contain all the substitution text.

Action : Specify a larger target buffer, or continue processing, using the value returned in the
fullword pointed to by the SYMBPTARGETLENGTH@ field to determine how much data
was placed into the target buffer.

0C Meaning : Warning. The length of the text to be substituted in place of a system symbol is
null. When the program called ASASYMBM, the SYMBTCHECKNULLSUBTEXT flag in the
ASASYMBP mapping macro indicated that ASASYMBM was to return this return code.

Action : None required.

10 Meaning : Warning. The system did not find any symbols for which it was to substitute text.
The substitution process completed normally. When the program called ASASYMBM, the
SYMBTWARNNOSUB flag in the ASASYMBP mapping macro indicated that ASASYMBM
was to return this return code.

Action : None required.

Examples of Calls to ASASYMBM
For examples of calls to ASASYMBM, see the section that describes the symbol substitution
service in OS/390 MVS Programming: Assembler Services Guide.

 ASASYMBM — Substitute Text for Symbols 45

 ASASYMBM Service

46 OS/390 V2R8.0 MVS Assembler Services Reference

 ATTACH and ATTACHX Macros

ATTACH and ATTACHX — Create a New Task

 Description
Note: IBM recommends that you use ATTACHX rather than ATTACH.

The ATTACH macro causes the system to create a new task and indicates the entry point in
the program to be given control when the new task becomes active. The entry point name
that is specified must be a member name or an alias in a directory of a partitioned data set,
or must have been specified in an IDENTIFY macro. If the system cannot locate the
specified entry point, it abnormally terminates the new subtask.

For information about how to select an MVS/SP version other than the current version, see
“Selecting the Macro Level” on page 7.

The descriptions of ATTACH and ATTACHX in this book are:

� The standard form of the ATTACH macro, which includes general information about the
ATTACH and ATTACHX macros, with some specific information about the ATTACH
macro. The syntax of the ATTACH macro is presented, and all ATTACH parameters
are explained.

� The standard form of the ATTACHX macro, which includes information specific to the
ATTACHX macro and to callers in AR mode.

� The list form of the ATTACH and ATTACHX macros.

� The execute form of the ATTACH and ATTACHX macros.

The new task is a subtask of the originating task; the originating task is the task that was
active when you issued the ATTACH macro. The limit and dispatching priorities of the new
task are the same as those of the originating task unless modified in the ATTACH macro.
The address space control mode (ASC) of the new task is the same as the originating task.

The load module containing the program to be given control is brought into virtual storage if
a usable copy is not available in virtual storage. The issuing program can provide an event
control block in which termination of the new task is posted and an exit routine to be given
control when the new task is terminated.

If you code the ECB or ETXR parameter, you must issue a DETACH macro to remove the
subtask from virtual storage before the program that issued the ATTACH macro terminates.
If you do not code the ECB or ETXR parameter, the system automatically removes the
subtask from virtual storage upon completion of the subtask's processing. If you specify the
ECB parameter in the ATTACH macro, the ECB must be in storage addressable by both the
issuer of ATTACH and the system, so that the issuer of ATTACH can wait on it (using the
WAIT macro) and the system can post it on behalf of the terminating task.

 Environment
The requirements for the caller of ATTACH or ATTACHX are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: If you use the STAI parameter, 24-bit; otherwise, 24- or 31-bit
ASC mode: If you use the STAI parameter, primary; otherwise, primary or

access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: For both primary ASC mode callers and AR ASC mode callers,

control parameters must be in the primary address space.

 Copyright IBM Corp. 1988, 1999 47

 ATTACH and ATTACHX Macros

 Programming Requirements
If your program is in AR mode, issue SYSSTATE ASCENV=AR so the system can generate
code that is appropriate for AR mode. If you issue SYSSTATE ASCENV=AR and then issue
ATTACH, the system substitutes the ATTACHX macro and issues a message telling you that
it made the substitution.

 Restrictions
� If the caller is running in 31-bit addressing mode, all input parameters can have

addresses greater than 16 megabytes, except for the address of the DCB.

� The caller cannot have an EUT FRR established.

Input Register Information
If you want to pass a parameter list to the new task without coding the PARAM or MF=E
parameter, general purpose register (GPR) 1 must contain the address of the list on entry to
ATTACH or ATTACHX. Otherwise, before issuing the ATTACH or ATTACHX macro, the
caller does not have to place any information into any register unless using it in register
notation for a particular parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Used as a work register by the system
1 If GPR 15 contains a return code other than X'00', zero; otherwise, the

address of the task control block for the new task
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0 Used as a work register by the system
1 Zero (the ALET of the task control block address)
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The standard form of the ATTACH macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede ATTACH.

ATTACH

␣ One or more blanks must follow ATTACH.

48 OS/390 V2R8.0 MVS Assembler Services Reference

 ATTACH and ATTACHX Macros

EP=entry name entry name: Symbol.
EPLOC=entry name addr entry name addr: A-type address, or register (2) - (12).
DE=list entry addr list entry addr: A-type address, or register (2) - (12).

 ,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).

,LPMOD=limit prior nmbr limit prior nmbr: Symbol, decimal digit, or register (2) - (12).

,DPMOD=disp prior nmbr disp prior nmbr: Symbol, decimal digit, or register (2) - (12).

 ,PARAM=(addr) addr: A-type address
 ,PARAM=(addr),VL=1 Note: addr is one or more addresses, separated by commas.

For example, PARAM=(addr,addr,addr)

 ,ECB=ecb addr ecb addr: A-type address, or register (2) - (12).

,ETXR=exit rtn addr exit rtn addr: A-type address, or register (2) - (12).

 ,GSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

,GSPL=subpool list addr subpool list addr: A-type address, or register (2) - (12).

 ,SHSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

,SHSPL=subpool list addr subpool list addr: A-type address, or register (2) - (12).

 ,SZERO=YES Default: SZERO=YES
 ,SZERO=NO

 ,TASKLIB=dcb addr dcb addr: A-type address, or register (2) - (12).

 ,STAI=(exit addr) exit addr: A-type address, or register (2) - (12).

,STAI=(exit addr,parm addr) parm addr: A-type address, or register (2) - (12).
 ,ESTAI=(exit addr) Note : AR mode callers and 31-bit callers must not use STAI.

,ESTAI=(exit addr,parm addr)

 ,PURGE=QUIESCE Note: PURGE may be specified only if STAI or ESTAI is specified.
 ,PURGE=NONE Default for STAI: PURGE=QUIESCE
 ,PURGE=HALT Default for ESTAI: PURGE=NONE

 ,ASYNCH=NO
 ,ASYNCH=YES

Note: ASYNCH may be specified only if STAI or ESTAI is
specified.
Default for STAI: ASYNCH=NO
Default for ESTAI: ASYNCH=YES

 ,TERM=NO Note: TERM may be specified only if ESTAI is specified.
 ,TERM=YES Default: TERM=NO

 ,ALCOPY=NO Default : ALCOPY=NO
 ,ALCOPY=YES

 ,RELATED=value value: Any valid macro keyword specification.

 Parameters
The parameters are explained as follows:

EP=entry name
EPLOC=entry name addr
DE=list entry addr

Specifies the entry name, the address of the entry name, or the address of the name
field of a 62-byte list entry for the entry name that was constructed using the BLDL
macro. If EPLOC is coded, the name must be padded to eight bytes, if necessary.

When you use the DE parameter with the ATTACH macro, DE specifies the address of
a list that was created by a BLDL macro. You must issue the BLDL and the ATTACH

 ATTACH and ATTACHX — Create a New Task 49

 ATTACH and ATTACHX Macros

from the same task; otherwise, the system abnormally terminates the program with a
completion code of X'106'. Do not issue an ATTACH or a DETACH between
issuances of the BLDL and ATTACH.

The system ignores the information you specify on the DE parameter if the parameter
does one of the following:

� Specifies an entry in an authorized library (that is, defined in IEAAPFxx member of
SYS1.PARMLIB)

� Requests access to a program or library that is controlled by the system
authorization facility (SAF).

Instead, the system uses the BLDL macro to construct a new list entry containing the
DE information.

The contents of the GPRs on entry to the subtask are:

Register Contents
0 Used as a work register by the system.
1 Address of the user parameter list if specified on either the PARAM or

MF=E parameters; otherwise, contains whatever GPR 1 contained at the
time the ATTACH macro was issued.

2-12 Used as work registers by the system.
13 Address of a standard save area.
14 Return address. Bit 0 is 0 if the subtask routine gets control in 24-bit

addressing mode; bit 0 is 1 if the subtask routine gets control in 31-bit
addressing mode.

15 Entry point address of the subtask routine.

The contents of the ARs on entry to the subtask are:

Register Contents
0 Used as a work register by the system.
1 Zero if you specified a user parameter list on either the PARAM or MF=E

parameters; otherwise, contains whatever AR 1 contained at the time the
ATTACH macro was issued.

2-12 Used as work registers by the system.
13-15 Zeros.

,DCB=dcb addr
Specifies the address of the data control block for the partitioned data set containing the
entry name.

Note: The DCB must be opened before the ATTACH macro is issued and must be the
DCB used in the BLDL that built the 62-byte DE list entry. The DCB must remain open
until the subtask becomes active, and it should not be closed immediately following the
ATTACH.

Note: DCB must reside in 24-bit addressable storage.

,LPMOD=limit prior nmbr
Specifies the number (0 to 255) to be subtracted from the current limit priority of the
originating task. The resulting number is the limit priority of the new task, with a higher
number representing a higher limit priority.

If you omit this parameter, the current limit priority of the originating task is assigned as
the limit priority of the new task.

,DPMOD=disp prior nmbr
Specifies the signed number (−255 to +255) to be algebraically added to the current
dispatching priority of the originating task. The resulting number is assigned as the
dispatching priority of the new task, with a higher number representing a higher
dispatching priority. If, however, the resulting number is higher than the limit priority of
the new task, the limit priority is assigned as the dispatching priority.

50 OS/390 V2R8.0 MVS Assembler Services Reference

 ATTACH and ATTACHX Macros

If a register is designated, a negative number must be in two's complement form in the
register. If you omit this parameter, the dispatching priority assigned is the smaller of
either the new task's limit priority or the originating task's dispatching priority.

,PARAM=(addr)
,PARAM=(addr),VL=1

Specifies an address or addresses to be passed to the attached program. ATTACH
expands each address inline to a fullword on a fullword boundary, in the order
designated, building a parameter list. When the program receives control, register 1
contains the address of the first word of the parameter list.

Specify VL=1 only if the called program can be passed a variable number of
parameters. VL=1 causes the high-order bit of the last address to be set to 1; the bit
can be checked to find the end of the list.

,ECB=ecb addr
Specifies the address of an event control block (ECB) for the new task that the system
will use to indicate when the new task terminates. The ECB must be in storage so that
the issuer of ATTACH can wait on it (using the WAIT macro) and the system can post it
on behalf of the terminating task. The return code (if the task is terminated normally) or
the completion code (if the task is terminated abnormally) is also placed in the event
control block. If you code this parameter, you must issue a DETACH macro to remove
the subtask from virtual storage after the subtask terminates. The system assumes that
the ECB is in the home address space.

,ETXR=exit rtn addr
Specifies the address of the end-of-task exit routine to be given control after the new
task is normally or abnormally terminated. The exit routine receives control when the
originating task becomes active after the subtask is terminated, and must be in virtual
storage when required. If you code this parameter, you must issue a DETACH macro to
remove the subtask from the system after the subtask terminates.

The exit routine runs asynchronously under the originating task. The routine receives
control in the addressing mode of the issuer of the ATTACH macro. The system
abnormally ends a task with completion code X'72A' if the task attempts to create two
subtasks with the same exit routine in different addressing modes. Upon entry, the
routine has an empty dispatchable unit access list (DU-AL). To establish addressability
to a data space created by the originating task and shared with the terminating subtask,
the routine can issue the ALESERV macro with the ADD parameter, and specify the
STOKEN of the data space.

The exit routine receives control with the following environment:

The contents of the GPRs when the exit routine receives control are as follows:

Register Contents
0 Used as a work register by the system.
1 Address of the task control block for the task that was terminated.
2-12 Used as work registers by the system.
13 Address of a save area provided by the system.
14 Return address (to the system).
15 Address of the exit routine.

Authorization: Problem state, PSW key is the same as TCB key of the issuer of
the ATTACH macro.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: Same as the issuer of the ATTACH macro
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Not applicable.

 ATTACH and ATTACHX — Create a New Task 51

 ATTACH and ATTACHX Macros

The contents of the ARs when the exit routine receives control are:

Register Contents
0 Used as a work register by the system.
1 Zero
2-12 Used as work registers by the system.
13-15 Zeros

The exit routine is responsible for saving and restoring the registers.

,GSPV=subpool nmbr
,GSPL=subpool list addr

Specifies a virtual storage subpool number less than 128 or the address of a list of
virtual storage subpool numbers each less than 128. Except for subpool zero,
ownership of each of the specified subpools is assigned to the new task. Although it
can be specified, subpool zero cannot be transferred. When ownership of a subpool is
transferred, programs of the originating task can no longer obtain or release the
associated virtual storage areas.

If GSPL is specified, the first byte of the list contains the number of following bytes in
the list; each of the following bytes contains a virtual storage subpool number.

,SHSPV=subpool nmbr
,SHSPL=subpool list addr

Specifies a virtual storage subpool number less than 128 or the address of a list of
virtual storage subpool numbers each less than 128. Programs of both originating task
and the new task can use the associated virtual storage areas.

If SHSPL is specified, the first byte of the list contains the number of remaining bytes in
the list; each of the following bytes contains a virtual storage subpool number.

,SZERO=YES
,SZERO=NO

Specifies whether subpool 0 is to be shared with the subtask. YES specifies that
subpool 0 is to be shared; NO specifies that subpool 0 is not to be shared.

,TASKLIB= dcb addr
Specifies the address of the DCB for the library to be used as the attached task's library.
Otherwise, the task library is propagated from the originating task. (Note: The DCB
must be opened before the ATTACH macro is executed.) SYS1.LINKLIB is the last
library searched. If the DCB address specifies SYS1.LINKLIB, the search begins with
SYS1.LINKLIB, goes through other libraries, and ends with SYS1.LINKLIB. The system
abnormally terminates the attached task with a completion code of X'806' if the
requested module is not in the task library and is not in the other libraries searched.

See “Location of the Load Module” in OS/390 MVS Programming: Assembler Services
Guide for additional information on using the TASKLIB parameter.

Note: DCB must reside in 24-bit addressable storage.

,STAI=(exit addr)
,STAI=(exit addr,parm addr)
,ESTAI=(exit addr)
,ESTAI=(exit addr,parm addr)

Specifies whether a STAI or ESTAI recovery routine is to be defined; any recovery
routines defined for the originating task are propagated to the new task.

The exit addr specifies the address of the STAI or ESTAI recovery routine that is to
receive control if the subtask encounters an error; the recovery routine must be in virtual
storage at the time of the error. The parm addr is the address of a parameter list which
may be used by the STAI or ESTAI recovery routine.

ATTACH processing passes control to an ESTAI recovery routine in the addressing
mode of the issuer of the ATTACH macro. Therefore, the ESTAI recovery routine can
run in either 24-bit or 31-bit addressing mode. A STAI exit routine can run only in 24-bit
addressing mode. If a caller in 31-bit addressing mode or AR mode specifies the STAI

52 OS/390 V2R8.0 MVS Assembler Services Reference

 ATTACH and ATTACHX Macros

parameter on the ATTACH macro, the caller ends abnormally with a completion code of
X'52A'.

,PURGE=QUIESCE
,PURGE=NONE
,PURGE=HALT

Specifies what action is to be taken with regard to I/O operations if the subtask
encounters an error. No action may be specified (NONE), a halting of I/O operations
may be requested (HALT), or a quiescing of I/O operations may be indicated
(QUIESCE).

,ASYNCH=NO
,ASYNCH=YES

Specifies whether asynchronous exits are to be allowed when a subtask encounters an
error.

ASYNCH=YES must be coded if:

� Any supervisor services that require asynchronous interruptions to complete their
normal processing are going to be requested by the recovery routine.

� PURGE=QUIESCE is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

� PURGE=NONE is specified and the CHECK macro is issued in the recovery routine
for any access method that requires asynchronous interruptions to complete normal
input/output processing.

Note: If ASYNCH=YES is specified and the error was an error in asynchronous exit
handling, recursion will develop when an asynchronous exit handling was the cause of
the failure.

,TERM=NO
,TERM=YES

Specifies whether the recovery routine associated with the ESTAI request is also to be
scheduled in the following situations:

 � System-initiated logoff

� Job step timer expiration

� Wait time limit for job step exceeded

� DETACH macro without the STAE=YES parameter issued from a higher-level task
(possibly by the system if the higher-level task encountered an error)

 � Operator cancel

� Error on a higher-level task

� Error in the job step task when a non-job-step task issued the ABEND macro with
the STEP parameter

� OpenMVS is canceled and the user's task is in a wait in the OpenMVS kernel.

,ALCOPY=NO
,ALCOPY=YES

Determines the contents of the new task's access list and determines the extended
authorization index (EAX) value for the new task. ALCOPY=NO gives the new task an
EAX of zero and a null access list. ALCOPY=YES gives the new task:

� The same extended authorization index (EAX) as the caller
� A copy of the caller's DU-AL.

The default is ALCOPY=NO.

,RELATED=value
Specifies information used to self-document a macro by “relating” functions or services
to corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

 ATTACH and ATTACHX — Create a New Task 53

 ATTACH and ATTACHX Macros

 ABEND Codes
The caller of ATTACH or ATTACHX might receive one of the following ABEND codes:

Note: ABEND code 92A results from an error not directly caused by the caller.

ABEND Code Associated Reason Code

12A 0, 4

22A 0

42A None

52A 0, 4, 8

72A 0, 4, 8, C, 10, 14

82A None

92A 0, 4, 8, C, 10, 14, 18

Return and Reason Codes
When control is returned, register 15 contains one of the following return codes:

Note: It is possible for the originating task to obtain return code 00, and still not have the
subtask successfully created (for example, if the entry name could not be found). In such
cases, the new subtask is abnormally terminated.

Hexadecimal
Return Code

Meaning and Action

00 Meaning: Successful completion.

Action: None.

04 Meaning: Program error. ATTACH was issued in a STAE exit; processing not
completed.

Action: Change your program so that the ATTACH is not issued by a STAE exit
routine.

08 Meaning: Environmental error. Insufficient storage available for control block for
STAI/ESTAI request; processing not completed.

Action: Retry the request.

0C Meaning: Incorrect exit routine address or incorrect parameter list address
specified with STAI parameter; processing not completed.

Action: Ensure that the exit routine and parameter list address are correct.

 Example 1
Cause the program named in the list to be attached. Establish RTN as an end-of-task exit
routine.

ATTACH DE=LISTNAME,ETXR=RTN

 Example 2
Cause PROGRAM1 to be attached, share subpool 5, wait on WORD1 to synchronize
processing with that of the subtask, and establish EXIT1 as an ESTAI exit.

ATTACH EP=PROGRAM1,SHSPV=5,ECB=WORD1,ESTAI=(EXIT1)

54 OS/390 V2R8.0 MVS Assembler Services Reference

 ATTACH and ATTACHX Macros

 Example 3
Cause PROGRAM1 to be attached and share subpool zero. The subtask is to receive
control:

� With the same extended authorization index (EAX) as the caller.
� With a copy of the caller's DU-AL.

TESTCASE CSECT
 .
 ATTACH EP=PROGRAM1,SZERO=YES,ALCOPY=YES
 .
 END TESTCASE

 Example 4
Usage of the SF and MF parameters.

MVC ATTACH_EXEC,ATTACH_LIST Copy static plist to dynamic
\
 ATTACHX
 PARAM=(PARM1,PARM2,PARM3),
 MF=(E,REMOTE_PLIST),
 SF=(E,ATTACH_EXEC)

(in the module's static area)

\ .
ATTACH_LIST ATTACHX EP=PROGRAM1,SZERO=YES,ALCOPY=YES,SF=L

\

(in the module's dynamic area)

REMOTE_PLIST DS 3F
PARM1 DS F
PARM2 DS F
PARM3 DS F
ATTACH_EXEC ATTACHX SF=L

 ATTACH and ATTACHX — Create a New Task 55

 ATTACH and ATTACHX Macros

ATTACHX—Create a New Task
The ATTACHX macro creates a new task and indicates the entry point in the program to be
given control when the new task becomes active. The ASC mode of the new task is the
same as the ASC mode of the issuer of ATTACHX.

At entry to the attached task, if the caller specifies a user parameter list on the PARAM
parameter or by issuing the execute form of the macro with MF=E:

� GPR 1 contains the address of the user parameter list.
� If the caller of the ATTACHX macro is in AR mode, AR 1 contains an ALET of 0.

All parameters that are valid for ATTACH are also valid for ATTACHX.

 Syntax
The standard form of the ATTACHX macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede ATTACHX.

ATTACHX

␣ One or more blanks must follow ATTACHX.

EP=entry name entry name: Symbol.
EPLOC=entry name addr entry name addr: A-type address, or register (2) - (12).
DE=list entry addr list entry addr: A-type address, or register (2) - (12).

 ,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).

,LPMOD=limit prior nmbr limit prior nmbr: Symbol, decimal digit, or register (2) - (12).

,DPMOD=disp prior nmbr disp prior nmbr: Symbol, decimal digit, or register (2) - (12).

 ,PARAM=(addr) addr: A-type address
 ,PARAM=(addr),VL=1 Note: addr is one or more addresses, separated by commas.

For example, PARAM=(addr,addr,addr)

 ,ECB=ecb addr ecb addr: A-type address, or register (2) - (12).

,ETXR=exit rtn addr exit rtn addr: A-type address, or register (2) - (12).

 ,GSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

,GSPL=subpool list addr subpool list addr: A-type address, or register (2) - (12).

 ,SHSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

,SHSPL=subpool list addr subpool list addr: A-type address, or register (2) - (12).

 ,SZERO=YES Default: SZERO=YES
 ,SZERO=NO

 ,TASKLIB=dcb addr dcb addr: A-type address, or register (2) - (12).

 ,STAI=(exit addr) exit addr: A-type address, or register (2) - (12).

,STAI=(exit addr,parm addr) parm addr: A-type address, or register (2) - (12).
 ,ESTAI=(exit addr) Note : AR mode callers and 31-bit callers must not use STAI.

,ESTAI=(exit addr,parm addr)

 ,PURGE=QUIESCE Note: Specify PURGE only if you specify ESTAI.
 ,PURGE=NONE Default for ESTAI: PURGE=NONE
 ,PURGE=HALT

56 OS/390 V2R8.0 MVS Assembler Services Reference

 ATTACH and ATTACHX Macros

 ,ASYNCH=NO Note: Specify ASYNCH only if you specify ESTAI.
 ,ASYNCH=YES Default for ESTAI: ASYNCH=YES

 ,TERM=NO Note: Specify TERM only if you specify ESTAI.
 ,TERM=YES Default: TERM=NO

 ,ALCOPY=NO Default : ALCOPY=NO
 ,ALCOPY=YES

 ,RELATED=value value: Any valid macro keyword specification.

 Parameters
The parameters are as explained under ATTACH, with the following exception:

,PARAM=(addr)
,PARAM=(addr),VL=1

Specifies an address or addresses that the caller passes to the attached task.
ATTACHX expands each address inline to a fullword boundary and builds a user
parameter list, with the addresses in the order you specified. When the attached task
receives control, register 1 contains the address of the parameter list. If you do not
specify PARAM, ATTACHX passes the contents of GPR1 and AR1 to the attached
routine unchanged.

ATTACHX builds the parameter list so that the addresses passed to the attached task
are in the first half of the parameter list and their corresponding ALETs are in the last
half of the list.

Specify VL=1 when you pass a variable number of parameters. It tells the system to set
the high-order bit of the last address to 1. The 1 in the high-order bit identifies the last
address parameter, but not the last entry in the list. See Figure 2 on page 4 for an
example of passing a parameter list in AR mode.

 Example
With the caller in AR ASC mode, cause PROGRAM1 to be attached and share subpool zero.
The subtask is to receive control:

� With the same extended authorization index (EAX) as the caller.
� With a copy of the caller's DU-AL.
� Executing in AR ASC Mode.

TESTCASE CSECT
 .
 SYSSTATE ASCENV=AR
 .
 ATTACHX EP=PROGRAM1,SZERO=YES,ALCOPY=YES
 .
 END TESTCASE

 ATTACH and ATTACHX — Create a New Task 57

 ATTACH and ATTACHX Macros

ATTACH and ATTACHX—List Form
Two parameter lists are used on ATTACH or ATTACHX: a control parameter list and an
optional user parameter list. You can construct only the control parameter list in the list
form. Address parameters to be passed in a parameter list to the attached task can be
provided using the list form of the CALL macro. This parameter list can be referred to in the
execute form.

 Syntax
The list form of the ATTACH and ATTACHX is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede ATTACH or ATTACHX.

ATTACH
ATTACHX

␣ One or more blanks must follow ATTACH or ATTACHX.

EP=entry name entry name: Symbol.
EPLOC=entry name addr entry name addr: A-type address.
DE=list entry addr list entry addr: A-type address.

 ,DCB=dcb addr dcb addr: A-type address.

,LPMOD=limit prior nmbr limit prior nmbr: Symbol or decimal digit.

,DPMOD=disp prior nmbr disp prior nmbr: Symbol or decimal digit.

 ,ECB=ecb addr ecb addr: A-type address.

,ETXR=exit rtn addr exit rtn addr: A-type address.

 ,GSPV=subpool nmbr subpool nmbr: Symbol or decimal digit.

,GSPL=subpool list addr subpool list addr: A-type address.

 ,SHSPV=subpool nmbr subpool nmbr: Symbol or decimal digit.

,SHSPL=subpool list addr subpool list addr: A-type address.

 ,SZERO=YES Default: SZERO=YES
 ,SZERO=NO

 ,TASKLIB=dcb addr dcb addr: A-type address.

 ,STAI=(exit addr) exit addr: A-type address.

,STAI=(exit addr,parm addr) parm addr: A-type address.
 ,ESTAI=(exit addr) Note: AR mode callers and 31-bit callers must not use STAI.

,ESTAI=(exit addr,parm addr)

 ,PURGE=QUIESCE Note: PURGE may be specified only if STAI or ESTAI is specified.
 ,PURGE=NONE Default for STAI: PURGE=QUIESCE
 ,PURGE=HALT Default for ESTAI: PURGE=NONE

 ,ASYNCH=NO
 ,ASYNCH=YES

Note: ASYNCH may be specified only if STAI or ESTAI is
specified.
Default for STAI: ASYNCH=NO
Default for ESTAI: ASYNCH=YES

 ,TERM=NO Note: TERM may be specified only if ESTAI is specified.
 ,TERM=YES Default: TERM=NO

58 OS/390 V2R8.0 MVS Assembler Services Reference

 ATTACH and ATTACHX Macros

 ,ALCOPY=NO Default: ALCOPY=NO
 ,ALCOPY=YES

 ,RELATED=value value: Any valid macro keyword specification.

,SF=L

 Parameters
The parameters are explained under the standard form of the ATTACH macro, with the
following exception:

,SF=L
Specifies the list form of the ATTACH and ATTACHX macros.

 ATTACH and ATTACHX — Create a New Task 59

 ATTACH and ATTACHX Macros

ATTACH and ATTACHX—Execute Form
Two parameter lists are used on ATTACH and ATTACHX; a control parameter list and an
optional user parameter list to be passed to the attached task. Either or both of these
parameter lists can be remote (that is, in an area you specifically obtained); you can use the
execute form of ATTACH and ATTACHX to refer to or modify them. If only the user
parameter list is remote, parameters that require use of the control parameter list cause that
list to be constructed inline as part of the macro expansion.

For programs in AR mode, ATTACHX builds the parameter list so that the addresses passed
to the system are in the first half of the parameter list and their corresponding ALETs are in
the last half of the list. Therefore, the parameter list for callers in AR mode is twice as long
as the parameter list for callers in primary mode for the same number of addresses.

 Syntax
The execute form of the ATTACH and ATTACHX is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede ATTACH or ATTACHX.

ATTACH
ATTACHX

␣ One or more blanks must follow ATTACH or ATTACHX.

EP=entry name entry name: Symbol.
EPLOC=entry name addr entry name addr: RX-type address, or register (2) - (12).
DE=list entry addr list entry addr: RX-type address, or register (2) - (12).

 ,DCB=dcb addr dcb addr: RX-type address, or register (2) - (12).

,LPMOD=limit prior nmbr limit prior nmbr: Symbol, decimal digit, or register (2) - (12).

,DPMOD=disp prior nmbr disp prior nmbr: Symbol, decimal digit, or register (2) - (12).

 ,PARAM=(addr) addr: RX-type address
 ,PARAM=(addr),VL=1 Note: addr is one or more addresses, separated by commas.

For example, PARAM=(addr,addr,addr)

 ,ECB=ecb addr ecb addr: RX-type address, or register (2) - (12).

,ETXR=exit rtn addr exit rtn addr: RX-type address, or register (2) - (12).

 ,GSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

,GSPL=subpool list addr subpool list addr: RX-type address, or register (2) - (12).

 ,SHSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

,SHSPL=subpool list addr subpool list addr: RX-type address, or register (2) - (12).

 ,SZERO=YES
 ,SZERO=NO

 ,TASKLIB=dcb addr dcb addr: RX-type address, or register (2) - (12).

 ,STAI=(exit addr) exit addr: RX-type address, or register (2) - (12).

,STAI=(exit addr,parm addr) parm addr: RX-type address, or register (2) - (12).
 ,ESTAI=(exit addr) Note: AR mode callers and 31-bit callers must not use STAI.

,ESTAI=(exit addr,parm addr)

 ,PURGE=QUIESCE Note: PURGE may be specified only if STAI or ESTAI is specified.
 ,PURGE=NONE

60 OS/390 V2R8.0 MVS Assembler Services Reference

 ATTACH and ATTACHX Macros

 ,PURGE=HALT

 ,ASYNCH=NO
 ,ASYNCH=YES

Note: ASYNCH may be specified only if STAI or ESTAI is
specified.

 ,TERM=NO Note: TERM may be specified only if ESTAI is specified.
 ,TERM=YES

 ,ALCOPY=NO Default : ALCOPY=NO
 ,ALCOPY=YES

 ,RELATED=value value: Any valid macro keyword specification.

,MF=(E,prob addr) prob addr: RX-type address, or register (1) or (2) - (12).
,SF=(E,ctrl addr) ctrl addr: RX-type address, or register (2) - (12) or (15).
,MF=(E,prob addr),SF=(E,ctrl
addr)

 Parameters
The parameters are explained under the standard form of the ATTACH or ATTACHX, with
the following exceptions:

,MF=(E,prob addr)
,SF=(E,ctrl addr)
,MF=(E,prob addr),SF=(E,ctrl addr)

Specifies the execute form of ATTACH or ATTACHX using either a remote user
parameter list or a remote control parameter list.

For a caller in AR mode who specifies MF=E, the parameter list that ATTACH or
ATTACHX generates for the PARAM parameter is twice as long as the parameter list
generated for primary mode callers.

Notes:

1. If STAI is specified on the execute form, the following fields are overlaid in the control
parameter list: exit addr, parm addr, PURGE, and ASYNCH. If parm addr is not
specified, zero is used; if PURGE or ASYNCH are not specified, defaults are used.

2. If ESTAI is specified on the execute form, then the following fields are overlaid in the
control parameter list: exit addr, parm addr, PURGE, ASYNCH, and TERM. If parm
addr is not specified, zero is used; if PURGE, ASYNCH, or TERM are not specified,
defaults are used.

3. If the STAI or ESTAI is to be specified, it must be completely specified on either the list
or execute form, but not on both forms.

4. If SZERO is not specified on the list or execute form, the default is SZERO=YES. If
SZERO=NO is specified on either the list form or a previous execute form using the
same SF=L, then SZERO=YES is ignored for any following execute forms of the macro.
Once SZERO=NO is specified, it is in effect for all users of that list.

 ATTACH and ATTACHX — Create a New Task 61

 ATTACH and ATTACHX Macros

62 OS/390 V2R8.0 MVS Assembler Services Reference

 BLDMPB Macro

BLDMPB — Build a Message Parameter Block

 Description
The BLDMPB macro builds the fixed portion of a message parameter block (MPB). If you
are writing a new application or adding new messages to an existing application, you can
place the message text in the install message files rather than in the application code. To
translate message text that exists only in the install message files, you need to build an
MPB.

An MPB consists of a fixed section and a variable length section. The fixed section contains
control information, and the variable length section contains substitution data. The MPB
does not contain any message text. Issue TRANMSG to retrieve the message text for this
MPB. Issue BLDMPB once for each MPB that you want to construct. Use BLDMPB
together with UPDTMPB.

See OS/390 MVS Programming: Assembler Services Guide for more information on using
the BLDMPB macro.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN=HASN¬=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt Status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Not applicable

 Programming Requirements
Before invoking BLDMPB, you must obtain storage for the MPB. You must include the
mapping macro CNLMMPB. See OS/390 MVS Data Areas, Vol 1 (ABEP-DALT) for more
information on CNLMMPB.

 Restrictions
None.

Input Register Information
Before issuing the BLDMPB macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Reason code
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

 Copyright IBM Corp. 1988, 1999 63

 BLDMPB Macro

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The BLDMPB macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede BLDMPB.

BLDMPB

␣ One or more blanks must follow BLDMPB.

MPBPTR=mpb addr mpb addr: RX-type address or register (2) - (12).

,MPBLEN=mpb length addr mpb length addr: RX-type address or register (2) - (12).

,MSGID=msg id addr msg id addr: RX-type address or register (2) - (12).

,MSGIDLEN=msg id length msg id length addr: RX-type address or register (2) - (12).
 addr

 ,MSGFMTNM=format num format num addr: RX-type address or register (2) - (12).
 addr

,MSGLNNM=line num addr line num addr: RX-type address or register (2) - (12).

 Parameters
The parameters are explained as follows:

MPBPTR=mpb addr
Specifies the address or a register containing the address of the area in which BLDMPB
is to build the MPB.

,MPBLEN=mpb length addr
Specifies the address or a register containing the address of the length of the area in
which BLDMPB is to build the MPB. Determine the length by adding the length of the
variable data to the length of the MPB header section. Variable data includes entries
associated with each piece of substitution data.

,MSGID=msg id addr
Specifies the address or a register containing the address of the area that contains the
message identifier.

,MSGIDLEN=msg id length addr
Specifies the address or a register containing the address of the length of the MSGID
field. The message identifier can be up to 10 characters long. If you don't specify
MSGIDLEN, BLDMPB will use, as a default, the length of the MSGID field in the DSECT
mapping. You must specify MSGIDLEN if you use register notation for the MSGID
keyword.

64 OS/390 V2R8.0 MVS Assembler Services Reference

 BLDMPB Macro

,MSGFMTNM=format num addr
Specifies the address or a register pointing to an area containing a 3-byte message
format number. If you do not specify MSGFMTNM, the default is a blank.

,MSGLNNM=line num addr
Specifies the address or a register pointing to an area containing the 2-byte message
line number. If you do not specify MSGLNNM, the default is a blank.

Return and Reason Codes
When BLDMPB completes, register 15 contains a return code, and register 0 contains a
reason code:

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

00 00 Successful processing.

0C 33 The MPB is too small.

0C 34 The value for MSGIDLEN is zero or negative.

 Example
Build and update an MPB for a message that contains as substitution data the third day of
the week.

BLDMPBA CSECT
BLDMPBA AMODE 31
BLDMPBA RMODE ANY
 STM 14,12,12(13)
 BALR 12,ð
 USING \,12
 ST 13,SAVE+4
 LA 15,SAVE
 ST 15,8(13)
 LR 13,15
\\\
\ OBTAIN WORKING STORAGE AREA FOR THE MPB \
\\\
 GETMAIN RU,LV=STORLEN,SP=SP23ð

LR R4,R1 SAVE GETMAINED AREA ADDRESS
\
\\\
\ CREATE MPB HEADER SECTION \
\\\
\
 BLDMPB MPBPTR=(R4),MPBLEN=MPBL,MSGID=MSGID,
 MSGIDLEN=MIDLEN
\
\\\
\ ADD SUBSTITUTION DATA TO MPB \
\\\
\

LR R2,R4 GET ADDRESS OF GETMAINED STORAGE
A R2,MPBL ADD LENGTH OF MPB TO POINT TO C

 VARIABLE AREA
 USING VARS,R2
\
 UPDTMPB MPBPTR=(R4),MPBLEN=MPBL,SUBOOFST=VARS, C
 TOKEN=TOKN,TOKLEN=TOKL,TOKTYPE=TOKT, C
 SUBSDATA=SDATA,SUBSLEN=SDATAL
\
\

 BLDMPB — Build a Message Parameter Block 65

 BLDMPB Macro

\\\
\ FREE STORAGE AREA \
\\\
\
 FREEMAIN RU,LV=STORLEN,SP=SP23ð,A=(4)
\
 L 13,SAVE+4
 LM 14,12,12(13)
 BR 14
 DROP
\\\
MPBL DC A(MPBLEN) ADDRESS OF MPB LENGTH
MSGID DC CL1ð'MSGID2' MSG ID OF MESSAGE REPRESENTED BY MPB
MIDLEN DC A(MIDL) ADDRESS OF MSG ID LENGTH
TOKN DC CL3'DAY' TOKEN NAME
TOKL DC F'3' LENGTH OF TOKEN NAME
TOKT DC CL1'3' TOKEN TYPE (DAY)
SDATA DC CL1'3' SUBSTITUTION DATA (3RD DAY OF WEEK)
SDATAL DC A(SDL) ADDRESS OF SUBSTITUTION DATA LENGTH
SAVE DC 18F'ð' SAVE AREA
SP23ð EQU 23ð SUBPOOL SPECIFICATION FOR GETMAIN
STORLEN EQU 256 LENGTH OF GETMAINED STORAGE
SDL EQU 6 SUBSTITUTION DATA LENGTH
MIDL EQU 6 MSG ID LENGTH
MPBLEN EQU (MPBVDAT-MPB)+(MPBMID-MPBMSG)+(MPBSUB-MPBSB)+MIDL+SDL C

TOTAL MPB LENGTH
R1 EQU 1 REGISTER 1
R2 EQU 2 REGISTER 2
R4 EQU 4 REGISTER 3
\\\
 DSECT
 CNLMMPB
VARS DSECT
VARSAREA DS CL24
VARSLEN EQU \-VARS
 END BLDMPBA

66 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSABDPL Macro

BLSABDPL — Map Dump Formatting Exit Data

 Description
The BLSABDPL macro maps several structures that are part of the interface to dump
formatting exits. Dump formatting exits are routines that receive control from one of the
following:

� The interactive problem control system (IPCS)
� The SNAP macro or SNAPX macro
� The ABEND macro.

BLSABDPL maps the following structures:

� The processor status record
� The storage access parameter list
� The select ASID parameter list
� The control block and format model processor parameter list
� The ECT parameter list
� The format parameter list extension block.

See OS/390 MVS IPCS Customization for information about IPCS exit services; see OS/390
MVS Data Areas, Vol 1 (ABEP-DALT) for a mapping of the BLSABDPL data area.

 Environment
Because BLSABDPL is not an executable macro, there are no specific environment
requirements.

 Programming Requirements
None.

 Restrictions
None.

 Register Information
Because BLSABDPL is not an executable macro, there is no need to save and restore
register contents.

 Performance Implications
None.

 Copyright IBM Corp. 1988, 1999 67

 BLSABDPL Macro

 Syntax
The standard form of the BLSABDPL macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede BLSABDPL.

BLSABDPL

␣ One or more blanks must follow BLSABDPL.

 ,AMDCPST=YES Default: AMDCPST=NO
 ,AMDCPST=NO

 ,AMDEXIT=YES Default: AMDEXIT=YES
 ,AMDEXIT=NO

 ,AMDOSEL=YES Default: AMDOSEL=YES
 ,AMDOSEL=NO

 ,AMDPACC=YES Default: AMDPACC=YES
 ,AMDPACC=NO

 ,AMDPECT=YES Default: AMDPECT=YES
 ,AMDPECT=NO

 ,AMDPFMT=YES Default: AMDPFMT=YES
 ,AMDPFMT=NO

 ,AMDPSEL=YES Default: AMDPSEL=YES
 ,AMDPSEL=NO

 ,DSECT=YES Default: DSECT=YES
 ,DSECT=NO

 Parameters
The parameters are explained as follows:

,AMDCPST=YES
,AMDCPST=NO

specifies whether the format of the CPU status data, available through the IPCS storage
access services, is to be mapped (YES) or suppressed (NO).

When this parameter is not specified, the default is NO.

The system uses DSECT AMDCPMAP to map the format of CPU status data,
AMDCPST = YES, and ignores the DSECT = NO option when specified.

,AMDEXIT=YES
,AMDEXIT=NO

specifies whether the common exit parameter list, BLSABDPL, is to be mapped (YES)
or suppressed (NO).

When this parameter is not specified, the default is YES.

The common exit parameter list contains two parts: ABDPL and ADPLEXTN.
DSECT=YES causes DSECT statements to be generated for both. DSECT=NO
suppresses the DSECT statements and causes ABDPL and ADPLEXTN to be defined
as the labels associated with the first bytes described in the ABDPL and ADPLEXTN
exit parameter lists.

68 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSABDPL Macro

,AMDOSEL=YES
,AMDOSEL=NO

specifies whether the select ASID service output data available under IPCS is to be
mapped (YES) or suppressed (NO).

When this parameter is not specified, the default is YES.

When the DSECT=NO option is specified, it is ignored. The select ASID parameter list
is mapped by DSECT ADPLPSEL.

The system uses DSECT ADPLPSEL to map the select ASID parameter list, AMDOSEL
= YES, and ignores the DSECT = NO option when specified.

,AMDPACC=YES
,AMDPACC=NO

specifies whether the storage access service parameter list is to be mapped (YES) or
suppressed (NO).

When this parameter is not specified, the default is YES.

The storage access service parameter list is described as ADPLPACC. DSECT=YES
causes DSECT statements to be generated for ADPLPACC. DSECT=NO suppresses
the DSECT statements and causes ADPLPACC to be defined as the label associated
with the first byte described in the storage access service parameter list.

,AMDPECT=YES
,AMDPECT=NO

specifies whether the ECT service parameter list is to be mapped (YES) or suppressed
(NO).

When this parameter is not specified, the default is YES.

The ECT service parameter list is described as ADPLPECT. DSECT=YES causes
DSECT statements to be generated for ADPLPECT. DSECT=NO suppresses the
DSECT statements and causes ADPLPECT to be defined as the label associated with
the first byte described in the ECT service parameter list.

,AMDPFMT=YES
,AMDPFMT=NO

specifies whether the parameter list used by both the control block formatter and the
format model processor services is to be mapped (YES) or suppressed (NO).

When this parameter is not specified, the default is YES.

The parameter list used by both the control block formatter and the format model
processor services is described as ADPLPFMT. DSECT=YES causes DSECT
statements to be generated for ADPLPFMT. DSECT=NO suppresses the DSECT
statements and causes ADPLPFMT to be defined as the label associated with the first
byte described in the parameter list.

,AMDPSEL=YES
,AMDPSEL=NO

specifies whether the select ASID service parameter list is to be mapped (YES) or
suppressed (NO).

When this parameter is not specified, the default is YES.

The ASID service parameter list is described as ADPLPSEL. DSECT=YES causes the
DSECT statements to be generated for ADPLPSEL. DSECT=NO suppresses the
DSECT statements and causes ADPLPSEL to be defined as the label associated with
the first byte described in the ASID service parameter list.

 BLSABDPL — Map Dump Formatting Exit Data 69

 BLSABDPL Macro

,DSECT=YES
,DSECT=NO

specifies whether parameter lists mapped by BLSABDPL are to be mapped as DSECTs
(YES) or not (NO).

When this parameter is not specified, the default is YES.

Note: Output data from services can also be mapped by BLSABDPL. Output data are
always mapped as DSECTs. These DSECTs cannot be suppressed by DSECT=NO.
To determine whether DSECT=NO can suppress a specific DSECT, see the above
parameters.

 Example
Code the macros to invoke the select ASID service routine. This routine generates a list of
selected address spaces within a dump by reserving space for an initialized select ASID
service parameter list and by defining the mapping of the ABDPL for the user-written exit
routine.

BLSADPL DSECT=NO,AMDEXIT=NO,AMDOSEL=NO,AMDPACC=NO,
 AMDPFMT=NO,AMDPECT=NO,AMDPSEL=YES

70 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSACBSP Macro

BLSACBSP — Map the Control Block Status (CBSTAT) Parameter List

 Description
BLSACBSP maps the control block status (CBSTAT) parameter list. Use this parameter list
when calling the CBSTAT service from within an installation-written interactive problem
control system (IPCS) exit routine.

The control block status (CBSTAT) service invokes all CBSTAT exit routines for a requested
control block.

See OS/390 MVS IPCS Customization for information about the CBSTAT exit service. See
OS/390 MVS Data Areas, Vol 1 (ABEP-DALT) for a mapping of the BLSACBSP data area.

 Environment
Because BLSACBSP is not an executable macro, there are no specific environment
requirements.

 Programming Requirements
None.

 Restrictions
None.

 Register Information
Because BLSACBSP is not an executable macro, there is no need to save and restore
register contents.

 Performance Implications
None.

 Syntax
The standard form of the BLSACBSP macro is written as follows:

Note: Users must supply a label (name), and start it in column 1 of the BLSACBSP macro.
When the BLSACBSP macro is processed, the label becomes the record name and the
prefix to the name of each field in the record.

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede BLSACBSP.

BLSACBSP

␣ One or more blanks must follow BLSACBSP

 DSECT=YES Default: DSECT=YES
 DSECT=NO

 Copyright IBM Corp. 1988, 1999 71

 BLSACBSP Macro

 Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

A CBSTAT parameter list is mapped with a DSECT (DSECT=YES) or a CBSTAT
parameter list is mapped, but no DSECT is generated (DSECT=NO).

 Example
Code the following to map the CBSTAT service list, but not as a DSECT. All fields will
appear with the prefix CBSP.

CBSP BLSACBSP DSECT=NO

72 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSADSY Macro

BLSADSY — Map the Add Symptom Service Parameter List

 Description
BLSADSY maps the add symptom service parameter list. Use this parameter list when
calling the add symptom service from within an installation-written interactive problem control
system (IPCS) exit routine. The add symptom service permits exit routines to generate
symptoms from stand-alone dumps, SVC dumps, and the SYSMDUMP type of ABEND
dump.

See OS/390 MVS IPCS Customization for information about the add symptom service. See
OS/390 MVS Data Areas, Vol 1 (ABEP-DALT) for a mapping of the BLSADSY data area.

 Environment
Because BLSADSY is not an executable macro, there are no specific environment
requirements.

 Programming Requirements
None.

 Restrictions
None.

 Register Information
Because BLSADSY is not an executable macro, there is no need to save and restore
register contents.

 Performance Implications
None.

 Syntax
The standard form of the BLSADSY macro is written as follows:

Note: Users must supply a label (name), and start it in column 1 of the BLSADSY macro.
When the BLSADSY macro is processed, the label becomes the record name and the prefix
to the name of each field in the record.

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede BLSADSY

BLSADSY

␣ One or more blanks must follow BLSADSY

 DSECT=YES Default: DSECT=YES
 DSECT=NO

 Copyright IBM Corp. 1988, 1999 73

 BLSADSY Macro

 Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

An add symptom service parameter list is mapped with a DSECT (DSECT=YES) or an
add symptom service parameter list is mapped, but no DSECT is generated
(DSECT=NO).

 Example
Code the following to map the add symptom service list, but not as a DSECT. All fields will
appear with the prefix ADSY.

ADSY BLSADSY DSECT=NO

74 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSAPCQE Macro

BLSAPCQE — Map the Contention Queue Element (CQE) Create Service
Parameter List

 Description
BLSAPCQE maps the contention queue element (CQE) create service parameter list. Use
this parameter list when calling the CQE create service from within an installation-written
interactive problem control system (IPCS) exit routine to create CQE entries in the dump
directory.

See OS/390 MVS IPCS Customization for information about the CQE create service. See
OS/390 MVS Data Areas, Vol 1 (ABEP-DALT) for a mapping of the BLSAPCQE data area.

 Environment
Because BLSAPCQE is not an executable macro, there are no specific environment
requirements.

 Programming Requirements
None.

 Restrictions
None.

 Register Information
Because BLSAPCQE is not an executable macro, there is no need to save and restore
register contents.

 Performance Implications
None.

 Syntax
The standard form of the BLSAPCQE macro is written as follows:

Note: Users must supply a label (name), and start it in column 1 of the BLSAPCQE macro.
When the BLSAPCQE macro is processed, the label becomes the record name and the
prefix to the name of each field in the record.

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede BLSAPCQE

BLSAPCQE

␣ One or more blanks must follow BLSAPCQE

 DSECT=YES Default: DSECT=YES
 DSECT=NO

 Copyright IBM Corp. 1988, 1999 75

 BLSAPCQE Macro

 Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

A contention queue element (CQE) create parameter list (PCQE) is mapped with a
DSECT (DSECT=YES) or a PCQE is mapped, but no DSECT is generated
(DSECT=NO). IPCS initializes the PCQE as follows:

� The PCQE control block identifier is filled in.

� Pointer and length fields are set to 0.

� The OWNER/WAITER identifier field is set to “O ” to indicate an owner CQE.

� Character fields not specifically mentioned are set to blanks.

� The data description of the control block which represents the owner or waiter for
the resource is set as follows:

– Address space type code is set to indicate a virtual address (CV). This is the
only address space type code allowed.

– The processor field is set to X'FFFFFFFF'. This is done to avoid specifying
processor 0 accidentally.

– The ASID is set to 1 for the MASTER address space. The ASID field needs to
get set to the ASID for the owner or waiter for the resource. If the ASID is not
known and the control block is in common storage, use ASID 1 as the default.

– The data type is set to “M” to indicate that the specified name is a
STRUCTURE. This is the only data type allowed for this release.

 Example
Code the following to map the contention queue element (CQE) create service parameter
list, but not as a DSECT. All fields will appear with the prefix PCQE.

PCQE BLSAPCQE DSECT=NO

76 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSQFXL Macro

BLSQFXL — Map the Format Exit Routine List (FXL)

 Description
BLSQFXL maps the format exit routine list (FXL) used by model processor formatting exit
routines. FXL contains the addresses of data of potential interest to the model processor
formatting exit routine, as well as a description of the formatted line.

See OS/390 MVS IPCS Customization for information about model processor formatting exit
routines. See OS/390 MVS Data Areas, Vol 1 (ABEP-DALT) for a mapping of the BLSQFXL
data area.

 Environment
Because BLSQFXL is not an executable macro, there are no specific environment
requirements.

 Programming Requirements
None.

 Restrictions
None.

 Register Information
Because BLSQFXL is not an executable macro, there is no need to save and restore
register contents.

 Performance Implications
None.

 Syntax
The standard form of the BLSQFXL macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede BLSQFXL

BLSQFXL BLSQFXL must begin in column 1.

␣ One or more blanks must follow BLSQFXL

 DSECT=YES Default: DSECT=YES
 DSECT=NO

 Copyright IBM Corp. 1988, 1999 77

 BLSQFXL Macro

 Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

An FXL is mapped with a DSECT (DSECT=YES) or an FXL is mapped, but no DSECT
is generated (DSECT=NO).

 Example
Code the following to map an FXL, but not as a DSECT.

BLSQFXL DSECT=NO

78 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSQMDEF Macro

BLSQMDEF — Define a Control Block Format Model

 Description
The BLSQMDEF macro starts and ends the definition of a control block format model. The
end of the model is indicated by a BLSQMDEF macro with only the END keyword specified.

The BLSQMDEF and BLSQMFLD macros work together to create a formatting model. This
is the structure of the formatting model:

� One BLSQMDEF macro to begin the model definition.
� At least one BLSQMFLD macro to define the attributes of a desired control block field.
� One BLSQMDEF macro to end the model definition.

The order of the BLSQMFLD statements in the formatting model determines the order of the
fields in the output of the formatting process. Only the BLSQMFLD macro can be placed
between the BLSQMDEF macros that delimit the start and end of the model definition. Use
the BLSQSHDR macro, which defines text strings to be displayed in the formatted output, to
clarify the data. Place BLSQSHDR after the second BLSQMDEF.

BLSQMDEF, BLSQMFLD, and BLSQSHDR allow interactive problem control system (IPCS)
and SNAP users to specify the presentation of data and messages produced by user-written
exit routines.

See OS/390 MVS IPCS Customization for information about format models.

 Environment
Because BLSQMDEF is not an executable macro, there are no specific environment
requirements.

 Programming Requirements
None.

 Restrictions
None.

 Register Information
Because BLSQMDEF is not an executable macro, there is no need to save and restore
register contents.

 Performance Implications
None.

 Copyright IBM Corp. 1988, 1999 79

 BLSQMDEF Macro

 Syntax
The standard form of the BLSQMDEF macro is written as follows:

 name name: Symbol. Begin name in column 1

␣ One or more blanks must precede BLSQMDEF.

BLSQMDEF

␣ One or more blanks must follow BLSQMDEF.

 END END is required when the BLSQMDEF macro is terminating the

current format model definition. When END is specified, no other
options are allowed.

 ,BASELBL=label label: Symbol.

 ,CBLEN=value value: Decimal constant, hexadecimal constant, or an absolute

value.
CBLEN is required unless the END parameter is specified.

 ,MAINTLV=name name: 1 to 8 byte character string.

 ,ACRONYM=name name: 1 to 8 byte character string

When ACRONYM is specified, the ACROLBL or ACROFF
parameters must also be specified. When neither ACROLBL nor
ACROFF are specified, a default zero is assumed.

 ,ACROLEN=value value: Decimal constant, hexadecimal constant, or absolute

expression of a number from 1 to 8.

 ,ACROLBL=label label Symbol.

Use ACROLBL only when BASELBL is specified.

 ,ACROFF=value value: Decimal constant, hexadecimal constant, or absolute value.

Use ACROFF when ACRONYM is not at offset zero and BASELBL
is not specified, or when both ACROFF and ACROLBL are
specified.

 ,PREFIX=value value: Integer constant 0 - 8 inclusive.

Default: PREFIX=3

 ,OFFSETS=PRINT Default: OFFSETS=PRINT
 ,OFFSETS=NOPRINT

 ,STRTCOL=value value: Decimal constant, hexadecimal constant, or an absolute

expression.
Default: STRTCOL=0

 ,LBLSPC=value value: Decimal constant, hexadecimal constant, or an absolute

expression.
Default: LBLSPC=0

 ,HEADER=name name: One to eight byte character string.

When HEADER is not specified, ACRONYM value is used.
When neither HEADER nor ACRONYM is specified, only the virtual
address of the block is displayed as a header.

 ,VIEWMATCH=VALUE Default: View matching by value.

80 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSQMDEF Macro

 Parameters
The parameters are explained as follows:

END
specifies the termination of the control block model. This parameter is required to end
the control block definition. When this parameter is specified all other parameters are
ignored.

,BASELBL= label
specifies the label of an assembler statement, used to calculate field offsets. When
specified, all field offsets calculated by the BLSQMFLD macro are relative to this label.
When not specified, all field offsets must be explicitly specified on the BLSQMFLD
macro via the OFF parameter.

,CBLEN=value
specifies the total length of the control block. Value may be a decimal constant, a
hexadecimal constant, or an absolute expression of a number from 0 to 32767. If a
length of zero is specified, the length of the control block must be separately specified
when the model is used. This parameter is required except when the END parameter is
specified. This value is used when the format model processor service accesses the
data from the dump on behalf of the calling exit program.

,MAINTLV=name
specifies the maintenance level of the control block. The maintenance level name may
be a 1 to 8 byte character string that contains no blanks.

,ACRONYM=name
specifies the contents of the control block acronym field. Name may be a one to eight
byte character string that contains no blanks. When this field is specified, the ACROLBL
or ACROFF parameter should also be specified to define the offset of the acronym field
within the control block. When neither the ACROLBL nor the ACROFF parameter is
specified, an offset of zero is assumed. The model processor service compares the
contents of the data at the specified offset and length with this name when the calling
exit program requests the option to check acronyms. The name is also used to form the
dump header when the header keyword is not coded.

,ACROLEN=value
specifies the length of the acronym name, defined by the ACRONYM parameter, when
the acronym name requires blanks. When omitted, the length is the actual length of the
name specified in the ACRONYM parameter without blanks. Value may be a decimal
constant, hexadecimal constant, or absolute expression of a number from zero to eight.

,ACROLBL= label
specifies the label on the assembler statement that defines the acronym field. This label
is used with the label provided by BASELBL to calculate the acronym field offset. Use
this parameter only when BASELBL is specified. The ACROLBL parameter is ignored
when ACROFF is specified.

,ACROFF=value
specifies the offset of the field containing the control block acronym within the control
block. Use this parameter when the acronym is not at offset zero and BASELBL is not
specified. Value may be a decimal constant, hexadecimal constant, or absolute
expression.

,PREFIX=value
specifies the number of characters to be removed from the front of a field name to
produce the field label. The field name is defined by the NAME parameter of the
BLSQMFLD macro. Value must be an integer constant 0 - 8. When PREFIX=8 is
specified, the fields have no labels, and the model processor service does not allocate
print buffer space for labels. This is called "no-label mode" and is used to produce
denser data output. When not specified, the default is PREFIX=3. PREFIX may be
re-specified on a succeeding BLSQMFLD macro.

 BLSQMDEF — Define a Control Block Format Model 81

 BLSQMDEF Macro

,OFFSETS=PRINT
,OFFSETS=NOPRINT

specifies whether the field offset information should be printed at the beginning of each
output line of the formatted control block. PRINT specifies that offset information should
be included on the formatted line; NOPRINT causes the offset information to be
suppressed. When this parameter is not specified, a default of PRINT is used.
Specifying OFFSETS=NOPRINT is identical to setting bit ADPLPSOF in field
ADPLPOPT to B'1'; both the OFFSETS=NOPRINT parameter and the ADPLPSOF bit
suppress offsets. ADPLPOPT is mapped by the BLSABDPL macro.

,STRTCOL=value
specifies a left margin for each line of the formatted control block. Value may be a
decimal constant, a hexadecimal constant, or an absolute expression. When not
specified, or specified as zero, the format model processor uses the value specified by
IPCS or SNAP in the field ADPLSCOL in ADPLEXTN, which is mapped by the
BLSABDPL macro.

,LBLSPC= value
specifies the spacing between label fields in the formatted output. Value may be a
decimal constant, hexadecimal constant, or an absolute expression. When not
specified, or specified as zero, it indicates to the format model processor that the value
specified by IPCS or SNAP should be used in field ADPLCOLS in ADPLEXTN, which is
mapped by the BLSABDPL macro. The LBLSPC value is initially set to 20.

Note : When value is 18, the output is condensed.

,HEADER=name
specifies the heading that precedes the formatted control block. The heading consists
of either the HEADER or ACRONYM followed by the virtual address of the block. Name
may be any one to eight byte character string that contains no blanks. When HEADER
is omitted, the ACRONYM value is used for the heading. When neither the ACRONYM
parameter nor the HEADER parameter is specified, the formatted control block has the
virtual address as a heading.

,VIEWMATCH=VALUE
specifies that the first eight bits of the view control fields in the format parameter and a
model entry must match to process that model entry. When not specified, any bit match
in the first 12 bits is sufficient. Rules for the component portion of the view apply in both
cases.

82 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSQMFLD Macro

BLSQMFLD — Specify a Formatting Model Field

 Description
The BLSQMFLD macro identifies fields that are to be formatted. These fields are within a
data area or a control block. A BLSQMFLD macro must be coded for each field.

The BLSQMDEF and BLSQMFLD macros work together to create a formatting model for a
control block. This is the structure of the model:

� One BLSQMDEF macro to begin the model definition.
� At least one BLSQMFLD macro to define the attributes of a desired control block field.
� One BLSQMDEF macro to end the model definition.

The order of the BLSQMFLD statements in the formatting model determines the order of the
fields in the output of the formatting process. Only the BLSQMFLD macro can be placed
between the BLSQMDEF statements. The BLSQSHDR macro, which defines text strings to
be displayed in the formatted output, clarifies the data and should be placed after the second
BLSQMDEF.

BLSQMDEF, BLSQMFLD, and BLSQSHDR allow interactive problem control system (IPCS)
and SNAP users to specify the presentation of data and messages produced by user-written
exit routines.

See OS/390 MVS IPCS Customization for information about format models.

 Environment
Because BLSQMFLD is not an executable macro, there are no specific environment
requirements.

 Programming Requirements
None.

 Restrictions
None.

 Register Information
Because BLSQMFLD is not an executable macro, there is no need to save and restore
register contents.

 Performance Implications
None.

 Copyright IBM Corp. 1988, 1999 83

 BLSQMFLD Macro

 Syntax
This is the standard form of the BLSQMFLD macro:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede BLSQMFLD.

BLSQMFLD

␣ One or more blanks must follow BLSQMFLD.

NAME=label label Symbol.
NAME=*

 ,SHDR=addr addr: A-type address.

Note: When SHDR is specified, only CALLRTN, NEWLINE,
NOSPLIT, and VIEW are allowed.

 ,OFF=value value: Decimal constant, hexadecimal constant, or absolute value.

Note: OFF is required when BASELBL is not specified on the
BLSQMDEF macro or when NAME=* is specified on the
BLSQMFLD macro.

 ,LEN=value value: Decimal constant, hexadecimal constant, or absolute

expression.
Note: LEN is required when name parameter label is unresolved.

 ,VIEW=(list) (list): Integers between 1 and 16, inclusive.
 ,VIEW=value value: Decimal constant, hexadecimal constant, or absolute value.

Default : VIEW=X‘0200’.

 ,ARRAY=constants constants: ((DL1,DU1),(DL2,DU2))
 ,ARRAY=value DL1,DU1,DL2,DU2: Decimal constants, hexadecimal constants, or

absolute values. ,ARRAY=*
 ,ARRAY=END value: Decimal constant, hexadecimal constant, or absolute value.

Note: LEN and OFF are ignored when the specification of
ARRAY= is other than ARRAY=END.
END terminates an array definition.

 ,DTYPE=ANY
 ,DTYPE=QANY
 ,DTYPE=HEX
 ,DTYPE=EBCDIC

 ,DECODE

 ,INVERT

 ,ATTACH

 ,IMBED

 ,STACK

 ,CALLCBF

 ,NEWLINE

 ,NOLABEL

 ,CALLRTN

84 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSQMFLD Macro

 ,PREFIX=value value: Integers between 0 and 8.
Note: When omitted, value specified in the last preceding
BLSQMDEF or BLSQMFLD macro is used.

 ,NOSPLIT

 ,NUMDEC Default : Hexadecimal.

 ,NOCOLNM Default : Number the columns.

 ,NOROWNM

 ,STRTCOL=value value: Decimal constant, hexadecimal constant, or absolute value.

Default : Value specified by IPCS or SNAP.

 ,COLNUM=value value: Decimal constant, hexadecimal constant, or absolute value.

Default : A value is calculated.

 ,COLSEP=value value: Decimal constant, hexadecimal constant, or absolute value.

Default: A value is calculated.

 ,ITEMSEP=value value: Decimal constant, hexadecimal constant, or absolute value.

Default: A value is calculated.

 ,ORDER=(1,2) Default: ORDER=(1,2)
 ,ORDER=(2,1)

 ,HEXONLY

 Parameters
The parameters are explained as follows:

NAME=label
NAME=*

specifies the name of the control block field described by the BLSQMFLD macro. When
BASELBL is specified on the BLSQMDEF macro, the NAME label is used with the
BASELBL label to calculate the offset of this field from the start of the control block.
When BASELBL is not specified on the BLSQMDEF macro, OFF is required on the
BLSQMFLD macro.

A single asterisk specifies an unnamed, reserved field. The use of single asterisk for
the name of a control block field requires that the OFF and LEN parameters be
specified. The format model processor service replaces the asterisk with a “RSV.....”
label.

,NOROWNM
specifies that the row numbers of a two-dimensional array are to be suppressed. The
default is to specify the row numbers. NUMDEC parameter controls the numbering
system used to number the rows. NOROWNM is valid only with
ARRAY=((value,value),(value,value)).

,SHDR=addr
specifies the address of a character string used as a subheading in the control block
format. The address must be valid in an assembler A-type DC instruction. This
parameter should point to a one-byte length field followed by the heading character
string. The length byte indicates the length of the heading string and not the length of
the length byte. The BLSQSHDR macro is used to define subheaders.

When this parameter is specified, only CALLRTN, NEWLINE, NOSPLIT, and VIEW can
be specified. Other parameters are ignored.

,OFF=value
specifies the offset of the field from the beginning of the control block. The value can be
a decimal constant, a hexadecimal constant, or an absolute expression. When this

 BLSQMFLD — Specify a Formatting Model Field 85

 BLSQMFLD Macro

parameter is specified, the value defined overrides the default field offset generated by
the NAME label on this macro and the BASELBL label on the BLSQMDEF macro.

OFF is ignored when the specification of ARRAY= is other than ARRAY=END.

This parameter is required when the BASELBL parameter is not specified on the
BLSQMDEF macro or when NAME=* is specified on the BLSQMFLD macro.

,LEN=value
specifies the length of the control block field. The value is a decimal constant,
hexadecimal constant, or absolute expression of a number from 1 to 32767. This
parameter is required when no data constants with a label exist in the assembly
program as defined by the NAME parameter, or when use of the assembler length
attribute would not result in a correct length determination for the data constant
representing the field.

LEN is ignored when specification of ARRAY= is other than ARRAY=END.

An assembly error occurs when LEN is not specified and there is no assembler
statement with a label matching the one specified by NAME.

,VIEW=(list)
,VIEW=value

specifies up to sixteen different views of the control block fields. Any combination of
one to sixteen view attributes can be specified for each field. The caller of the model
processor exit service provides a view pattern defining the views to be formatted. The
view field consists of a twelve-bit general view followed by a four-bit component view.
When the component view in a model entry is zero, any matching bit causes that model
entry to be processed. When the component view in the model is not zero, there must
be a matching bit in both the general and component view fields.

When VIEWMATCH=VALUE is coded on the first BLSQMDEF macro of the model, the
model processor compares the first byte of the two view fields and requires an exact
match to process the model entry. This feature is convenient for decoding a
value-coded byte.

The list is an unordered list of attributes; each attribute can be a decimal integer
between 1 and 16, (VIEW=1,2,...,16), binary constant (VIEW=B‘0010000000000000’.), or
hexadecimal constant (VIEW=X‘0080’.).

This chart illustrates the view parameter's control block field options provided through
the specification of a 4-digit hexadecimal number. Any combination of the view fields
listed can be specified.

When this parameter is not specified, the default value of VIEW=X‘0200’. is used. See
OS/390 MVS IPCS User's Guide and OS/390 MVS IPCS Commands for more
information about ADPLPFMT.

Hexadecimal
Code

User-defined fields to be displayed

x‘8000’. keyfield
x‘4000’. summary field
x‘2000’. register save area
x‘1000’. linkage field
x‘0800’. error fields
x‘0400’. hexadecimal dump
x‘0200’. non-reserved field
x‘0100’. reserved fields
x‘0080’. static array or decode flag fields
x‘0040’. dynamic array
x‘0020’. input field
x‘0010’. output field

86 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSQMFLD Macro

,ARRAY=((DL1,DU1),(DL2,DU2))
,ARRAY=value
,ARRAY=*
,ARRAY=END

specifies that the succeeding BLSQMFLD statements define a set of fields that are
repeated in the control block.

The ARRAY parameter on the BLSQMFLD macro indicates that the BLSQMFLD macro
is the beginning or the end of an array definition.

The LEN and OFF parameters are ignored when specification of ARRAY= is other than
ARRAY=END.

The VIEW specified applies to all fields within the array. The VIEW specified on the
BLSQMFLD macro that starts an array should be the composite of the VIEW on all
fields within the array.

When ARRAY=((DL1,DU1),(DL2,DU2)) is coded, a two dimensional array is specified.
DL1 is the lower limit of the first dimension and DU1 is the upper limit of the first
dimension. DL2 is the lower limit of the second dimension and DU2 is the upper limit of
the second dimension. When a lower limit for a dimension is not specified, the default is
1. No default exists for the upper limit of a dimension. An asterisk (*) can be coded for
either the upper limit or lower limit of the dimension to indicate that the dimension is to
be provided by the calling program at execution time in fields ADPLPDL1, ADPLPDL2,
ADPLPDU1, ADPLPDU2 in the format parameter.

The total length of an array element must be accounted for in the total of the LEN
values of the fields within the array definition. VIEW=0 can be coded on fields within the
array that are never to be displayed.

Notes:

1. The correspondence of a dimension to a row or column is determined by the
ORDER parameter.

2. When the array is larger than 65,535 bytes, the calling program must process the
array in sections. The formatter equates the lower limit for each dimension to the
value one to address the array entries in a buffer. It uses the specified values to
number rows and columns in the formatted output.

The format parameter extension is used to define blocks of storage of arbitrary
length to eliminate this restriction.

When ARRAY=value is coded, a one dimensional array (list) is specified. Value defines
the number of array entries contained in the control block.

When ARRAY=* is coded, the number of entries in the one-dimensional array (list) are
to be provided by the calling program at execution time in the ADPLPDAC field of the
format parameter.

The total length of an array element must be accounted for in the total of the LEN
values of the fields within the array definition. VIEW=0 can be coded on fields within the
array that are never to be displayed.

When ARRAY=END is coded, the array definition is terminated.

,DTYPE=HEX
,DTYPE=EBCDIC
,DTYPE=ANY
,DTYPE=QANY

specifies the type of data contained in the area to be displayed. DTYPE=HEX indicates
that the area to be displayed contains four-bit hexadecimal digits. DTYPE=EBCDIC
indicates that the area to be dumped contains eight-bit EBCDIC characters.

DTYPE=ANY specifies that the data is either EBCDIC or hexadecimal. When the data
is EBCDIC, the model processor treats the data as EBCDIC. When any of the data is
not EBCDIC, the model processor treats all the data as four-bit hexadecimal digits. The
field must be less than 256 bytes.

 BLSQMFLD — Specify a Formatting Model Field 87

 BLSQMFLD Macro

DTYPE=QANY specifies that the next entry in the model is a subheader entry, with a
view field of all zero. The text of the subheader is interpreted to be the value or values
that are treated as character data. When the subheader is shorter than or equal to the
length of the data field, a comparison is made using the subheader length. When the
subheader is longer than the data field, the subheader length must be a multiple of the
data field length, and multiple comparisons are made.

In both cases, the EBCDIC version is presented in four-byte segments unless NOSPLIT
is also coded.

,DECODE
specifies that the model entry describes one of these decoding operations:

� Flag field decoding
� Format imbedded block
� Format attached block
� Format stacked block

When MODELNAME is coded, the NAME field is copied into the model entry.
Otherwise, it is treated as the address of the named model. The CALLCBF parameter
also specifies whether the name is to be interpreted as a model name or as an
acronym. When acronym, the system calls the control block formatter.

DECODE is not supported within an array.

,INVERT
specifies that the flag field is to be inverted and that decoding is to be performed
according to a model. The flag fields are inverted to allow the decoding of flags that are
in the zero state. To specify flag fields use the offset and length parameters. The flag
field can be up to four bytes long. The model is described by the label field and the
control flags. INVERT is valid only when DECODE is specified, and decoding is
performed only when the views match.

,ATTACH
specifies that the dump data referenced by a pointer at the offset, specified by the offset
parameter, is to be formatted according to a format model. When the length parameter
value is other than zero or four, that value is added to the value of the pointer. The
model is described by the name field and the control flags. ATTACH is valid only when
DECODE is specified, and formatting occurs only when the views match.

,IMBED
specifies that the data identified by the offset and length parameters is to be formatted
according to a model. The model is described by the name field and control flags. The
starting offset is the offset in the containing block, and the header is suppressed. Data
areas formatted appear to be part of the containing block. IMBED is valid only when
DECODE is specified, and formatting occurs only when the views match. Register save
areas in control blocks are examples of embedded blocks.

,STACK
specifies that the data identified by the offset and length parameters is to be formatted
according to a model. The model is described by the name field and control flags. The
starting offset is zero, and the header is not suppressed. Areas formatted are
recognizable as distinct entities. STACK is valid only when DECODE is specified. The
SDWA in dump header records illustrates the function of STACK.

,CALLCBF
specifies that the name field is an acronym. CALLCBF and MODELNAME are valid only
when DECODE is specified in conjunction with ATTACH, IMBED, or STACK.
Formatting is performed according to a model, and each ACRONYM corresponds to a
particular model. When CALLCBF is not specified, the model processor is called
directly.

,NEWLINE
specifies that the field should be printed on the next line of output.

88 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSQMFLD Macro

,NOLABEL
specifies that the field label is not to be printed. NAME is required.

,CALLRTN
specifies that the model processor calls the model processor formatting exit after the
output line, containing this field, is formatted before it is printed. The model processor
formatting exit entry point address is specified by the caller in the parameter list,
ADPLPLME, when the model processor is invoked.

,PREFIX=value
specifies the number of characters to be removed from the front of a field name to
produce the field label. The field name is defined by the NAME parameter. Value must
be an integer constant greater than or equal to zero and less than or equal to eight.
When PREFIX is omitted from the current BLSQMFLD macro, the value specified on the
last preceding BLSQMFLD or BLSQMDEF macro is used. The BLSQMDEF macro,
used to start a model definition, can also be used to set the value of PREFIX. When
PREFIX=8 is coded with BLSQMDEF, the model processor operates in “no-label mode”,
and does not allocate print buffer columns to labels.

,NOSPLIT
specifies that the model processor attempts to print all the field data on the same output
line. When the data does not fit on the current output line, but fits on a single output
line, the model processor skips to a new line prior to printing the data field.

When NOSPLIT is coded with ANY or QANY, the character string is displayed as is, not
in four-byte segments. The display might differ when the field is treated as
hexadecimal.

,NUMDEC
specifies that the columns and rows of a two-dimensional array be numbered in decimal.
The default is hexadecimal.

,NOCOLNM
specifies that column numbers (headers) of a two-dimensional array be suppressed.
The default is to number the columns. The NUMDEC parameter controls the numbering
system used for numbering the columns.

,STRTCOL=value
specifies the left margin of the formatted output. Value indicates the number of blanks
before the first character. STRTCOL applies only to two-dimensional arrays. This
specification overrides the value defined by the STRTCOL parameter in the BLSQMDEF
macro, or by IPCS or SNAP, for the duration of displaying the array. When not
specified, a default of zero is provided and the formatter uses the value specified by the
host.

,COLNUM=value
specifies the number of columns of a two dimensional array that are to be displayed in
each line of output. When not specified, or when the specified number of columns does
not fit in the currently available print buffer, the formatter calculates a value consistent
with, and not exceeding, the maximum line length specified by IPCS or SNAP.

,COLSEP=value
specifies the number of blanks to be placed between the columns of a two-dimensional
array. The default is zero. The model processor uses a calculated value.

,ITEMSEP=value
specifies the number of blanks to be placed between items within an array entry. An
array entry can be a structure, and each element of the structure is referred to as an
“item”. When the array entry is a single item, value is ignored. When ITEMSEP is not
specified, a default of zero is provided, and the model processor uses a calculated
value.

 BLSQMFLD — Specify a Formatting Model Field 89

 BLSQMFLD Macro

,ORDER=(1,2)
,ORDER=(2,1)

specifies the order in which the data of a two-dimensional array is to be processed.
When ORDER=(1,2) is specified, the data is processed in consecutive rows. When
ORDER=(2,1) is specified, the data is processed in consecutive columns. The default is
ORDER=(1,2).

,HEXONLY
specifies that the data is to be displayed in hex. When HEXONLY is omitted, the data is
displayed in both hex and EBCDIC, on the same line, with vertical bars bounding the
EBCDIC portion of the display. HEXONLY is valid only when the view parameter
specifies X‘0400’. This requests a hexadecimal dump.

 Example 1
Code the macros that establish a control block formatting model to be used by the model
processor to format functional recovery routines (FRRs).

IEAVTRP3 CSECT
 BLSQMDEF CBLEN=X'ð32ð',MAINTLV=HBB21ð2,PREFIX=4,OFFSETS=PRINT,X
 HEADER=FRRS
 BLSQMFLD NAME=FRRSEMP,OFF=X'ðððð',LEN=4,VIEW=X'ð2ð2'
 BLSQMFLD NAME=FRRSLAST,OFF=X'ððð4',LEN=4,VIEW=X'ð2ð2'
 BLSQMFLD NAME=FRRSELEN,OFF=X'ððð8',LEN=4,VIEW=X'ð2ð2'
 BLSQMFLD NAME=FRRSCURR,OFF=X'ðððC',LEN=4,VIEW=X'ð2ðð'
 BLSQMFLD NAME=FRRSRSA,OFF=X'ðð1ð',LEN=24,VIEW=X'ð2ðð'
 BLSQMFLD SHDR=RTM1WA,VIEW=X'ð2ðð',NEWLINE
 BLSQMFLD SHDR=BLANK,VIEW=X'ð2ðð',NEWLINE
 BLSQMFLD SHDR=ENTEXT,VIEW=X'ð2ðð',NEWLINE
 BLSQMFLD SHDR=BLANK,VIEW=X'ð2ðð',NEWLINE
 BLSQMFLD NAME=FRRSXSTK,VIEW=X'ð2ðð',ARRAY=16,NOLABEL
 BLSQMFLD NAME=FRRSKM,OFF=X'ððAð',LEN=2,VIEW=X'ð2ðð',NEWLINE
 BLSQMFLD NAME=FRRSSAS,OFF=X'ððA2',LEN=2,VIEW=X'ð2ðð'
 BLSQMFLD NAME=FRRSAX,OFF=X'ððA4',LEN=2,VIEW=X'ð2ðð'
 BLSQMFLD NAME=FRRSPAS,OFF=X'ððA6',LEN=2,VIEW=X'ð2ðð',ARRAY=END
 BLSQMFLD SHDR=BLANK,VIEW=X'ð2ðð',NEWLINE
 BLSQMFLD SHDR=ENTS,VIEW=X'ð2ðð',NEWLINE
 BLSQMFLD SHDR=BLANK,VIEW=X'ð2ðð',NEWLINE
 BLSQMFLD NAME=FRRSENTS,VIEW=X'ð2ðð',ARRAY=16,NOLABEL
 BLSQMFLD NAME=FRRSFRRA,OFF=X'ð12ð',LEN=4,VIEW=X'ð2ðð',NEWLINE
 BLSQMFLD NAME=FRRSFLGS,OFF=X'ð124',LEN=4,VIEW=X'ð2ðð'
 BLSQMFLD NAME=FRRSPARM,OFF=X'ð128',LEN=24,VIEW=X'ð2ðð', X
 ARRAY=END
 BLSQMDEF END
BLANK BLSQSHDR ' '
ENTEXT BLSQSHDR 'FRR ENTRY EXTENSIONS'
ENTS BLSQSHDR 'FRR ENTRIES'
RTM1WA BLSQSHDR 'RTM1 WORK AREA FOLLOWS FRR ENTRIES'
 END

 Example 2
Code the macros that establish a control block formatting model to be used by the model
processor to format a STAE control block (SCB).

90 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSQMFLD Macro

IEAVTRP4 CSECT
 BLSQMDEF CBLEN=X'ðð18',MAINTLV=JBB2125,PREFIX=3,OFFSETS=PRINT,X
 HEADER=SCB
 BLSQMFLD NAME=SCBCHAIN,OFF=X'ðððð',LEN=4,VIEW=X'ð2ðð'
 BLSQMFLD NAME=SCBEXIT,OFF=X'ððð4',LEN=4,VIEW=X'ð2ðð'
 BLSQMFLD NAME=SCBFLGS1,OFF=X'ððð8',LEN=1,VIEW=X'ð2ðð'
 BLSQMFLD NAME=SCBPARMA,OFF=X'ððð9',LEN=3,VIEW=X'ð2ðð'
 BLSQMFLD NAME=SCBFLGS2,OFF=X'ðððC',LEN=1,VIEW=X'ð2ðð'
 BLSQMFLD NAME=SCBOWNRA,OFF=X'ðððD',LEN=3,VIEW=X'ð2ðð'
 BLSQMFLD NAME=SCBFLGS3,OFF=X'ðð1ð',LEN=1,VIEW=X'ð2ðð'
 BLSQMFLD NAME=SCBPKEY,OFF=X'ðð11',LEN=1,VIEW=X'ð2ðð'
 BLSQMFLD NAME=SCBID,OFF=X'ðð12',LEN=1,VIEW=X'ð2ðð'
 BLSQMFLD NAME=SCBRSVRE,OFF=X'ðð13',LEN=1,VIEW=X'ð2ðð'
 BLSQMFLD NAME=SCBXPTR,OFF=X'ðð14',LEN=4,VIEW=X'ð2ðð'
 BLSQMFLD NAME=\,OFF=X'ðððð',LEN=X'ðð18',VIEW=X'ð4ðð',NOLABEL
 BLSQMDEF END

 END

 Example 3
Define the format of a simple control block. Note that this can be done by using a
macro-invocation.

MYBLK DSECT , My simplest control block ever
MYBLKABC DC C'ABC' Identifier
MYBLKDEF DC X'ðð' Flags
MYBLKD8ð EQU X'8ð' 1st flag bit
MYBLKD4ð EQU X'4ð' 2nd flag bit
MYBLKGHI DC V(MYENTRY) Address of my program
MYBLKEND EQU \ End of my control block

Define enough storage to get the block displayed. Note that no ENTRY statement is
required for access to CBMODEL1 from other CSECTs since CBMODEL1 lies at the origin
of the CSECT.

TITLE 'CBMODEL1--Basic Control Block Model'
CBMODEL CSECT , Start definition of simple model
CBMODEL1 BLSQMDEF BASELBL=MYBLK,CBLEN=MYBLKEND-MYBLK,PREFIX=5
 BLSQMFLD NAME=MYBLKABC
 BLSQMFLD NAME=MYBLKDEF
 BLSQMFLD NAME=MYBLKGHI

BLSQMDEF END End definition of simple model

Add acronym checking, the display of the acronym in EBCDIC, and descriptive header for
the display in the dump.

TITLE 'CBMODEL2--More Elaborate than 1st Model'
ENTRY CBMODEL2 Permit access from other CSECTs

CBMODEL2 BLSQMDEF BASELBL=MYBLK,CBLEN=MYBLKEND-MYBLK,PREFIX=5, X
ACRONYM=ABC,ACROLBL=MYBLKABC, Acronym field data
HEADER=MYBLOCK Heading for block in dump

BLSQMFLD NAME=MYBLKABC,DTYPE=EBCDIC Show it as EBCDIC data
 BLSQMFLD NAME=MYBLKDEF
 BLSQMFLD NAME=MYBLKGHI

BLSQMDEF END End definition of alternate model
END CBMODEL1 End definition of formatting model

 BLSQMFLD — Specify a Formatting Model Field 91

 BLSQMFLD Macro

 Example 4
Assume that the data is stored in this sequence:

ððð1ððð1
ððð1ððð2
ððð1ððð3
ððð1ððð4
ððð2ððð1
ððð2ððð2
ððð2ððð3
ððð2ððð4
ððð3ððð1
ððð3ððð2
ððð3ððð3
ððð3ððð4
 .
 .
 .
ððð9ððð1
ððð9ððð2
ððð9ððð3
ððð9ððð4
ðð1ðððð1
ðð1ðððð2
ðð1ðððð3
ðð1ðððð4

And you want the data to be formatted like this:

---ð1--- ---ð2--- ---ð3--- ---ð4---
ARRENTRY ARRENTRY ARRENTRY ARRENTRY
-------- -------- -------- --------

ðð1 ððð1ððð1 ððð1ððð2 ððð1ððð3 ððð1ððð4
ðð2 ððð2ððð1 ððð2ððð2 ððð2ððð3 ððð2ððð4
ðð3 ððð3ððð1 ððð3ððð2 ððð3ððð3 ððð3ððð4
ðð4 ððð4ððð1 ððð4ððð2 ððð4ððð3 ððð4ððð4
ðð5 ððð5ððð1 ððð5ððð2 ððð5ððð3 ððð5ððð4
ðð6 ððð6ððð1 ððð6ððð2 ððð6ððð3 ððð6ððð4
ðð7 ððð7ððð1 ððð7ððð2 ððð7ððð3 ððð7ððð4
ðð8 ððð8ððð1 ððð8ððð2 ððð8ððð3 ððð8ððð4
ðð9 ððð9ððð1 ððð9ððð2 ððð9ððð3 ððð9ððð4
ð1ð ðð1ðððð1 ðð1ðððð2 ðð1ðððð3 ðð1ðððð4

Code the macro that creates a formatting model to do the following:

Number rows 1 through 10.
Number columns 1 through 4.
Use the decimal numbering system for numbering rows and columns.
Place data in to the array row by row.
Put one blank between each column.
Display 4 columns in each group.
Start printing in the second column from the left margin.
View all non-reserved fields.
Print the field label ARRENTRY.

One way to code the macro:

BLSQMFLD NAME=ARRAYX,ARRAY=((1,1ð),(1,4)),VIEW=X'ð2ðð', X
 STRTCOL=1,COLSEP=1,COLNUM=4,NUMDEC,NOLABEL
BLSQMFLD NAME=ARRENTRY,OFF=ð,LEN=4,ARRAY=END,VIEW=X'ð2ðð'

92 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSQMFLD Macro

 Example 5
Assume that the data is stored in this sequence:

ððð1ððð1
ððð1ððð2
ððð1ððð3
ððð1ððð4
ððð2ððð1
ððð2ððð2
ððð2ððð3
ððð2ððð4
ððð3ððð1
ððð3ððð2
ððð3ððð3
ððð3ððð4
 .
 .
 .
ððð9ððð1
ððð9ððð2
ððð9ððð3
ððð9ððð4
ðð1ðððð1
ðð1ðððð2
ðð1ðððð3
ðð1ðððð4

And you want the data to be formatted this way:

---ð5--- ---ð6--- ---ð7--- ---ð8--- ---ð9---
ARRENTRY ARRENTRY ARRENTRY ARRENTRY ARRENTRY
-------- -------- -------- -------- --------

ððð ððð1ððð1 ððð2ððð1 ððð3ððð1 ððð4ððð1 ððð5ððð1
ðð1 ððð1ððð2 ððð2ððð2 ððð3ððð2 ððð4ððð2 ððð5ððð2
ðð2 ððð1ððð3 ððð2ððð3 ððð3ððð3 ððð4ððð3 ððð5ððð3
ðð3 ððð1ððð4 ððð2ððð4 ððð3ððð4 ððð4ððð4 ððð5ððð4

---ðA--- ---ðB--- ---ðC--- ---ðD--- ---ðE---
ARRENTRY ARRENTRY ARRENTRY ARRENTRY ARRENTRY
-------- -------- -------- -------- --------

ððð ððð6ððð1 ððð7ððð1 ððð8ððð1 ððð9ððð1 ðð1ðððð1
ðð1 ððð6ððð2 ððð7ððð2 ððð8ððð2 ððð9ððð2 ðð1ðððð2
ðð2 ððð6ððð3 ððð7ððð3 ððð8ððð3 ððð9ððð3 ðð1ðððð3
ðð3 ððð6ððð4 ððð7ððð4 ððð8ððð4 ððð9ððð4 ðð1ðððð4

Code the macro that creates a formatting model to do the following:

Number rows 0 through 3.
Number columns 5 through 14.
Use the hexadecimal numbering system for numbering rows and columns.
Put two blanks between each column.
Display 5 columns in each group.
Start printing in the fourth column from the left margin.
View all non-reserved fields.
Print the field label ARRENTRY.

One way to code the macro:

BLSQMFLD NAME=ARRAYX,ARRAY=((5,14),(ð,3)),VIEW=X'ð2ðð', X
 STRTCOL=3,COLSEP=2,COLNUM=5,NOLABEL,ORDER=(2,1)
BLSQMFLD NAME=ARRENTRY,OFF=ð,LEN=4,ARRAY=END,VIEW=X'ð2ðð'

 BLSQMFLD — Specify a Formatting Model Field 93

 BLSQMFLD Macro

94 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSQSHDR Macro

BLSQSHDR — Generate Model Subheader

 Description
The BLSQSHDR macro defines a text string, called a subheader, and makes it appear as
part of the output of the model processor. Subheaders are also used to contain the
character string or strings to be compared with the contents of a field within the data being
formatted, and to determine whether the data is to be treated as hexadecimal or EBCDIC.
See the description of the DTYPE=QANY parameter on the BLSQMFLD macro.

BLSQSHDR, with its text string, should be placed after the end of the format model
definition. Create a format model definition by coding two BLSQMDEF macros, one at the
beginning and one at the end of the definition. The BLSQMFLD macros define the data
fields of the format model. They are included between the two BLSQMDEF macros. The
SHDR fields of the BLSQMFLD macros refer to text strings (subheaders) that the user
places after the end of the model definition. This is the order of the macros:

 BLSQMDEF
 BLSQMFLD
 .
 .
 .
 BLSQMFLD
 BLSQMDEF
 BLSQSHDR

Each BLSQSHDR macro placed after the end of the model must have a label that the
BLSQMFLD macros within the model can reference. The text string of the BLSQSHDR
macro is enclosed in single quotation marks. L(x) can also be coded when the length of the
string is different than the length of the enclosed text string.

See OS/390 MVS IPCS Customization for information about format models.

 Environment
Because BLSQSHDR is not an executable macro, there are no specific environment
requirements.

 Programming Requirements
None.

 Restrictions
None.

 Register Information
Because BLSQSHDR is not an executable macro, there is no need to save and restore
register contents.

 Performance Implications
None.

 Copyright IBM Corp. 1988, 1999 95

 BLSQSHDR Macro

 Syntax
This is the standard form of the BLSQSHDR macro:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede BLSQSHDR.

BLSQSHDR

␣ One or more blanks must follow BLSQSHDR.

 L(x) x: Length of subheader - when other than

length of actual text
 'text' text: Text of subheader

 Parameters
The parameters are explained as follows:

L(x)
specifies the length of the subheader. Specify the length only when it is different from
the length of the enclosed text string.

 Examples
SHDRð1 BLSQSHDR 'This is a subheader'

SHDRð2 BLSQSHDR L(6)' '

96 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSRDRPX Macro

BLSRDRPX — Map Dump Record Prefix

 Description
The BLSRDRPX macro creates a map of the dump record prefix. The dump record prefix
contains the title of the dump and other information needed for interpretation of the dump.

See OS/390 MVS IPCS Customization for information about formatting dump data. See
OS/390 MVS Data Areas, Vol 1 (ABEP-DALT) for a mapping of the BLSRDRPX data area.

 Environment
Because BLSRDRPX is not an executable macro, there are no specific environment
requirements.

 Programming Requirements
None.

 Restrictions
None.

 Register Information
Because BLSRDRPX is not an executable macro, there is no need to save and restore
register contents.

 Performance Implications
None.

 Syntax
The standard form of the BLSRDRPX macro is written as follows:

 name name: Symbol. name must begin in column 1 and it cannot exceed

four characters in length.

␣ One or more blanks must precede BLSRDRPX.

BLSRDRPX

␣ One or more blanks must follow BLSRDRPX.

 DSECT=YES
 DSECT=NO

Default : DSECT=YES

 Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

Generates a DSECT for the dump record prefix (DSECT=YES) or generates an
initialized set of DCs for the dump record prefix (DSECT=NO).

 Copyright IBM Corp. 1988, 1999 97

 BLSRDRPX Macro

98 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSRESSY Macro

BLSRESSY — Map IPCS Symbol Table Data

 Description
BLSRESSY maps a structure that is part of the interface between an interactive problem
control system (IPCS) exit service and an IPCS exit routine. See OS/390 MVS IPCS
Customization for information about IPCS exit services. See OS/390 MVS Data Areas, Vol 1
(ABEP-DALT) for a mapping of the BLSRESSY data area.

 Environment
Because BLSRESSY is not an executable macro, there are no specific environment
requirements.

 Programming Requirements
None.

 Restrictions
None.

 Register Information
Because BLSRESSY is not an executable macro, there is no need to save and restore
register contents.

 Performance Implications
None.

 Syntax
This is the standard form of the BLSRESSY macro:

Note: Users must supply a label (name), and start it in column 1 of the BLSRESSY macro.
When the BLSRESSY macro is executed, the label becomes the record name and the prefix
to the name of each field in the record.

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede BLSRESSY.

BLSRESSY

␣ One or more blanks must follow BLSRESSY.

 DSECT=YES
 DSECT=NO

Default : DSECT=YES

 Copyright IBM Corp. 1988, 1999 99

 BLSRESSY Macro

 Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

Specifies whether the record mapped by BLSRESSY is to be mapped as a DSECT
(YES) or not (NO).

 Example
Map the IPCS symbol table record but not as a DSECT.

ESSY BLSRESSY DSECT=NO

100 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSRNAMP Macro

BLSRNAMP — Map the Name Service Parameter List

 Description
BLSRNAMP maps the name service parameter list. Use this parameter list when calling the
name service from within an installation-written interactive problem control system (IPCS)
exit routine.

The name service is used to convert an STOKEN or real address of a data space ASTE
into:

� An ASID for an address space
� A data space or hiperspace name and owning ASID
� A common data space (CADS)

See OS/390 MVS IPCS Customization for information about the name service. See OS/390
MVS Data Areas, Vol 1 (ABEP-DALT) for a mapping of the BLSRNAMP data area.

 Environment
Because BLSRNAMP is not an executable macro, there are no specific environment
requirements.

 Programming Requirements
None.

 Restrictions
None.

 Register Information
Because BLSRNAMP is not an executable macro, there is no need to save and restore
register contents.

 Performance Implications
None.

 Syntax
The standard form of the BLSRNAMP macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede BLSRNAMP

BLSRNAMP

␣ One or more blanks must follow BLSRNAMP

 DSECT=YES Default: DSECT=YES
 DSECT=NO

 Copyright IBM Corp. 1988, 1999 101

 BLSRNAMP Macro

Note: Users must supply a label (name), and start it in column 1 of the BLSRNAMP macro.
When the BLSRNAMP macro is processed, the label becomes the record name and the
prefix to the name of each field in the record.

 Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

A name service parameter list is mapped with a DSECT (DSECT=YES) or a name
service parameter list is mapped, but no DSECT is generated (DSECT=NO).

 Example
Code the following to map the name service parameter list, but not as a DSECT. All fields
will appear with the prefix NAMP.

NAMP BLSRNAMP DSECT=NO

102 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSRPRD Macro

BLSRPRD — Map Dump Record

 Description
The BLSRPRD macro creates a map of the dump record.

See OS/390 MVS IPCS Customization for information about formatting dump data. See
OS/390 MVS Data Areas, Vol 1 (ABEP-DALT) for a mapping of the BLSRPRD data area.

 Environment
Because BLSRPRD is not an executable macro, there are no specific environment
requirements.

 Programming Requirements
None.

 Restrictions
None.

 Register Information
Because BLSRPRD is not an executable macro, there is no need to save and restore
register contents.

 Performance Implications
None.

 Syntax
This is the standard form of the BLSRPRD macro:

 name name: Symbol. name must begin in column 1 and it cannot exceed

four characters in length.

␣ One or more blanks must precede BLSRPRD.

BLSRPRD

␣ One or more blanks must follow BLSRPRD.

 DSECT=YES
 DSECT=NO

Default : DSECT=YES

 Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

Generates a DSECT for the dump record (DSECT=YES) or generates an initialized set
of DCs for the dump record (DSECT=NO).

 Copyright IBM Corp. 1988, 1999 103

 BLSRPRD Macro

104 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSRPWHS Macro

BLSRPWHS — Map the WHERE Service Parameter List

 Description
BLSRPWHS maps the WHERE service parameter list. Use this parameter list when calling
the WHERE service from within an installation-written interactive problem control system
(IPCS) exit routine.

The WHERE service fills in the WHERE service parameter list with information describing
the system area in which the passed address resides.

See OS/390 MVS IPCS Customization for information about the WHERE service. See
OS/390 MVS Data Areas, Vol 1 (ABEP-DALT) for a mapping of the BLSRPWHS data area.

 Environment
Because BLSRPWHS is not an executable macro, there are no specific environment
requirements.

 Programming Requirements
None.

 Restrictions
None.

 Register Information
Because BLSRPWHS is not an executable macro, there is no need to save and restore
register contents.

 Performance Implications
None.

 Syntax
The standard form of the BLSRPWHS macro is written as follows:

Note: Users must supply a label (name), and start it in column 1 of the BLSRPWHS macro.
When the BLSRPWHS macro is processed, the label becomes the record name and the
prefix to the name of each field in the record.

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede BLSRPWHS

BLSRPWHS

␣ One or more blanks must follow BLSRPWHS

 DSECT=YES Default: DSECT=YES
 DSECT=NO

 Copyright IBM Corp. 1988, 1999 105

 BLSRPWHS Macro

 Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

A WHERE service parameter list is mapped with a DSECT (DSECT=YES) or a WHERE
service parameter list is mapped, but no DSECT is generated (DSECT=NO).

 Example
Code the following to map the WHERE service parameter list, but not as a DSECT. All fields
will appear with the prefix PWHS.

PWHS BLSRPWHS DSECT=NO

106 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSRSASY Macro

BLSRSASY — Map IPCS Storage Map Data

 Description
BLSRSASY maps a structure that is part of the interface between an interactive problem
control system (IPCS) exit service and an IPCS exit routine. See OS/390 MVS IPCS
Customization for information about IPCS exit services. See OS/390 MVS Data Areas, Vol 1
(ABEP-DALT) for a mapping of the BLSRSASY data area.

 Environment
Because BLSRSASY is not an executable macro, there are no specific environment
requirements.

 Programming Requirements
None.

 Restrictions
None.

 Register Information
Because BLSRSASY is not an executable macro, there is no need to save and restore
register contents.

 Performance Implications
None.

 Syntax
The standard form of the BLSRSASY macro is written as follows:

Note: Users must supply a label (name), and start it in column 1 of the BLSRSASY macro.
When the BLSRSASY macro is processed, the label becomes the record name and the
prefix to the name of each field in the record.

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede BLSRSASY

BLSRSASY

␣ One or more blanks must follow BLSRSASY

 DSECT=YES Default: DSECT=YES
 DSECT=NO

 Copyright IBM Corp. 1988, 1999 107

 BLSRSASY Macro

 Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

An SA record is mapped with a DSECT (DSECT=YES) or an SA record is mapped, but
no DSECT is generated (DSECT=NO).

 Example
Code the following to map an SA record, but not as a DSECT. All fields will appear with the
prefix SASY.

SASY BLSRSASY DSECT=NO

108 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSRXMSP Macro

BLSRXMSP — Map the Storage Map Service Parameter List

 Description
BLSRXMSP maps the storage map service parameter list. Use this parameter list when
calling the storage map service from within an installation-written interactive problem control
system (IPCS) exit routine.

The storage map service allows exit routines to process storage map entries and to obtain
data represented by the storage map entries.

See OS/390 MVS IPCS Customization for information about the storage map service. See
OS/390 MVS Data Areas, Vol 1 (ABEP-DALT) for a mapping of the BLSRXMSP data area.

 Environment
Because BLSRXMSP is not an executable macro, there are no specific environment
requirements.

 Programming Requirements
None.

 Restrictions
None.

 Register Information
Because BLSRXMSP is not an executable macro, there is no need to save and restore
register contents.

 Performance Implications
None.

 Syntax
The standard form of the BLSRXMSP macro is written as follows:

Note: Users must supply a label (name), and start it in column 1 of the BLSRXMSP macro.
When the BLSRXMSP macro is processed, the label becomes the record name and the
prefix to the name of each field in the record.

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede BLSRXMSP

BLSRXMSP

␣ One or more blanks must follow BLSRXMSP

 DSECT=YES Default: DSECT=YES
 DSECT=NO

 Copyright IBM Corp. 1988, 1999 109

 BLSRXMSP Macro

 Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

A storage map service parameter list is mapped with a DSECT (DSECT=YES) or a
storage map service parameter list is mapped, but no DSECT is generated
(DSECT=NO).

 Example
Code the following to map the storage map service parameter list, but not as a DSECT. All
fields will appear with the prefix XMSP.

XMSP BLSRXMSP DSECT=NO

110 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSRXSSP Macro

BLSRXSSP — Map the Symbol Service Parameter List

 Description
BLSRXSSP maps the symbol service parameter list. Use this parameter list when calling
the symbol service from within an installation-written interactive problem control system
(IPCS) exit routine.

The symbol service enables exit routines to process symbols and obtain data represented by
the symbols.

See OS/390 MVS IPCS Customization for information about the symbol service. See
OS/390 MVS Data Areas, Vol 1 (ABEP-DALT) for a mapping of the BLSRXSSP data area.

 Environment
Because BLSRXSSP is not an executable macro, there are no specific environment
requirements.

 Programming Requirements
None.

 Restrictions
None.

 Register Information
Because BLSRXSSP is not an executable macro, there is no need to save and restore
register contents.

 Performance Implications
None.

 Syntax
The standard form of the BLSRXSSP macro is written as follows:

Note: Users must supply a label (name), and start it in column 1 of the BLSRXSSP macro.
When the BLSRXSSP macro is processed, the label becomes the record name and the
prefix to the name of each field in the record.

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede BLSRXSSP

BLSRXSSP

␣ One or more blanks must follow BLSRXSSP

 DSECT=YES Default: DSECT=YES
 DSECT=NO

 Copyright IBM Corp. 1988, 1999 111

 BLSRXSSP Macro

 Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

A symbol service parameter list is mapped with a DSECT (DSECT=YES) or a symbol
service parameter list is mapped, but no DSECT is generated (DSECT=NO).

 Example
Code the following to map the symbol service parameter list, but not as a DSECT. All fields
will appear with the prefix XSSP.

XSSP BLSRXSSP DSECT=NO

112 OS/390 V2R8.0 MVS Assembler Services Reference

 BLSUPPR2 Macro

BLSUPPR2 — Map the Expanded Print Service Parameter List

 Description
BLSUPPR2 maps the expanded print service parameter list. Use this parameter list when
calling the expanded print service from within an installation-written interactive problem
control system (IPCS) exit routine.

The expanded print service provides a means for exit routines to write data to both the
terminal and the IPCS print file.

See OS/390 MVS IPCS Customization for information about the expanded print service.
See OS/390 MVS Data Areas, Vol 1 (ABEP-DALT) for the mapping of the BLSUPPR2 data
area.

 Environment
Because BLSUPPR2 is not an executable macro, there are no specific environment
requirements.

 Programming Requirements
None.

 Restrictions
None.

 Register Information
Because BLSUPPR2 is not an executable macro, there is no need to save and restore
register contents.

 Performance Implications
None.

 Syntax
The standard form of the BLSUPPR2 macro is written as follows:

Note: Users must supply a label (name), and start it in column 1 of the BLSUPPR2 macro.
When the BLSUPPR2 macro is processed, the label becomes the record name and the
prefix to the name of each field in the record.

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede BLSUPPR2

BLSUPPR2

␣ One or more blanks must follow BLSUPPR2

 DSECT=YES Default: DSECT=YES
 DSECT=NO

 Copyright IBM Corp. 1988, 1999 113

 BLSUPPR2 Macro

 Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

An expanded print parameter list is mapped with a DSECT (DSECT=YES) or an
expanded print parameter list is mapped, but no DSECT is generated (DSECT=NO).

 Example
Code the following to map the expanded print service parameter list, but not as a DSECT.
All fields will appear with the prefix PPR2.

PPR2 BLSUPPR2 DSECT=NO

114 OS/390 V2R8.0 MVS Assembler Services Reference

 CALL Macro

CALL — Pass Control to a Control Section

 Description
The CALL macro passes control to a control section at a specified entry point as follows:

� OVERLAY: The overlay segment containing the designated entry point is brought into
virtual storage if required, and control is passed to the segment.

Refer to DFSMS/MVS Program Management for details on overlay.

� NONOVERLAY: If a symbol is designated, the linkage editor includes the load module
containing that entry point in the same load module containing the CALL instruction.
When the CALL macro is executed, control is passed to the control section at the
specified entry point.

The linkage relationship established when control is passed is the same as that created by a
BAL instruction; that is, the issuing program expects control to be returned. The control
program is not involved in passing control, so the reusability of the called program must be
ensured by the user.

An address parameter list can be constructed and a calling sequence identifier can be
provided.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN¬=SASN¬=HASN
AMODE: 24- or 31-bit
ASC mode: Primary or Access register (AR)
Interrupt status: No requirement
Locks: No requirement
Control parameters: Must be in the caller's primary address space or be in an address

or data space that is addressable through a public entry on the
caller's dispatchable unit access list (DU-AL)

 Programming Requirements
If your program is to execute in 31-bit addressing mode, you must use the MVS/SP Version
2 macro expansion or a later version. You cannot use the CALL macro to pass control to a
program in a different addressing mode.

AR mode programs and primary mode programs can invoke the CALL macro. Before an AR
mode program invokes this macro, the program must issue SYSSTATE ASCENV=AR to tell
the CALL macro to generate code that is appropriate for AR mode.

IBM recommends that you do not use asynchronous exit routines in an overlay program. If
you choose to do so, you must ensure that:

� The overlay segment containing the asynchronous exit routine is already in storage at
the time the system invokes the routine, and this segment will not be overlaid by another
segment during the routine's execution.

� If the asynchronous exit routine calls a routine in an overlay segment, that segment is
already in storage and will not be overlaid by another segment during the called
routine's execution.

 Copyright IBM Corp. 1988, 1999 115

 CALL Macro

 Register Information
On entry to the called program, the register contents are as follows:

Register Contents
1 Address of the parameter list, if present
14 Return address
15 Entry address of the called program

 Syntax
The standard form of the CALL macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CALL.

CALL

␣ One or more blanks must follow CALL.

entry name entry name: Symbol or register (15).

 ,(addr) addr: A-type address, or register (2) - (12).
 ,(addr),VL Note: addr is one or more addresses, separated by commas.

For example, (addr,addr,addr)

 ,ID=id nmbr id nmbr: Symbol or decimal digit, with a maximum value of 4095.

 Parameters
The parameters are explained as follows:

entry name
Specifies the entry name to be given control.

,(addr)
,(addr),VL

Specifies address(es) to be passed to the called program. To create the parameter list,
the control program expands each address inline to a fullword on a fullword boundary in
the order designated. Register 1 contains the address of the parameter list when the
program receives control. (If this parameter is not coded, register 1 is not altered.)

Code VL only if the called program can be passed a variable number of parameters. VL
causes the high-order bit of the last address parameter to be set to 1; the bit can be
checked to find the end of the list.

If your program is in access register (AR) mode, the system builds the parameter list so
that the addresses that are passed to the called program are in the first half of the list
and their associated ALETs are in the last half of the list. Therefore, the parameter list
for callers in AR mode is twice as long as the parameter list for callers in primary mode
for the same number of addresses. The 1 in the high-order bit identifies the last
address parameter, but not the last entry in the parameter list. See “User Parameters”
on page 3 for a more detailed description of these parameter lists.

,ID=id nmbr
Specifies a 2-byte identifier useful for debugging purposes only. The last fullword of the
macro expansion is a NOP instruction containing the identifier value in bytes 3 and 4.

116 OS/390 V2R8.0 MVS Assembler Services Reference

 CALL Macro

Return and Reason Codes
The CALL macro does not generate any return codes. A return code in GPR 15 or AR 15 is
placed there by the called program.

 Example
Call the entry point contained in register 15, and pass three addresses to the control
program.

CALL (15),(ADDR1,ADDR2,ADDR3)

 CALL—List Form
Use the list form of the CALL macro to construct a nonexecutable problem program
parameter list. This list form generates only ADCONs of the address parameters. You can
refer to this problem program parameter list in the execute form of a CALL, LINK, LINKX,
ATTACH, ATTACHX, XCTL, or XCTLX macro.

 Syntax
The list form of the CALL macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CALL.

CALL

␣ One or more blanks must follow CALL.

,(addr) addr: A-type address.
,(addr),VL Note: addr is one or more addresses, separated by commas.

For example, (addr,addr,addr)

,MF=L

 Parameters
The parameters are explained under the standard form of the CALL macro, with the following
exception:

,MF=L
Specifies the list form of the CALL macro.

 CALL — Pass Control to a Control Section 117

 CALL Macro

 CALL—Execute Form
The execute form of the CALL macro can refer to and modify a remote problem program
parameter list. Only executable instructions and a VCON of the entry point are generated.

 Syntax
The execute form of the CALL macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CALL.

CALL

␣ One or more blanks must follow CALL.

entry name entry name: Symbol or register (15).

 ,(addr) addr: RX-type address, or register (2) - (12).
 ,(addr),VL Note: addr is one or more addresses, separated by commas.

For example, (addr,addr,addr)

 ,ID=id nmbr id nmbr: Symbol or decimal digit, with a maximum value of 4095.

,MF=(E,prob addr) prob addr: RX-type address, or register (1) or (2) - (12).

 Parameters
The parameters are explained under the standard form of the CALL macro, with the following
exception:

,MF=(E,prob addr)
Specifies the execute form of the CALL macro. This form uses a remote problem
program parameter list. If the address parameters are also specified in this form, the
ADCONs of the parameter are placed on contiguous fullword boundaries beginning at
the address specified in the MF parameter, and sequentially overlaying corresponding
fullwords in the existing list.

118 OS/390 V2R8.0 MVS Assembler Services Reference

 CHAP Macro

CHAP — Change Dispatching Priority

 Description
CHAP changes the dispatching priority of the task or any of its subtasks relative to the other
tasks in the address space. It does not change the priority relative to other tasks in the
system. CHAP may also change the limit priority of a subtask. (See the topic “Priorities” in
the OS/390 MVS Programming: Assembler Services Guide.) The algebraic sum of the
priority value and the dispatching priority of the subject task determine the new dispatching
priority.

� If the subject task is the task executing CHAP, its dispatching priority is set equal to the
sum of the priority value and the dispatching priority. This value is not set to less than
zero or greater than the limit priority for the task. Its limit priority is unaffected.

� If the subject task is a subtask of the task executing CHAP, its dispatching priority is set
equal to the sum of the priority value and the dispatching priority. This value is not set
to less than zero or greater than the limit priority of the task executing CHAP. After this
modification, if the subtask's dispatching priority exceeds its limit priority, the limit priority
is made equal to the dispatching priority.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No lock held
Control parameters: Must be in the primary address space

 Programming Requirements
None.

 Restrictions
None.

Input Register Information
Before issuing the CHAP macro, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter or using it as a base
register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged

 Copyright IBM Corp. 1988, 1999 119

 CHAP Macro

14-15 Used as work registers by the system

 Performance Implications
None.

 Syntax
The CHAP macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CHAP.

CHAP

␣

One or more blanks must follow CHAP.

priority value priority value: Symbol, decimal digit, or register (0) or (2) - (12).

 ,‘S’ tcb addr: RX-type address, or register (1) or (2) - (12).
 ,tcb addr Default: ‘S’

 ,RELATED=value value: Any valid macro keyword specification.

 Parameters
The parameters are explained as follows:

priority value
Specifies the signed value to be added to the dispatching priority of the specified task.
If the value is negative and contained in a register, it must be in two's complement form.

,‘S’
,tcb addr

Specifies the address of a fullword on a fullword boundary containing the address of a
task control block (TCB) for a subtask of the active task. If ‘S’ is coded or assumed, the
dispatching priority of the active task is updated.

Note: TCB must reside in 24-bit addressable storage.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the information
specified are at your discretion and may be any valid coding values.

The RELATED parameter is available on macros that provide opposite services (for
example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE) and on
macros that relate to previous occurrences of the same macros (for example, CHAP and
ESTAE).

You may use the RELATED parameter as follows:

CHAPUP CHAP 1,'S',RELATED=(CHAPDOWN,'UP PRIORITY')
 .
 .
 .
CHAPDOWN CHAP -1,'S',RELATED=(CHAPUP 'RESUME INITIAL PRIORITY')

120 OS/390 V2R8.0 MVS Assembler Services Reference

 CHAP Macro

 ABEND Codes
 07F
 12C
 22C

See OS/390 MVS System Codes for an explanation and programmer responses for these
codes.

Return and Reason Codes
None.

 Example 1
Lower the dispatching priority of the subtask TCB by two. The subtask TCB's address is in a
fullword which register 1 addresses. The subtask TCB will be repositioned on the
dispatching queue in accordance with its new dispatching priority.

CHAP -2,(1)

 Example 2
Reposition the TCB of the task issuing CHAP at the bottom of the group of TCBs on the
dispatching queue for the address space, having the same dispatching priority as that task.

CHAP ð

 CHAP — Change Dispatching Priority 121

 CHAP Macro

122 OS/390 V2R8.0 MVS Assembler Services Reference

 CONVCON Macro

CONVCON — Retrieve Console Information

 Description
Application programmers can retrieve information about MCS or extended MCS consoles by
using the CONVCON macro.

You can use CONVCON to:

� Determine the name of a console when you specify the ID
� Determine the ID of a console when you specify the name
� Validate a console name or console ID
� Validate a console area ID
� Check if a console is active.

You must initialize a parameter list as input. See OS/390 MVS Data Areas, Vol 1
(ABEP-DALT) for a map of the CONVCON parameter list, called CONV, which is mapped by
IEZVG200. See OS/390 MVS Programming: Assembler Services Guide to determine which
fields to initialize.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Programming Requirements
Before issuing CONVCON, do the following:

� Include the IEZVG200 mapping macro in your program.

� Obtain storage for the CONVCON parameter list. CONVGLEN in IEZVG200 contains
the length of the parameter list. The parameter list can be in any type of storage.

� Clear the entire parameter list by setting it to zeros. If you reuse it, clear it before each
reuse.

� Initialize fields in the parameter list mapped by macro IEZVG200. Depending on the
task for which you are invoking CONVCON, you need to initialize a combination of
different fields.

You must initialize the following fields no matter what task you perform:

CONVACRO The CONV acronym

CONVVRSN The current version level of the parameter list. The parameter list
contains valid values in CONVRID. Select the most current.

The following describes the remaining parameter list fields. Depending on the task you
choose, these fields are input fields, output fields, or both input and output fields. Use
the information in the OS/390 MVS Programming: Assembler Services Guide to
determine which of these fields are input fields, and which are output fields.

CONVFLGS A 1-byte flag field that indicates whether you are supplying the console
name in CONVFLD (flag CONVPFLD) or the console ID (flag CONVPID)
in CONVID. Set only the first bit on to indicate the console name; set
only the second bit on to indicate the console ID.

 Copyright IBM Corp. 1988, 1999 123

 CONVCON Macro

CONVFLD A 10-byte field containing the console name or console name with the
area ID. The installation defines console names at initialization time in
the CONSOLxx member of SYS1.PARMLIB. You can use the DISPLAY
command to receive a list of defined names. Console area IDs can be
only one character, A through J or Z. If you specify a console with an
area ID, separate the name and area ID by a hyphen, left-justify it, and
pad it to the right with blanks. Examples of valid console names with
area IDs are:

 – DATA-a
 – DATADATA-a

Examples of incorrect names with area IDs and the reasons are:

– DATA-abc - has an area ID with more than one character
– DATA a - has a blank instead of a hyphen between the console

name and the area ID

CONVAREA An input field containing the area ID. Console area IDs can be only one
character, A through J or Z.

CONVRSN A reason code explaining return codes 0, 4, or 8.

CONVNAME An 8-byte field containing the console name received as output when you
specify the console ID as input. The console name can be up to eight
characters. If the name has fewer than eight characters, the name is
left-justified and padded to the right with blanks.

CONVID A 4-byte console ID. If you specified the name of the console in
CONVFLD, on return, CONVID contains the ID of the same console. If
you specify the ID of the console in CONVID, CONVCON will return the
name of the console in CONVNAME. The system assigns console IDs.
Use the DISPLAY command to receive a list of assigned IDs.

If you are using a 1-byte console ID as input (for example, a 1-byte MCS
console ID), put this value in the low-order byte (CONVBID), and leave
the three remaining bytes as zeros.

If the one-byte console ID is a migration ID, the console's 4-byte ID is
returned in CONVID as output.

CONVGFLG Set flag CONVNPAR on in this field only if you want CONVCON to omit
any area ID processing. If you do set the flag on, CONVCON:

– Ignores an area ID in CONVAREA
– Assumes the entire field is a console name, and issues return code

X'08' if you included an area ID.

CONVSYSN If the console name or ID that you specified is active, CONVCON places
the name of the system to which the console is attached in CONVSYSN.
If the console is not active, this field contains blanks.

 Restrictions
There are four reserved console names. Do not use any of the following as console names:

 � INSTREAM
 � HC
 � INTERNAL
 � UNKNOWN

124 OS/390 V2R8.0 MVS Assembler Services Reference

 CONVCON Macro

Input Register Information
Before issuing CONVCON, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter, or using it as a base
register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Used as a work register by the system
1 Address of the CONV parameter list
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The CONVCON macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CONVCON.

CONVCON

␣ One or more blanks must follow CONVCON.

register register: General purpose register (2) - (12).
list name list name: RX-type address.

 Parameters
The parameters are explained as follows:

register
list name

Contains the address (register) or the name (list name) of the CONV parameter list.

 CONVCON — Retrieve Console Information 125

 CONVCON Macro

 ABEND Codes
None.

126 OS/390 V2R8.0 MVS Assembler Services Reference

 CONVCON Macro

Return and Reason Codes
When the CONVCON macro returns control to your program, Register 15 contains one of
the following hexadecimal return codes and the CONV parameter list (CONVRSN field)
contains one of the following hexadecimal reason codes.

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 00 Meaning : The console and the area ID (if specified) are
available.

Action : None.

00 04 Meaning : Environmental error. The console specified is
available, but the area ID specified is currently displaying a
message from some command other than a TRACK
command. If you send the message to this area ID, it will
overlay the message already in that area.

Action : If you do not want to overlay the data currently in the
message area, you can display the message at a different
area ID, or you can specify the in-line message area (Z).

00 08 Meaning : Environmental error. The console specified is
available, but the area ID specified is currently in use by a
TRACK command response. If there are other out-of-line
areas defined, the message will be directed to one of the
other out-of-line areas, possibly overlaying the data in that
area (the system overlays the oldest area). If there are no
other out-of-line areas defined, the message will appear in
this area, overlaying the TRACK command information.
However, the message will be overlaid the next time the
TRACK command output is updated.

Action : You can display messages queued to the area ID on
this console at a different area ID, or you can specify area ID
Z.

00 0C Meaning : Environmental error. The area ID specified is not
currently defined to the console.

Action : Messages queued to the specified area ID will be
displayed in the in-line message area Z.

00 10 Meaning : Program error. The area ID specified does not
comply with area ID syntax requirements.

Action : Correct the area ID specification. The area ID must
be a letter between A-J or Z.

04 00 Meaning : Environmental error. The requested console
information was obtained and the area ID, if specified, was
also defined. However, the console is not currently active.

Action : Messages cannot be sent to this console. You must
direct messages elsewhere.

04 0C Meaning : Environmental error. The requested console
information was obtained. However, messages may not be
sent to this area ID, as it has not been defined to the
console.

Action : If other area IDs exist, you can direct messages
there, or you can direct them to the in-line message area (Z).

04 10 Meaning : Program error. The requested console information
was obtained. However, the specified area ID does not
comply with syntax requirements. The area ID must be in the
range between A-J, or Z.

Action : Correct the error and resubmit the request.

 CONVCON — Retrieve Console Information 127

 CONVCON Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 00 Meaning : Program error. The console name specified is not
valid, for one of the following reasons:

� No console with the specified name exists.

� You specified an area ID with the console name, but you
also set flag CONVNPAR in the CONVGFLG field in the
CONV parameter list.

� You specified a console name with more than 8
characters.

Action : Take one or more of the following actions and then
resubmit the request.

� To determine the valid console names in the system, use
the DISPLAY CONSOLE command.

� Remove the area ID append to the console name, or
reset flag CONVNPAR in the CONV parameter list.

� Correct the syntax of the console name specified.

08 04 Meaning : System error. This reason code is for IBM
diagnostic purposes only.

Action : Record the return and reason code and supply them
to the appropriate IBM support personnel.

08 08 Meaning : Program error. The specified console name
contains incorrect syntax.

Action : Correct the problem and resubmit the request.

08 0C Meaning : Program error. You specified a reserved console
name.

Action : Correct the problem and resubmit the request.

0C — Meaning : Program error. You specified an incorrect console
ID on input.

Action : You must specify either a valid 4-byte console ID or
a valid 1-byte MCS console ID. Correct the problem and
resubmit the request.

10 N/A Meaning : Environmental error. The CONVCON service is
not available.

Action : Resubmit the request at a later time.

14 N/A Meaning : System error. This return code is for IBM
diagnostic purposes only.

Action : Record the return code and supply it to the
appropriate IBM support personnel.

18 N/A Meaning : Program error. CONVCON processing completed
unsuccessfully. You did not specify whether a console name
or a console ID was being supplied as input.

Action : Ensure that exactly one of the console input flags in
field CONVFLGS is set and resubmit the request.

1C N/A Meaning : Program error. CONVCON processing completed
unsuccessfully. You specified both the console name and
console ID values in CONVFLGS.

Action : Ensure that only one of the console input flags in
field CONVFLGS is set and resubmit the request.

20 N/A Meaning : Program error. CONVCON processing completed
unsuccessfully. The CONV acronym was missing in the
CONV parameter list.

Action : Ensure that you are correctly referencing the
parameter list when issuing CONVCON, and that the
parameter list is correct. Resubmit the request.

128 OS/390 V2R8.0 MVS Assembler Services Reference

 CONVCON Macro

 Example
A typical application of CONVCON would be in an MPF command exit. A message exit
could be built to reroute a message to a console in your system or sysplex other than the
one to which it was originally to be queued. If this message required an out-of-line area,
CONVCON could be used to determine the availability of the out-of-line area. The following
example could be a portion of such an exit. The function calls CONVCON to verify the
specified area ID. If it is unavailable, it would, in this case, set the area ID to 'Z', forcing the
message to be inline.

This example assumes:

� That you would have function specified at the labels referenced as locations of branch
instructions (block are also in the example showing where these would be).

� That console ID 1 is currently active.

� That you are not reusing your CONV parameter list. If you were to issue subsequent
CONVCON request in other areas of the code, you would have to clear various fields in
the parameter list.

 CONVCON — Retrieve Console Information 129

 CONVCON Macro

CALLCONV CSECT
ZERO EQU ð NUMERIC ZERO
REG2 EQU 2 REGISTER 2 - WORK
REG4 EQU 4 REGISTER 4 - WORK
REG12 EQU 12 REGISTER 12 - BASE
REG13 EQU 13 REGISTER 13 - SAVEAREA
REG14 EQU 14 REGISTER 14 - WORK
REG15 EQU 15 REGISTER 15 - WORK
\ THIS EXAMPLE CALLS CONVCON TO CONVERT VERIFY THE AVAILABILITY OF
\ OUT-OF-LINE AREA "A"

STM REG14,REG12,12(REG13) SAVE CALLER'S REGISTERS
BALR REG12,ð ESTABLISH BASE REGISTER

 USING \,REG12 MODULE ADDRESSABILITY
LA REG2,CONVGLEN AMOUNT OF STORAGE TO OBTAIN

 STORAGE OBTAIN,LENGTH=(REG2),ADDR=(REG4)
 USING CONV,REG4 ADDRESSABILITY

XC ð(CONVGLEN,REG4),ð(REG4) CLEAR PARAMETER LIST
MVC CONVACRO,ACNMCONV ACRONYM - CONV
MVI CONVVRSN,CONVRID CURRENT VERSION LEVEL
OI CONVFLGS,CONVPID SET CONSOLE ID FLAG
MVC CONVID,MYCON SET 4 BYTE CONSOLE ID

 MVC CONVAREA,AREA SET AREA
 CONVCON (REG4) ISSUE CONVCON

LTR REG15,REG15 CHECK RETURN CODE
 BNZ EXIT ERROR. EXIT.
 CLI CONVRSN,ZERO AREA AVAILABLE?
 BZ CONTINUE YES. CONTINUE
\--\
\ HERE YOU WOULD PROVIDE SUPPORT FOR WHATEVER ACTION YOU \
\ WISH TO TAKE BASED ON AREA ID UNAVAILABILITY. \
\--\
 B EXIT END PROCESSING
CONTINUE EQU \
\--\
\ HERE YOU WOULD PROVIDE YOUR SUPPORT WHEN THE CONSOLE \
\ AND THE SPECIFIED AREA ID WERE AVAILABLE. \
\--\
EXIT EQU \
 STORAGE RELEASE,LENGTH=CONVGLEN,ADDR=(REG4)
 DROP REG4 DROP ADDRESSABILITY
 LM REG14,REG12,12(REG13) RESTORE REGISTERS
 BR REG14 RETURN
ACNMCONV DC C'CONV' ACRONYM FOR CONVCON PARMLIST
AREA DC C'A' OUT-OF-LINE AREA "A"
MYCON DC F'1' SPECIFIC CONSOLE ID
 IEZVG2ðð CONVCON PARMLIST
 END

130 OS/390 V2R8.0 MVS Assembler Services Reference

 CONVTOD Macro

CONVTOD — Convert to Time-of-Day Clock Format

 Description
The CONVTOD macro accepts a time and date value in several different formats and

| converts it to time-of-day (TOD) clock format. The clock format can be either the basic
| time-of-day (TOD) or the extended time-of-day (ETOD).

| � TOD — Unsigned 64-bit binary number
| � ETOD — Unsigned 128-bit binary number

| See OS/390 MVS Programming: Assembler Services Guide and ESA/390 Principles of
| Operation for information comparing the formats of the TOD and ETOD.

The input time and date formats are compatible with those returned by the STCKCONV and
TIME macros.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state, and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in the primary address space or be in an address/data

space that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL)

 Programming Requirements
If the program is in AR mode, issue the SYSSTATE ASCENV=AR macro before CONVTOD.
SYSSTATE ASCENV=AR tells the system to generate code appropriate for AR mode.

 Restrictions
None.

Input Register Information
Before issuing the CONVTOD macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged

 Copyright IBM Corp. 1988, 1999 131

 CONVTOD Macro

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The standard form of the CONVTOD macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CONVTOD.

CONVTOD

␣ One or more blanks must follow CONVTOD.

CONVVAL=convval convval: RX-type address or register (2) - (12).

,TODVAL=todval todval: RX-type address or register (2) - (12).

| ,ETODVAL=etodval| etodval: RX-type address or register (2) - (12).

 ,TIMETYPE=DEC Default: TIMETYPE=DEC.
 ,TIMETYPE=BIN
 ,TIMETYPE=MIC

 ,DATETYPE=YYDDD
 ,DATETYPE=YYYYDDD Default: DATETYPE=YYYYDDD.
 ,DATETYPE=DDMMYYYY
 ,DATETYPE=MMDDYYYY
 ,DATETYPE=YYYYMMDD

 ,OFFSET=offset value offset value: RX-type address or register (2) - (12).
 Default: OFFSET=X'0000000F'.

 Parameters
The parameters are explained as follows:

CONVVAL=convval
Specifies a 16-byte storage area in which you will enter the time and date values to be
converted. The storage area must begin on a word boundary. The first two words
contain the time of day and the third word contains the date in the formats specified by
the TIMETYPE and DATETYPE parameters. Set the fourth word to 0 before issuing
CONVTOD.

The earliest valid date is January 1, 1900 and the latest valid date is September 17,
2042.

,TODVAL= todval
Specifies an 8-byte storage area where the TOD-clock-formatted value is to be returned.
The storage area must begin on a word boundary.

132 OS/390 V2R8.0 MVS Assembler Services Reference

 CONVTOD Macro

| ,ETODVAL=etodval
| Specifies a 16-byte storage area where the ETOD-clock-formatted value is to be
| returned. The storage area must begin on a word boundary.

| Only one of either TODVAL or ETODVAL can be specified.

,TIMETYPE=DEC
,TIMETYPE=BIN
,TIMETYPE=MIC

Specifies the format of the input time value:

DEC Unsigned packed decimal digits representing a time value in the form
HHMMSSthmiju0000, where

HH is hours, based on a 24-hour clock
MM is minutes
SS is seconds
t is tenths of a second
h is hundredths of a second
m is milliseconds
i is ten-thousandths of a second
j is hundred-thousandths of a second
u is microseconds.

Note: HHMMSSth must be in the first word with the remainder
left-justified in the second word. Set the unused part of the
second word to zeros.

BIN Unsigned 32-bit binary number representing a time value as an unsigned
binary number in which the low-order bit represents 0.01 of a second.
Obtain but do not use the second word.

MIC Unsigned 64-bit binary number representing a time value in microseconds.
Bit 51 represents 1 microsecond.

,DATETYPE=YYDDD
,DATETYPE=YYYYDDD
,DATETYPE=DDMMYYYY
,DATETYPE=MMDDYYYY
,DATETYPE=YYYYMMDD

Specifies the format of the input date value:

Parameter Format of input date
YYDDD 0CYYDDDF
YYYYDDD 0YYYYDDD
DDMMYYYY DDMMYYYY
MMDDYYYY MMDDYYYY
YYYYMMDD YYYYMMDD

Where:

0C is the century - 00 represents 19YY, 01 represents 20YY
F is a sign to enable the date to be unpacked
YY is the last two digits of the year
YYYY is the year
DDD is the day of the year (Julian date)
DD is the day of the month
MM is the month of the year

,OFFSET=offset value
Specifies a 4-byte storage area containing a packed decimal number of the form
000HHMMX, where X is the sign (D for a negative number, F for a positive number).
The offset value is added to the input time. The offset value is generally the difference
between Greenwich Mean Time and local time but it can be any desired value. The
default value is X'0000000F'.

 CONVTOD — Convert to Time-of-Day Clock Format 133

 CONVTOD Macro

 ABEND Codes
None.

134 OS/390 V2R8.0 MVS Assembler Services Reference

 CONVTOD Macro

Return and Reason Codes
The following table describes CONVTOD's return codes, their meanings, and any
recommended actions you should take. Return codes are listed in hexadecimal with their
decimal value shown in parentheses.

Figure 8. Return Codes for the CONVTOD Macro

Return Code Meaning and Action

00 (00) Meaning : Successful completion.
Action : None.

0C (12) Meaning : Unsuccessful completion. CONVTOD encountered an unexpected error.
Action : Record the return code and supply it to the appropriate IBM support personnel.

10 (16) Meaning : Unsuccessful completion. The caller's parameter list was not addressable.
Action : Verify that the pointer to the parameter list contains a valid address and that
CONVTOD is being invoked in a valid addressing mode.

14 (20) Meaning : Unsuccessful completion. The time, date, or offset parameter value was not valid.
Action : Verify that the input parameters have been initialized correctly.

 Example 1
Convert a time expressed as microseconds and a date expressed as month-day-year to
TOD clock format using the specified offset value:

 CONVTOD CONVVAL=INAREA,TODVAL=OUTAREA,TIMETYPE=MIC, \
 DATETYPE=MMDDYYYY,OFFSET=PLUS1
INAREA DS ðF

DC X'ðððð9ð47F3ð7ðððð' INPUT TIME IN MIC FORMAT
DC X'ð517199ð' INPUT DATE IN MMDDYYYY FORMAT
DS F'ð' UNUSED FOURTH WORD

PLUS1 DC X'ðððð1ððF' +1 HOUR OFFSET VALUE
OUTAREA DS 2F AREA FOR OUTPUT TOD CLOCK VALUE

 Example 2
Convert a time expressed as a decimal value and a date expressed as the Julian date to
TOD clock format using the specified offset value:

 CONVTOD CONVVAL=INAREA,TODVAL=OUTAREA,TIMETYPE=DEC, \
 DATETYPE=YYDDD,OFFSET=MINUSFIV
INAREA DS ðF

DC X'1ð453ð153512ðððð' INPUT TIME IN DEC FORMAT
DC X'ðð9ð137F' INPUT DATE IN YYDDD FORMAT
DS F'ð' UNUSED FOURTH WORD

MINUSFIV DC X'ðððð5ððD' -5 HOUR OFFSET VALUE
OUTAREA DS 2F AREA FOR OUTPUT TOD CLOCK VALUE

 CONVTOD — Convert to Time-of-Day Clock Format 135

 CONVTOD Macro

 Example 3
Convert a time expressed as a binary value and a date expressed as year-month-day to
TOD clock format using the default offset value:

LA 3,INAREA STORE INPUT AREA ADDRESS
LA 11,OUTAREA STORE OUTPUT AREA ADDRESS
LA 6,PLIST STORE PARAMETER LIST ADDRESS

 CONVTOD CONVVAL=(3),TODVAL=(11),TIMETYPE=BIN,DATETYPE=YYYYMMDD\
 ,MF=(E,(6))

PLIST CONVTOD MF=L GENERATE PARAMETER LIST STORAGE
INAREA DS ðF

DC X'ðð3B18F7ðððððððð' INPUT TIME IN BIN FORMAT
DC X'199ðð517' INPUT DATE IN YYYYMMDD FORMAT
DS F'ð' UNUSED FOURTH WORD

OUTAREA DS 2F AREA FOR OUTPUT TOD CLOCK VALUE

 CONVTOD—List Form
Use the list form of the CONVTOD macro together with the execute form of the macro for
programs that require reentrant code. The list form of the macro defines an area of storage,
which the execute form of the macro uses to store the parameters.

 Syntax
The list form of the CONVTOD macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CONVTOD.

CONVTOD

␣ One or more blanks must follow CONVTOD.

MF=L

 Parameters
The parameters are explained under the standard form of the CONVTOD macro with the
following exception:

MF=L
Specifies the list form of the CONVTOD macro. Do not specify any other keywords with
MF=L. Precede the macro invocation with a name in column 1 to label the generated
parameter list so you can refer to it.

136 OS/390 V2R8.0 MVS Assembler Services Reference

 CONVTOD Macro

 CONVTOD—Execute Form
Use the execute form of the CONVTOD macro together with the list form of the macro for
programs that require reentrant code. The execute form of the macro stores the parameters
into the storage area defined by the list form.

 Syntax
The execute form of the CONVTOD macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CONVTOD.

CONVTOD

␣ One or more blanks must follow CONVTOD.

CONVVAL=convval convval: RX-type address or register (2) - (12).

,TODVAL=todval todval: RX-type address or register (2) - (12).

| ,ETODVAL=etodval| etodval: RX-type address or register (2) - (12).

 ,TIMETYPE=DEC Default: TIMETYPE=DEC.
 ,TIMETYPE=BIN
 ,TIMETYPE=MIC

 ,DATETYPE=YYDDD
 ,DATETYPE=YYYYDDD Default: DATETYPE=YYYYDDD.
 ,DATETYPE=DDMMYYYY
 ,DATETYPE=MMDDYYYY
 ,DATETYPE=YYYYMMDD

 ,OFFSET=offset value offset value: RX-type address or register (2) - (12).
 Default: OFFSET=X'0000000F'.

,MF=(E,list addr) list addr: RX-type address or register (1) - (12).

 Parameters
The parameters are explained under the standard form of the CONVTOD macro with the
following exception:

,MF=(E,list addr)
Specifies the execute form of the CONVTOD macro. list addr specifies the area that the
system uses to store the parameters.

 CONVTOD — Convert to Time-of-Day Clock Format 137

 CONVTOD Macro

138 OS/390 V2R8.0 MVS Assembler Services Reference

 CPOOL Macro

CPOOL — Perform Cell Pool Services

 Description
The CPOOL macro performs the following functions:

� Creates a cell pool, where each cell is of the size you specify
� Obtains or returns a cell to the cell pool
� Deletes the previously built cell pool
� Places the starting and ending addresses of the cell pool extents in a buffer.

Problem-state programs running under PSW key 8-15 can obtain cell pools from subpools
0-127, 131, and 132. Before obtaining storage, be sure to read the information on subpools
in “Virtual Storage Management” in OS/390 MVS Programming: Assembler Services Guide.

 Environment
The requirements for the caller are:

Minimum authorization: � For subpools 0-127: problem state and PSW key 8-15
� For subpools 131 and 132: APF authorization or a PSW key

mask (PKM) that allows the caller to switch into the storage
key of the storage to be obtained.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN.

AMODE: 24- or 31-bit

ASC mode: For LIST requests, primary or secondary. For all other requests,
primary.

Interrupt status: Enabled or disabled for I/O and external interrupts.

Locks: The following locks must be held or must be obtainable by CPOOL:

� If the caller is not running in cross-memory mode, the LOCAL
lock of the currently addressable address space.

� If the caller is running in cross-memory mode, the CML lock of
the currently addressable address space.

Control parameters: Must reside in the primary address space and may reside in
storage above 16 megabytes if the caller is in 31-bit addressing
mode

 Programming Requirements
None.

 Restrictions
None.

Input Register Information
Before issuing the CPOOL macro with the BUILD, DELETE, LIST, or REGS=SAVE
parameters, the caller must ensure that the following general purpose registers (GPRs)
contain the specified information:

Register Contents
13 Contains the address of a standard 72-byte save area.

 Copyright IBM Corp. 1988, 1999 139

 CPOOL Macro

Output Register Information
When control returns to the caller from CPOOL BUILD, the GPRs contain:

Register Contents
0 Contains the cell pool id.
1 Used as a work register by the system.
2-13 Unchanged
14-15 Used as work registers by the system.

When control returns to the caller from CPOOL GET, the GPRs contain:

Register Contents
0 Used as work registers for the system.
1 For an UNCOND request or a successful COND request, contains the address

of the obtained cell. For an unsuccessful COND request, contains a zero.
2-4 If REGS=SAVE is specified, unchanged. Otherwise, used as work registers by

the system.
5-13 If LINKAGE=SYSTEM, REGS=SAVE, or COND REGS=USE is specified,

unchanged. Otherwise, used as work registers by the system.
14-15 Used as work registers by the system.

When control returns to the caller from CPOOL FREE, the GPRs contain:

Register Contents
0-1 Used as work registers by the system.
2-3 If REGS=SAVE is specified, unchanged. Otherwise, used as work registers by

the system.
4-13 Unchanged.
14-15 Used as work registers by the system.

When control returns to the caller from CPOOL DELETE, the GPRs contain:

Register Contents
0-1 Used as a work registers by the system
2-13 Unchanged.
14-15 Used as work registers by the system.

When control returns to the caller from CPOOL LIST, the GPRs contain:

Register Contents
0-1 Used as work registers by the system.
2-13 Unchanged.
14-15 Used as work registers by the system.

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system.
2-13 Unchanged.
14-15 Used as work registers by the system.

 Performance Implications
The CPOOL macro offers better performance than GETMAIN-FREEMAIN and STORAGE for
obtaining and releasing many identically sized storage areas.

140 OS/390 V2R8.0 MVS Assembler Services Reference

 CPOOL Macro

 Syntax
The standard form of the CPOOL macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CPOOL.

CPOOL

␣ One or more blanks must follow CPOOL.

Valid parameters (Required parameters are underlined)

BUILD PCELLCT,SCELLCT,CSIZE,SP,LOC,CPID,HDR
GET UNCOND,COND,CPID,CELL,REGS
FREE CPID,CELL,REGS
DELETE CPID
LIST CPID,WORKAREA

 ,UNCOND Default: UNCOND
 ,U
 ,COND
 ,C

,PCELLCT=primary cell count cell count: Symbol, decimal number, or register (0), (2) - (12).

 ,SCELLCT=secondary cell Default: PCELLCT
 count

,CSIZE=cell size cell size: Symbol, decimal number, or register (0), (2) - (12).

 ,SP=subpool number subpool number: Symbol, decimal number, or register (0), (2) -

(12).
Default: SP=0

 ,LOC=BELOW Default: LOC=RES
 ,LOC=ANY
 ,LOC=(ANY,ANY)
 ,LOC=RES
 ,LOC=(RES,ANY)

,CPID=pool id pool id: RX-type address or register (0), (2) - (12).

,CELL=cell addr cell addr: RX-type address or register (2) - (12).

 ,KEY=key number key number: Decimal numbers 0-15 or register (0), (2) - (12).

Default: The default depends on which subpool you specify. See
the discussion of subpool handling in OS/390 MVS Programming:
Assembler Services Guide for information on storage keys for
specific subpools.

 ,HDR=hdr hdr: Character string enclosed in single quotes, RX-type address,

or register (0), (2) - (12).
Default: ‘CPOOL CELL POOL’

 ,REGS=SAVE
 ,REGS=USE

Default: REGS=SAVE

,WORKAREA=(workarea,length) workarea: Symbol, RX-type address, or register (0), (2) - (12).

length: Symbol or decimal number.

 CPOOL — Perform Cell Pool Services 141

 CPOOL Macro

 Parameters
The parameters are explained as follows:

BUILD
GET
FREE
DELETE
LIST

Specifies the cell pool service to be performed.

BUILD creates a cell pool in a specified subpool by allocating storage and chaining the
cells together. It returns an identifier (CPID) to be used with GET, FREE, and DELETE
requests. Therefore, specify BUILD before you specify GET, FREE, or DELETE.

GET attempts to obtain a cell from the previously built cell pool. This request can be
conditional or unconditional as described under the UNCOND/COND keyword.

FREE returns a cell to the cell pool. Do not try to free a cell that has not been obtained
(through the GET service) or free a cell for a second time.

DELETE deletes a previously built cell pool and frees storage for the initial extent, all
secondary extents, and all pool control blocks.

LIST places the beginning and ending addresses of the extents of a cell pool in a work
area provided by the caller.

,UNCOND
,U
,COND
,C

When used with GET specifies whether the request for a cell is conditional or
unconditional.

If you specify COND or C and no more free cells are available in the cell pool, the
system returns to the caller without a cell. The system places a zero in the field
specified by the CELL parameter.

If you specify UNCOND or U and no more free cells are available in the cell pool, the
system obtains more storage for the cell pool. CPOOL then obtains a new cell for the
caller. An unconditional CPOOL GET request fails only if enough storage is not
available to extend the cell pool.

,PCELLCT=primary cell count
Specifies the number of cells expected to be needed in the initial extent of the cell pool.

,SCELLCT=secondary cell count
Specifies the number of cells expected to be in each secondary or noninitial extent of
the cell pool.

,CSIZE=cell size
Specifies the number of bytes in each cell of the cell pool. If CSIZE is a multiple of 8,
the cell resides on doubleword boundaries. If CSIZE is a multiple of 4, the cell resides
on word boundaries. The minimum value of CSIZE is 4 bytes.

,SP=subpool number
Specifies the subpool from which the cell pool is to be obtained. If a register or variable
is specified, the subpool number is taken from bits 24-31. The valid subpool numbers
are 0-127, 131, and 132.

142 OS/390 V2R8.0 MVS Assembler Services Reference

 CPOOL Macro

,LOC=BELOW
,LOC=(BELOW,ANY)
,LOC=ANY
,LOC=(ANY,ANY)
,LOC=RES
,LOC=(RES,ANY)

Specifies the location of virtual storage and central storage for the cell pool. The
location of central storage using this parameter is guaranteed only after the storage is
fixed.

LOC=BELOW indicates that virtual and central storage are to be allocated below 16
megabytes.

LOC=(BELOW,ANY) indicates that virtual storage is to be allocated below 16
megabytes, and central storage can be anywhere.

LOC=ANY and LOC=(ANY,ANY) indicate that both virtual and central storage can be
located anywhere.

LOC=RES indicates that the location of virtual and central storage depends on the
location of the caller. If the caller resides below 16 megabytes, virtual and central
storage are to be allocated below 16 megabytes; if the issuer resides above 16
megabytes, virtual and central storage can be located anywhere.

LOC=(RES,ANY) indicates that the location of virtual storage depends on the location of
the caller. If the caller resides below 16 megabytes, virtual storage is to be allocated
below 16 megabytes; if the issuer resides above 16 megabytes, virtual storage can be
allocated anywhere. Central storage can be located anywhere.

Note: Callers executing in 24-bit addressing mode could perform BUILD request
services for cell pools located in storage above 16 megabytes by specifying LOC=ANY
or LOC=(ANY,ANY).

,CPID=pool id
Specifies the address or register containing the cell pool identifier that is returned to the
caller after the pool is created using CPOOL BUILD. The issuer must specify CPID on
all subsequent GET, FREE, DELETE, or LIST requests.

,CELL=cell addr
Specifies the address or register where the cell address is returned to the caller on a
GET or FREE request.

,KEY=key number
Specifies the storage key in which storage is to be obtained. The valid storage keys are
0-15. If a register is specified, the storage key is taken from bits 28-31. This parameter
is valid only for subpools 131 and 132.

,HDR=hdr
Specifies a 24-byte header, which is placed in the header of each initial and secondary
extent. The header can contain user-supplied information that would be useful in a
dump.

,REGS=SAVE
,REGS=USE

Indicates whether or not registers 2-12 are to be saved for a GET or FREE request. If
REGS=SAVE is specified, the registers are saved in a 72-byte user-supplied save area
pointed to by register 13. If REGS=USE is specified, the registers are not saved.

,WORKAREA= (workarea,length)
Specifies the address of a pointer to the work area (not the address of the work area)
and also specifies the length of that area. The length must be at least 1024 bytes. The
system places the beginning and ending addresses of the extents of a cell pool in this
work area. WORKAREA applies only to the LIST request and is required.

 CPOOL — Perform Cell Pool Services 143

 CPOOL Macro

CPOOL LIST might not be able to return all of the beginning address/ending address
pairs at once, depending on how many address pairs there are and how large the work
area is. Thus, in order to complete a CPOOL LIST request, your program may have to
issue CPOOL LIST more than once. If CPOOL LIST uses up all the space in the work
area, but still has more information to return, it indicates (with a return code) that there
are more address pairs. Your program can then reissue CPOOL LIST to get more
information, and keep reissuing CPOOL LIST until all of the information is returned.

CPOOL LIST must be able to tell the difference between the beginning of a request
(that is, the first time your program issues CPOOL LIST to get some information about a
cell pool) and the continuation of a request (that is, when your program issues CPOOL
LIST to get more information). Your program tells CPOOL LIST that it is beginning a
new request by setting the first bit of word 0 in the work area to 1.

Until your program has obtained all the information about a cell pool that it needs from
CPOOL LIST, it should not change the setting of that bit, nor should it issue a GET,
FREE, or DELETE request for that cell pool. (If your program does issue a GET or
FREE request before it has obtained all of the information it needs from CPOOL LIST, it
must begin a new CPOOL LIST request; that is, set the first bit of word 0 to 1 and start
all over again. If your program deletes the cell pool, it can no longer issue the CPOOL
LIST for that cell pool.)

CPOOL LIST uses the second through fourth words, i.e., words 1--3, in the work area to
return information to your program:

� Word 1 contains the return code. See “Return and Reason Codes” for more
information.

� Word 2 contains a pointer to the first starting address/ending address pair in the list
of address pairs.

� Word 3 contains the number of address pairs in the list.

 ABEND Codes
The CPOOL macro issues abend code X'C78'. For detailed abend code information, see
OS/390 MVS System Codes.

Return and Reason Codes
CPOOL BUILD, DELETE, FREE, and GET,UNCOND have no return codes. If any of these
requests fail, CPOOL issues an abend.

For CPOOL GET,COND, the cell address is returned as zero when there are no more cells
in the pool.

CPOOL LIST returns a return code in word 1 (bytes 4 through 7) of the work area used to
return information to the calling program.

Figure 9 (Page 1 of 2). Hexadecimal Return Codes for CPOOL LIST

Return Code Meaning and Action

0 Meaning : Successful completion.

Action : None.

1 Meaning : The work area holds all the information that fit but more information remains to be
returned.

Action : Reissue the CPOOL LIST request to receive more information. Do not set the first
bit of word 0 in the work area to 1 before reissuing the CPOOL LIST request.

2 Meaning : Program error. At least one parameter passed in the CPOOL LIST request was
not valid.

Action : Verify that you have coded the CPOOL LIST parameters correctly. Ensure that the
work area is at least 1024 bytes.

144 OS/390 V2R8.0 MVS Assembler Services Reference

 CPOOL Macro

Figure 9 (Page 2 of 2). Hexadecimal Return Codes for CPOOL LIST

Return Code Meaning and Action

3 Meaning : Program or system error. The system found a cell pool control block that was
either inaccessible or not valid. The work area contains the information CPOOL LIST
gathered before encountering the problem.

Action : Verify that the affected cell pool has not been deleted. If the cell pool still exists,
inform the system programmer so that a dump can be taken to get more information to
supply to IBM support personnel.

 Example 1
Create a cell pool containing 40-byte cells from subpool 2. Allow for 10 cells in the initial
extent and 20 cells in all subsequent extents of the cell pool.

CPOOL BUILD,PCELLCT=1ð,SCELLCT=2ð,CSIZE=4ð,SP=2

 Example 2
Unconditionally obtain a cell pool, specifying the pool ID in register 2. Do not save the
registers.

CPOOL GET,U,CPID=(2),REGS=USE

 Example 3
Free a cell specifying the pool ID in register 2 and the cell address in register 3.

CPOOL FREE,CPID=(2),CELL=(3)

 Example 4
Delete a cell pool, specifying the pool ID in register 2.

CPOOL DELETE,CPID=(2)

 CPOOL — Perform Cell Pool Services 145

 CPOOL Macro

 Example 5
Request that the system place the starting and ending addresses of a cell pool in a buffer.
Assume that the cell pool ID has been saved in POOLID.

LA 1,WKAREA Get the address of the work area
ST 1,WKPTR And save it (to pass to CPOOL LIST)

 \
 \ (Note that the first parameter passed with WORKAREA
 \ is a pointer to the work area, not the work area itself.)
 \

OI FLAGBYTE,X'8ð' Turn on the "first call" flag
 LOOP LA 13,SAVEAREA Get address of save area in reg 13
 CPOOL LIST,WORKAREA=(WKPTR,1ð5ð),CPID=POOLID

LA 15,2 Get a return code value
C 15,RCODE Check the return code
BE USRERROR Branch if there was a user error

 \
 \ If the return code does not indicate a user error,
 \ some information was returned in the work area. Note
 \ that if CPOOL LIST found that the first extent it looked
 \ at was invalid, the buffer may not actually contain any
 \ address pairs (i.e. ENTRIES may contain ð).
 \

BAL 14,PROCESS Process the information returned
 \ by CPOOL LIST

LA 15,1 Get a return code value
C 15,RCODE If CPOOL LIST could not return all

 \ the information at once,
BE LOOP Call it again to get more information

 \ Data declarations
 \
 WKAREA DS ðCL1ð5ð Work area/buffer for CPOOL LIST
FLAGBYTE DS CL1 Byte containing first call flag
 DS CL3
 RCODE DS F CPOOL LIST return code
 BUFPTR DS F Pointer to output buffer
 ENTRIES DS F Number of address pairs in buffer

DS CL1ð34 Control information and address pairs
 WKPTR DS F Pointer to the work area
 POOLID DS F Cell pool ID
SAVEAREA DS CL72 Register save area for CPOOL LIST

146 OS/390 V2R8.0 MVS Assembler Services Reference

 CPOOL Macro

 CPOOL—List Form
The list form of the CPOOL macro builds a nonexecutable parameter list that can be referred
to by the execute form of the CPOOL macro.

 Syntax
The list form of the CPOOL macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CPOOL.

CPOOL

␣ One or more blanks must follow CPOOL.

BUILD

,PCELLCT=primary cell count cell count: Symbol or decimal number.

Note: PCELLCT must be specified on either the list or the execute
form of the macro.

 ,SCELLCT=secondary cell Default: PCELLCT
 count

,CSIZE=cell size cell size: Symbol or decimal number.

Note: CSIZE must be specified on either the list or the execute
form of the macro.

 ,SP=subpool number subpool number: Symbol, decimal number, or register (0), (2) -

(12).
Default: SP=0

 ,LOC=BELOW Default: LOC=RES
 ,LOC=(BELOW,ANY)
 ,LOC=ANY
 ,LOC=(ANY,ANY)
 ,LOC=RES
 ,LOC=(RES,ANY)

 ,KEY=key number key number: Decimal numbers 0-15.

Default: The default depends on which subpool you specify. See
the discussion of subpool handling in OS/390 MVS Programming:
Assembler Services Guide for information on storage keys for
specific subpools.

 ,HDR=hdr hdr: Character string enclosed in single quotes or A-type address.

,MF=L

 Parameters
The parameters are explained under the standard form of the CPOOL macro with the
following exception:

,MF=L
Specifies the list form of the CPOOL macro.

 CPOOL — Perform Cell Pool Services 147

 CPOOL Macro

 CPOOL—Execute Form

 Syntax
The execute form of the CPOOL macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CPOOL.

CPOOL

␣ One or more blanks must follow CPOOL.

BUILD

,PCELLCT=primary cell count cell count: Symbol, decimal number, or register (0), (2) - (12).

Note: PCELLCT must be specified on either the list or the execute
form of the macro.

 ,SCELLCT=secondary cell Default: PCELLCT
 count

,CSIZE=cell size cell size: Symbol, decimal number, or register (0), (2) - (12).

Note: CSIZE must be specified on either the list or the execute
form of the macro.

 ,SP=subpool number subpool number: Symbol, decimal number, or register (0), (2) -

(12).
Default: SP=0

 ,LOC=BELOW Default: LOC=RES
 ,LOC=(BELOW,ANY)
 ,LOC=ANY
 ,LOC=(ANY,ANY)
 ,LOC=RES
 ,LOC=(RES,ANY)

 ,CPID=pool id pool id: RX-type address or register (0), (2) - (12).

 ,KEY=key number key number: Decimal numbers 0-15 or register (0), (2) - (12).

Default: The default depends on which subpool you specify. See
the discussion of subpool handling in OS/390 MVS Programming:
Assembler Services Guide for information on storage keys for
specific subpools.

 ,HDR=hdr hdr: Character string enclosed in single quotes, RX-type address,

or register (0), (2) - (12).

,MF=(E,ctrl prog) ctrl prog: RX-type address or register (0) - (12).

148 OS/390 V2R8.0 MVS Assembler Services Reference

 CPOOL Macro

 Parameters
The parameters are explained under the standard form of the CPOOL macro with the
following exception:

,MF=(E,ctrl prog)
Specifies the execute form of the CPOOL macro.

 CPOOL — Perform Cell Pool Services 149

 CPOOL Macro

150 OS/390 V2R8.0 MVS Assembler Services Reference

 CPUTIMER Macro

CPUTIMER — Provide Current CPU Timer Value

 Description
The CPUTIMER macro provides the current CPU timer value for this processor. This value
consists of the time remaining in a time interval established by the STIMER macro. If there
is no outstanding time interval, the value returned by the macro is meaningless.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Programming Requirements
None.

 Restrictions
None.

Input Register Information
Register 13 must contain the address of an 18-word save area, which can be provided
through the use of standard linkage conventions.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Copyright IBM Corp. 1988, 1999 151

 CPUTIMER Macro

 Syntax
The CPUTIMER macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CPUTIMER.

CPUTIMER

␣ One or more blanks must follow CPUTIMER.

TU,stor addr Default: TU
MIC,stor addr stor addr: RX-type address, or register (1), (2) - (12).

,ERRET=err rtn addr err rtn addr: RX-type address, or register (2) - (12).

 Parameters
The parameters are explained as follows:

TU,stor addr
MIC,stor addr

Specifies the form in which the remaining time interval is to be returned to the caller.
This value is returned as an unsigned 64-bit binary number at the address specified by
stor addr. stor addr must be the start of a doubleword area on a doubleword boundary
and it must be a 31-bit address.

If you specify TU, the timer value is returned to the caller in timer units. The low-order
bit of the timer value is approximately equal to 26.04166 microseconds (one timer unit).

If you specify MIC, the timer value is returned to the caller in microseconds. Bit 51 of
the timer value is equivalent to 1 microsecond.

The resolution of CPU timer is model dependent. See Principles of Operation for a
description of the CPU timer.

,ERRET=err rtn addr
Specifies the 31-bit address of the routine to be given control when the CPUTIMER
function cannot be performed. If you omit this parameter, the CPUTIMER function
returns a code in general register 15 indicating why the function could not be performed.
The error routine executes in the addressing mode of the issuer of the CPUTIMER
macro and returns control to the caller's address space it saves in register 14.

 ABEND Codes
None.

152 OS/390 V2R8.0 MVS Assembler Services Reference

 CPUTIMER Macro

 Return Codes
When the system returns control to your program, GPR 15 contains a return code.

These return codes are passed to the error routine if it receives control.

Figure 10. Return and Reason Codes for the CPUTIMER Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning : The function was performed.

Action : None.

04 Meaning : Program error. The function was not performed because the user-specified area
was not on a doubleword boundary.

Action : Ensure that the address of the area for the return of the CPU time is on a
doubleword boundary.

08 Meaning : Program error. The function was not performed because the user supplied an
invalid address.

Action : Verify that the supplied return area address is valid.

10 Meaning : System error. The function was not performed because a machine check
occurred.

Action : Retry the request.

14 Meaning : System error. The function was not performed because a program check
occurred.

Action : Retry the request.

 Example 1
Place the value of the CPU timer in microseconds in location TIMELEFT.

CPUTIMER MIC,TIMELEFT

 Example 2
Store the value of the CPU timer in time units in the location addressed by register 1.

CPUTIMER TU,(1)

 Example 3
Store the value of the CPU timer in timer units in location TIMELEFT. If an error occurs,
transfer control to the error routine labeled ERREXIT.

CPUTIMER ,TIMELEFT,ERRET=ERREXIT

 Example 4
Place the value of the CPU timer in microseconds in the location addressed by register 1. If
an error occurs, transfer control to the address in register 2.

CPUTIMER MIC,(1),ERRET=(2)

 CPUTIMER — Provide Current CPU Timer Value 153

 CPUTIMER Macro

154 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRCESRV Macro

CSRCESRV — Compress and Expand Data

 Description
Use the CSRCESRV macro to compress data and restore the data to its original state when
you need it. The CSRCESRV macro has three different services:

� Query (SERVICE=QUERY), to obtain the information your program needs to invoke data
compression or data expansion

� Data compression (SERVICE=COMPRESS), to achieve reduced data volume

� Data expansion (SERVICE=EXPAND), to expand data previously compressed by the
data compression service.

You can use the CSRCESRV macro in either of the following situations:

� Your program is running under MVS/ESA and invoking the MVS/ESA or MVS/XA
version of the services.

� Your program is running under MVS/XA and invoking the MVS/XA version of the
services.

Before attempting to use the CSRCESRV macro, see “Using Data Compression and
Expansion Services” in OS/390 MVS Programming: Assembler Services Guide for a
description of the data compression, expansion, and query services, and the conditions
under which programs can exploit these services.

To invoke the CSRCESRV macro for either data compression or data expansion, first invoke
CSRCESRV with SERVICE=QUERY. Follow these steps:

1. Load the general purpose registers (GPRs) with information required by
SERVICE=QUERY.

2. Invoke the CSRCESRV macro with SERVICE=QUERY.

3. Load the GPRs with information required by SERVICE=COMPRESS (or
SERVICE=EXPAND).

4. Invoke the CSRCESRV macro with SERVICE=COMPRESS (or SERVICE=EXPAND).

5. If all the input data has not been processed, continue to re-invoke the service until
processing is complete.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB mode. (For the MVS/XA version of the services, your

program must be in task mode when it loads the CSRCEXA load
module from SYS1.MIGLIB.)

Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None.

 Copyright IBM Corp. 1988, 1999 155

 CSRCESRV Macro

 Programming Requirements
None.

 Restrictions
None.

Input Register Information for SERVICE =QUERY
Before issuing the CSRCESRV macro with the SERVICE=QUERY parameter, the caller
must ensure that the following GPRs contain the specified information:

Register Contents
0 The run length encoding algorithm. Specify either 0 or 1.
13 The 31-bit address of a standard 18-word save area. If your program is running

in AR ASC mode, set AR 13 to specify the ALET to be used to qualify GPR 13.

Output Register Information for SERVICE =QUERY
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 A value of 1 to indicate that the run length encoding algorithm will be used.
1 The length of the work area required by the algorithm. This value might be zero

if the service does not require a work area.
2-13 Unchanged.
14 Used as a work register by the system.
15 Return code.

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Input Register Information for SERVICE =COMPRESS
Before issuing the CSRCESRV macro with the SERVICE=COMPRESS parameter, the caller
must ensure that the following GPRs contain the specified information:

Register Contents
1 The 31-bit address of a work area, if one is needed. The value returned in

GPR 1, when you issue CSRCESRV with SERVICE=QUERY, indicates the size
of the required work area. If your program is running in AR ASC mode, set AR
1 to specify the ALET to be used to qualify the GPR.

2 The 31-bit address of the uncompressed input data block. If your program is
running in AR ASC mode, set AR 2 to specify the ALET to be used to qualify
the GPR.

3 The length of the uncompressed input data block.
4 The 31-bit address of the output data block to hold the compressed data. If

your program is running in AR ASC mode, set AR 4 to specify the ALET to be
used to qualify the GPR.

5 The length of the output data block.
13 The 31-bit address of a standard 18-word save area. If your program is running

in AR ASC mode, set AR 13 to specify the ALET to be used to qualify the GPR.

156 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRCESRV Macro

Output Register Information for SERVICE =COMPRESS
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Unchanged
2 The 31-bit address of the byte following the last input byte processed
3 The number of bytes of uncompressed data not processed
4 The 31-bit address of the byte following the last output byte
5 The number of bytes in the output data block into which output was not stored
6-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Input Register Information for SERVICE =EXPAND
Before issuing the CSRCESRV macro with the SERVICE=EXPAND parameter, the caller
must ensure that the following GPRs contain the specified information:

Register Contents
1 The 31-bit address of a work area, if one is needed. The value returned in

GPR 1, when you issue CSRCESRV with SERVICE=QUERY, indicates the size
of the required work area. If your program is running in AR ASC mode, set AR
1 to specify the ALET to be used to qualify the GPR.

2 The 31-bit address of the compressed input data block. If your program is
running in AR ASC mode, set AR 2 to specify the ALET to be used to qualify
the GPR.

3 The length of the compressed input data block.
4 The 31-bit address of the output data block to hold the expanded data. If your

program is running in AR ASC mode, set AR 4 to specify the ALET to be used
to qualify the GPR.

5 The length of the output data block.
13 The 31-bit address of a standard 18-word save area. If your program is running

in AR ASC mode, set AR 13 to specify the ALET to be used to qualify the GPR.

Output Register Information for SERVICE =EXPAND
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Unchanged
2 The 31-bit address of the byte following the last input byte processed
3 The number of bytes of compressed data not processed
4 The 31-bit address of the byte following the last output byte
5 The number of bytes in the output data block into which output was not stored
6-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

 CSRCESRV — Compress and Expand Data 157

 CSRCESRV Macro

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The CSRCESRV macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CSRCESRV.

CSRCESRV

␣ One or more blanks must follow CSRCESRV.

SERVICE=QUERY
SERVICE=COMPRESS
SERVICE=EXPAND

 ,VECTOR=(reg) reg: register (2) - (12)

 Parameters
The parameters are explained as follows:

SERVICE=QUERY
SERVICE=COMPRESS
SERVICE=EXPAND

Specifies the requested service.

SERVICE=QUERY is available to programs running under MVS/ESA and MVS/XA.
SERVICE=QUERY invokes the query service, which determines the following:

� Whether data compression is supported by the system currently installed
� The size of the work area required by the compression or expansion service.

You need the above information before you can invoke the macro with
SERVICE=COMPRESS or SERVICE=EXPAND.

SERVICE=COMPRESS is available only to programs running under MVS/ESA.
SERVICE=COMPRESS invokes the data compression service, which compresses a
given block of data, and stores the compressed data in an output area. You must
obtain storage for this output area, and for a work area if SERVICE=QUERY returns a
nonzero value in GPR 1. SERVICE=COMPRESS will compress as much of the input
data as possible. It returns to the caller when either of the following has occurred:

� It has compressed all the input data
� It has completely filled the output area with the compressed data.

SERVICE=EXPAND is available to programs running under MVS/ESA and MVS/XA.
SERVICE=EXPAND invokes the data expansion service, which expands data that was
previously compressed by the data compression service, and stores that data in its
original form in an output area. You must obtain storage for this output area, and for a
work area if SERVICE=QUERY returns a nonzero value in GPR 1. SERVICE=EXPAND

158 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRCESRV Macro

will expand as much of the input data as possible. It returns to the caller when either of
the following has occurred:

� It has expanded all the input data
� It has completely filled the output area with the expanded data.

,VECTOR=(reg)
Specifies the MVS/XA version of the services. reg is the GPR that your program loads
with the entry point address of the CSRCEXA load module. This load module resides in
SYS1.MIGLIB. The VECTOR parameter is required only for programs invoking the
MVS/XA version of the service.

 ABEND Codes
None.

Return and Reason Codes
When control is returned from CSRCESRV, GPR 15 (and return_code) contains one of the
following return codes:

Figure 11. Return Codes for SERVICE=QUERY

Hexadecimal
Return Code

Meaning and Action

00 Meaning : The requested algorithm is supported. For programs running under
MVS/ESA, this means that both compression and expansion are supported.

Action : None.

04 Meaning : The requested algorithm is supported only for data expansion.

Action : None.

0C Meaning : Program error. The requested algorithm is not supported by this level
of MVS.

Action : Specify the appropriate input value and rerun the program.

10 Meaning : Program error. The algorithm number was negative.

Action : Specify the appropriate input value and rerun the program.

Figure 12. Return Codes for SERVICE=COMPRESS

Hexadecimal
Return Code

Meaning and Action

00 Meaning : All input data was compressed.

Action : None.

04 Meaning : Program error. Not all input data was compressed because the output
area was too small.

Action : Examine the information returned in the GPRs. Either make a follow-up
request to have the rest of the uncompressed data processed, or issue the
macro with a larger output area.

0C Meaning : Program error. Either the input or output length was negative.

Action : Inspect the contents of the GPRs to determine which value is in error.
Specify the appropriate input values and rerun the program.

 CSRCESRV — Compress and Expand Data 159

 CSRCESRV Macro

Figure 13. Return Codes for SERVICE=EXPAND

Hexadecimal
Return Code

Meaning and Action

00 Meaning : All input data was expanded.

Action : None.

04 Meaning : Program error. Not all input data was expanded because the output
area was too small.

Action : Examine the information returned in the GPRs. Either make a follow-up
request to have the rest of the compressed data processed or issue the macro
with a larger output area.

08 Meaning : Program error. The data was not expanded because it was
compressed by an up-level version of the data compression service, using an
algorithm not understood by this version of the data expansion service.

Action : Check to see if all the input values were correct. Ensure that the input
data was compressed by the appropriate data compression service and that the
appropriate data expansion service was invoked. If the problem persists, record
the return code and supply it to the appropriate IBM support personnel.

0C Meaning : Program error. Either the input or output length was negative.
Inspect the register contents to make this distinction.

Action : Specify the appropriate input values and rerun the program.

10 Meaning : Program error. Not all the data was expanded because the input data
was not compressed by the data compression service.

Action : Check to see if all the input values were correct. Ensure that the input
data was compressed by the appropriate data compression service and that the
appropriate data expansion service was invoked. If the problem persists, record
the return code and supply it to the appropriate IBM support personnel.

160 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRCMPSC Macro

CSRCMPSC — Compress and Expand Data

 Description
The CSRCMPSC macro performs the following functions:

 � Compresses data
� Expands previously-compressed data

 Environment
The requirements for the caller are:

Minimum authorization: Problem state, PSW key 8-15

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

Amode: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled or disabled for I/O and external interrupts

Locks: The caller may hold the local lock of the primary address space
and may additionally hold the CMS lock. The caller may hold the
CPU lock. No locks are required.

Control parameters: The CSRYCMPS area, and the dictionary, source area, and target
area pointed to by the CSRYCMPS area can all be in the primary
address space or, for AR-mode callers, in an address/data space
addressable through an ALET. The dictionary and source areas
are assumed to be in the same space. In the CSRYCMPS area,
the fields that designate the ALETs of the dictionary, source, and
target areas should be set to zero by primary mode callers. All
parameters may reside in storage above 16 megabytes.

 Programming Requirements
Before running the CSRCMPSC macro, the program must provide:

� A CSRYCMPS area, using the CSRYCMPS mapping macro. The area is specified in
the CBLOCK parameter of the CSRCMPSC macro.

� Dictionaries for the compress and expand services, using the CSRYCMPD mapping
macro. The CSRYCMPS area gives the address of the dictionaries.

� A source area, which contains the data to be compressed or expanded. The
CSRYCMPS area gives the address of the source area.

� A target area, which contains the data after the service has compressed or expanded it.
The CSRYCMPS area gives the address of the target area.

See OS/390 MVS Data Areas, Vol 1 (ABEP-DALT) for the mapping macros.

 Restrictions
None.

 Copyright IBM Corp. 1988, 1999 161

 CSRCMPSC Macro

Input Register Information
Before issuing the CSRCMPSC macro, the caller must ensure that general purpose register
(GPR) 13 contains the address of a standard 72-byte save area in the primary address
space.

Before issuing the CSRCMPSC macro, the caller does not have to place any information into
any access register (AR), unless running in AR ASC mode. In this case, the caller must
ensure that the following ARs contain the specified information:

Register Contents
13 0 which designates the primary address space

If the caller is in AR mode and specifies CBLOCK=(n), or if the caller is in primary mode and
specifies CBLOCK=(1), the caller must ensure that the following ARs contain the specified
information:

Register Contents
n The ALET with which the system is to access the CSRYCMPS area. For

primary mode callers, the ALET should be 0.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system.
2-13 Unchanged.
14 Used as a work register by the system.
15 Return code.

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system.
2-13 Unchanged.
14-15 Used as work registers by the system.

 Performance Implications
None.

 Syntax
The standard form of CSRCMPSC is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede CSRCMPSC.

CSRCMPSC

␣ One or more blanks must follow CSRCMPSC.

CBLOCK=comp block comp block: RS-type address, or register (1) - (12).

 ,RETCODE=rc rc: RS-type address, or register (2) - (12).

Default: No return code processing.

162 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRCMPSC Macro

 Parameters
The parameters are explained as follows:

CBLOCK= comp block
Specifies the address of the CSRYCMPS area. If register notation is used, the register
contains the address of the area. The CSRYCMPS area contains the parameter
information for the macro. The area is mapped by DSECT CMPSC in mapping macro
CSRYCMPS; see OS/390 MVS Data Areas, Vol 1 (ABEP-DALT) for the CSRYCMPS
macro.

RETCODE=rc
Specifies the fullword location where the system is to store the return code. If register
notation is used, the system stores the return code into the register. In either case, the
system stores the return code in GPR 15.

 Abend Codes
The program issuing CSRCMPSC may receive the listed abend codes. See OS/390 MVS
System Codes.

0C4 The program may get this completion code if the system cannot access the
CSRYCMPS area, source area, target area, or dictionary.

0C6 The program may get this completion code if the CMPSC_SYMSIZE field in the
CSRYCMPS area does not contain 1-5.

This completion code is received only if bit CVTCMPSC in mapping macro CVT
is on.

0C7 The dictionary is built incorrectly. The program may receive this completion
code in the following circumstances:

� If the length of a string to be represented by a single compression symbol,
encountered during a compression operation, exceeds 260 characters.

� If a dictionary entry has more than 260 total child characters.

� If the child count in a dictionary entry indicates more than 6 child
characters.

� If the number of extension characters for a dictionary entry with 0 or 1 child
characters exceeds 4.

� If a sibling descriptor dictionary entry has a sibling count of 0.

� If expansion of a compression symbol uses more than 260 characters.

� If expansion of a compression symbol uses more than 127 dictionary
entries.

In all these cases, the programmer needs to fix the dictionary.

This completion code is received only if bit CVTCMPSC in mapping macro CVT
is on.

Return and Reason Codes
When the CSRCMPSC macro returns control to the program, the RETCODE parameter
fullword and GPR 15 contain one of the following hexadecimal return codes.

Hexadecimal
Return Code

Meaning and Action

0 Meaning : Successful completion. Source operand was completely processed.

Action : None.

4 Meaning : Source operand was not completely processed. No room is left in the target
operand.

Action : Specify a larger target operand. Or provide another area for the target operand.
Issue the macro again to resume processing of the operation.

 CSRCMPSC — Compress and Expand Data 163

 CSRCMPSC Macro

Hexadecimal
Return Code

Meaning and Action

10 Meaning : Program error. A field in the CSRYCMPS area does not contain a value.

Action : Provide values in the CMPSC_DICTADDR, CMPSC_TARGETADDR, and
CMPSC_SOURCEADDR fields.

14 Meaning : Program error. The symbol size in the CSRYCMPS area does not have a value
of 1 through 5.

Action : Provide a value of 1 through 5 in the CMPSC_SYMSIZE field.

18 Meaning : The target area for compression or the source area for expansion is not large
enough to hold even one compression symbol. The length of the area is specified in the
CSRYCMPS area.

Action : If this result is expected, no action is required. Otherwise, provide a larger value in
the CMPSC_TARGETLEN field for compression or the CMPSC_SOURCELEN field for
expansion.

1C Meaning : Program error. The length of the string represented by a single compression
symbol exceeds the limit of 260 bytes.

Action : Fix the dictionary.

20 Meaning : Program error. The number of child characters for a compression dictionary
entry exceeds 260.

Action : Fix the dictionary.

24 Meaning : Program error. A compression dictionary entry indicates that it contains more
than 6 child characters, not including sibling characters.

Action : Fix the dictionary.

28 Meaning : Program error. The number of extension characters for a compression dictionary
entry with 0 or 1 child characters exceeds 4.

Action : Fix the dictionary.

2C Meaning : Program error. A sibling descriptor compression dictionary entry has a count of
0.

Action : Fix the dictionary.

30 Meaning : Program error. Expansion of a compression symbol used more than 127
dictionary entries.

Action : Fix the dictionary.

164 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRCMPSC Macro

 Example 1
Compress a data area. Note that the expansion dictionary must immediately follow the
compression dictionary, and both must be aligned on page boundaries.

LA 2,MYCBLOCK Get address of parm
 USING CMPSC,2
 XC CMPSC(CMPSC_LEN),CMPSC Clear block

OI CMPSC_FLAGS_BYTE2,CMPSC_SYMSIZE_5 Set size
\ Symbol size is 5+8. Dictionary has
\ 2\\(5+8) entries
 L 3,DICTADDR

ST 3,CMPSC_DICTADDR Set dictionary address
 L 3,COMPADDR

ST 3,CMPSC_TARGETADDR Set compression area
 L 3,COMPLEN

ST 3,CMPSC_TARGETLEN Set compression length
 L 3,EXPADDR

ST 3,CMPSC_SOURCEADDR Set expansion area
 L 3,EXPLEN

ST 3,CMPSC_SOURCELEN Set expansion length
 LA 3,WORKAREA

ST 3,CMPSC_WORKAREAADDR Set work area address
 CSRCMPSC CBLOCK=CMPSC
 DROP 2
 .
 .

DS ðF Align parameter on word boundary
MYCBLOCK DS (CMPSC_LEN)CL1 CBLOCK parameter
COMPADDR DS A Output compression area
COMPLEN DS F Length of compression area
EXPADDR DS A Input expansion area
EXPLEN DS F Length of expansion area
DICTADDR DS A Address of compression dictionary

DS ðD Doubleword align work area
WORKAREA DS CL192 Work area
 CSRYCMPS ,

 CSRCMPSC — Compress and Expand Data 165

 CSRCMPSC Macro

 Example 2
Expand a data area. Note that the expansion dictionary must be aligned on a page
boundary.

LA 2,MYCBLOCK Get address of parm
 USING CMPSC,2
 XC CMPSC(CMPSC_LEN),CMPSC Clear block

OI CMPSC_FLAGS_BYTE2,CMPSC_SYMSIZE_5 Set size
\ Symbol size is 5+8. Dictionary has
\ 2\\(5+8) entries
 OI CMPSC_FLAGS_BYTE2,CMPSC_EXPAND Do expansion
 L 3,EDICTADDR

ST 3,CMPSC_DICTADDR Set dictionary address
 L 3,EXPADDR

ST 3,CMPSC_TARGETADDR Set expansion area
 L 3,EXPLEN

ST 3,CMPSC_TARGETLEN Set expansion length
 L 3,COMPADDR

ST 3,CMPSC_SOURCEADDR Set compression area
 L 3,COMPLEN

ST 3,CMPSC_SOURCELEN Set compression length
 LA 3,WORKAREA

ST 3,CMPSC_WORKAREAADDR Set work area address
 CSRCMPSC CBLOCK=CMPSC
 DROP 2
 .
 .

DS ðF Align parameter on word boundary
MYCBLOCK DS (CMPSC_LEN)CL1 CBLOCK Parameter
EXPADDR DS A Output expansion area
EXPLEN DS F Length of expansion area
COMPADDR DS A Input compression area
COMPLEN DS F Length of compression area
EDICTADDR DS A Address of expansion dictionary

DS ðD Doubleword align work area
WORKAREA DS CL192 Work area
 CSRYCMPS ,

 Example 3
When using register notation in the CBLOCK parameter, the program must place both the
address and ALET into a GPR/AR pair. This is true whether you are running in AR or
primary ASC mode.

.

.
LAE 2,MYCBLOCK Set address \and\ ALET

 CSRCMPSC CBLOCK=(2) Issue operation
.
.

166 OS/390 V2R8.0 MVS Assembler Services Reference

 CSREVW Callable Service

CSREVW — View an Object and Sequentially Access It

 Description
Call the CSREVW window service if your program references data in a sequential manner
and you want to:

� Map a window to one or more blocks (4096 bytes) of a data object. If you specified
scrolling when you called CSRIDAC to identify the object, CSREVW maps the window to
the blocks in the scroll area and maps the scroll area to the object.

� Specify how many blocks window services is to try to transfer into the window each time
CSREVW needs more data from the object.

Mapping a data object enables your program to access the data that is viewed through the
window the same way it accesses other data in your storage.

The CSREVW and CSRVIEW services differ on how to specify sequential access:

� If you use CSRVIEW and specify sequential , when you reference data that is not in
your window, window services reads up to 16 blocks — the one that contains the data
your program requests, plus the next 15 consecutive blocks. The number of blocks that
actually come into the window depends on the size of the window and the availability of
central storage.

� If you use CSREVW, you can specify the number of additional consecutive blocks that
window services reads into the window at one time. The number ranges from 0 through
255 blocks. The number of blocks that actually come into the window depends on the
size of the window and the availability of central storage.

Use CSREVW if your program can benefit from having more than 16 blocks come into a
window at one time, or fewer than 16 blocks at one time.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN = SASN
AMODE: 24- or 31-bit, but all addresses must be 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Programming Requirements
None.

 Restrictions
The caller must follow all the restrictions imposed by the DIV macro.

 Copyright IBM Corp. 1988, 1999 167

 CSREVW Callable Service

Input Register Information
Before calling the CSREVW service, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register Contents
13 The address of a standard 18-word save area

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on the register contents remaining the same before and after issuing a
service. If the system changes the contents of the registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the CALL as shown in the syntax diagram. You must code all parameters on the
CALL statement in the order shown.

CALL CSREVW

,(operation_type
,object_id
,offset
,span
,window_name
,usage
,disposition
,pfcount
,return_code
,reason_code)

 Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(operation_type
Specifies that you are to begin viewing an object.

Define operation_type as character data of length at least 5 bytes, containing the
characters “BEGIN.”

168 OS/390 V2R8.0 MVS Assembler Services Reference

 CSREVW Callable Service

,object_id
Specifies the object identifier. Supply the object identifier that CSRIDAC returned when
you obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset of the view into the object. Specify the offset in blocks of 4096
bytes.

Define offset as integer data of length 4.

,span
Specifies the window size in blocks of 4096 bytes.

Define span as integer data of length 4.

,window_name
Specifies the symbolic name you assigned to the window in your address space.

,usage
Specifies that the expected pattern of references to data in the object will be sequential.

Define usage as character data of at least 4 bytes, containing the characters “SEQ.”
Pad the string on the right with 1 or more blanks.

,disposition
Defines how CSREVW is to handle data that is in the window when you begin a view.
You can specify CSREVW BEGIN with a disposition of REPLACE or RETAIN.
REPLACE and RETAIN cause the data in the window to be handled as follows:

REPLACE The first time you reference a block to which the window is mapped,
CSREVW replaces the data in the window with the data from the
referenced block.

RETAIN When you reference a block to which the window is mapped, the data in
the window remains unchanged. When you call CSRSAVE to save the
mapped blocks, CSRSAVE saves all of the mapped blocks because
CSRSAVE considers them changed.

Define disposition as character data of length 7. If you specify RETAIN, pad the string
on the right with 1 blank.

,pfcount
Specifies the number of additional blocks you want window services to bring into the
window each time your program references data that is not already in the window. The
number you specify is added to the minimum of one block that window services always
brings in. That is, if you specify a value of 20, window services brings in up to 21. The
number of additional blocks ranges from zero through 255.

Define pfcount as integer data of length 4.

,return_code
When CSREVW completes, return_code contains the return code. Define return_code
as integer data of length 4.

,reason_code)
When CSREVW completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

 CSREVW — View an Object and Sequentially Access It 169

 CSREVW Callable Service

 ABEND Codes
CSREVW might abnormally terminate with abend code X'019'. See OS/390 MVS System
Codes for an explanation and programmer responses.

Return and Reason Codes
When the CSREVW service returns control to your program, GPR 15 (and return_code)
contains a return code. GPR 0 (and reason_code) contains a reason code. The following
table identifies return code and reason code combinations and explains their meanings.
Data-in-virtual reason codes, which are returned with CSREVW return codes X'4' and
X'C', are two bytes long and right justified. They are explained in the description of the DIV
macro (“DIV — Data-in-Virtual” on page 361).

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00000000 00000000 Meaning: The operation was successful.

Action: None.

00000004 00000165 Meaning: System error. The service could not retain all the data that
was in the scroll area.

Action: Retry the request. If the problem persists, contact the
appropriate IBM support personnel.

00000004 xxxxnnnn Meaning: The value nnnn is a data-in-virtual reason code. The value
xxxx is not part of the intended programming interface.

Action: See the DIV macro description for an explanation of reason
code nnnn.

0000000C xxxxnnnn Meaning: The value nnnn is a data-in-virtual reason code. The value
xxxx is not part of the intended programming interface.

Action: See the DIV macro description for an explanation of reason
code nnnn.

0000002C 00000004 Meaning: Program error. Window services have not been defined to
your system, or the link to the service failed.

Action: If window services are available on your system, rerun the
program one or more times. If the problem persists, contact the
appropriate IBM support personnel.

170 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRIDAC Callable Service

CSRIDAC — Request or Terminate Access to a Data Object

 Description
Use the CSRIDAC callable window service to control access to a data object. The
CSRIDAC service allows you to:

� Request access to a data object
� End access to a data object.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit, but all addresses must be 31-bit addresses
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Programming Requirements
None.

 Restrictions
The caller must follow all the restrictions imposed by the DIV macro.

Input Register Information
Before calling the CSRIDAC service, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register Contents
13 The address of a standard 18-word save area

Output Register information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Copyright IBM Corp. 1988, 1999 171

 CSRIDAC Callable Service

 Performance Implications
None.

 Syntax
Write the CALL as shown in the syntax diagram. You must code all parameters on the
CALL statement in the order shown.

CALL CSRIDAC

,(operation_type
,object_type
,object_name
,scroll_area
,object_state
,access_mode
,object_size
,object_id
,high_offset
,return_code
,reason_code)

 Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(operation_type
Specifies the type of operation the service is to perform:

� To request access to an object, specify BEGIN.

� To terminate access to an object, specify END. If the object is temporary,
CSRIDAC deletes it.

Define operation_type as character data of length 5. If you specify END, pad the string
on the right with blanks.

,object_type
Specifies the type of object. The types are:

DDNAME The object is an existing (OLD) VSAM linear data set allocated to the
file whose DDNAME is specified by object_name.

DSNAME The object is the linear VSAM data set whose name is specified by
object_name. The data set may already exist or may be a new data
set that you want window services to create.

TEMPSPACE The object is a temporary data object. Window services will delete the
object when your program issues CSRIDAC END.

If operation_type is BEGIN, you must supply a value.

Define this parameter as character data of length 9. If you specify either DDNAME or
DSNAME, pad the string on the right with blanks.

,object_name
Specifies the data set name of a permanent object or the DDNAME of a data definition
(DD) statement that defines a permanent object.

� If object_type is DDNAME, object_name must contain the name of a DD statement.

� If object_type is DSNAME, object_name must contain the data set name of the
permanent object.

If operation_type is BEGIN and object_type is DDNAME or DSNAME, you must supply a
value for object_name.

172 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRIDAC Callable Service

Define object_name as character data of length 1 to 44. If object_name contains fewer
than 44 characters, pad the name on the right with blanks.

,scroll_area
Specifies whether window services is to create a scroll area for the data object.

YES Create a scroll area.
NO Do not create a scroll area.

If operation_type is BEGIN and object_type is TEMPSPACE, specify YES.

Define scroll_area as character data of length 3. If you specify NO, pad the string on
the right with a blank.

,object_state
Specifies the state of the object.

OLD The object exists.
NEW The object does not exist and window services must create it.

If operation_type is BEGIN and object_type is DSNAME, you must supply a value for
object_state.

Define object_state as character data of length 3.

,access_mode
Specifies the type of access required.

READ READ access.
UPDATE UPDATE access.

If operation_type is BEGIN and object_type is DDNAME or DSNAME, you must supply a
value for access_mode. For a new or temporary data object, window services assumes
UPDATE.

Define access_mode as character data of length 6. If you specify READ, pad the string
on the right with 1 or 2 blanks.

,object_size
Specifies the maximum size of the new object in units of 4096 bytes.

This parameter is required if either of the following conditions is true:

� Operation_type is BEGIN, object_type is DSNAME, and object_state is NEW
� Operation_type is BEGIN and object_type is TEMPSPACE

Define object_size as integer data of length 4.

,object_id
Specifies the object identifier.

When operation_type is BEGIN, the service returns the object identifier in this
parameter. Use the identifier to identify the object to other window services.

When operation_type is END, you must supply the object identifier in this parameter.

Define object_id as character data of length 8.

,high_offset
When CSRIDAC completes, high_offset contains the size of the existing object
expressed in blocks of 4096 bytes

Define high_offset as integer data of length 4.

,return_code
When CSRIDAC completes, return_code contains the return code. Define return_code
as integer data of length 4.

,reason_code)
When CSRIDAC completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

 CSRIDAC — Request or Terminate Access to a Data Object 173

 CSRIDAC Callable Service

 ABEND Codes
The CSRIDAC service might abnormally terminate with abend code X'019'. See OS/390
MVS System Codes for an explanation and programmer responses.

Return and Reason Codes
When the CSRIDAC service returns control to your program, return_code contains a return
code and reason_code contains a reason code. The following table identifies return code
and reason code combinations and explains their meanings.

Data-in-virtual reason codes, which are returned with CSRIDAC return codes X'4' and
X'C', are two bytes long and right justified. They are explained in the description of the DIV
macro (“DIV — Data-in-Virtual” on page 361).

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00000000 00000000 Meaning: The operation was successful.

Action: None.

00000004 xxxxnnnn Meaning: Program error or environmental error. The operation was
successful; however, data-in-virtual issued a warning. The value nnnn
is a data-in-virtual reason code. The value xxxx is not part of the
intended programming interface.

Action: See the description of the DIV macro for an explanation of
reason code nnnn .

00000008 00000118 Meaning: Environmental error. The system could not obtain enough
storage to create a hiperspace for the temporary object or the scroll
area.

Action: Rerun the program one or more times. If the problem
persists, notify your system programmer, who can increase the SMF
limit. The SMF limit, which is set by the installation, restricts the
amount of virtual storage that programs in each address space can
use for data spaces and hiperspaces.

00000008 00000119 Meaning: Environmental error. The system could not delete or
unidentify the temporary object or the scroll area.

Action: Retry the request. If the problem persists, record the return
and reason code, and contact the appropriate IBM support personnel.

00000008 0000011A Meaning: Environmental error. The system was unable to create a
new VSAM linear data set. Your system must include SMS, and SMS
must be active.

Action: Contact your system programmer to request that SMS be
made active.

0000000C xxxxnnnn Meaning: Program error or environmental error. The value nnnn is a
data-in-virtual reason code. The value xxxx is not part of the intended
programming interface.

Action: See the description of the DIV macro for an explanation of
reason code nnnn .

00000010 rrrrnnnn Meaning: Program or environmental error. The system was unable
to allocate or unallocate the data set specified as object_name. The
value rrrr is the return code from dynamic allocation. The value nnnn
is the two-byte reason code from dynamic allocation.

Action: If object_state is new, make sure that a data set of the same
name does not already exist. If this is the case, either use the existing
data set or change the name of your data set. If you are unable to
correct the problem, notify your system programmer.

0000002C 00000004 Meaning: Program error. Window services have not been defined to
your system, or the link to the service failed.

Action: If window services are available on your system, rerun the
program one or more times. If the problem persists, contact the
appropriate IBM support personnel.

174 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRL16J Callable Service

CSRL16J — Transfer Control with All Registers Intact

 Description
Call the CSRL16J service to transfer control to another routine running under the same
request block (RB). The CSRL16J service functions much like a branch instruction, but will
transfer control with the contents of all registers intact.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Programming Requirements
� Before calling the CSRL16J service, you must build data area CSRYL16J to form a

parameter list that defines the entry characteristics and register contents for the target
routine; include the CSRYL16J mapping macro. See OS/390 MVS Programming:
Assembler Services Guide for information on how to build the parameter list.

� You can optionally include the CSRLJASM macro to obtain assembler declarations in
the calling program for the return code from CSRL16J. CSRLJASM provides the
following constants for use in your program:

\\/
\ Service Return Codes \
\\/
CSRL16J_OK EQU ð

 CSRL16J_BAD_VERSION EQU 4
CSRL16J_BAD_AMODE EQU 8
CSRL16J_BAD_RESERVED EQU 12
CSRL16J_BAD_LENGTH EQU 16
CSRL16J_BAD_PSW EQU 24
\\/

 Restrictions
The caller cannot have an EUT FRR established.

Input Register Information
Before calling the CSRL16J service, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register Contents
13 Address of a standard 18 word save area

 Copyright IBM Corp. 1988, 1999 175

 CSRL16J Callable Service

Output Register Information
The CSRL16J service returns control to the caller only when it cannot successfully transfer
control to the target routine because of an error. Otherwise CSRL16J transfers control to the
target routine, which can return control to any program running under the same RB, including
the calling program.

When CSRL16J returns control to the caller because of an error, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

When CSRL16J returns control to the caller because of an error, the access registers (ARs)
contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram. You must code all parameters on the CALL
statement in the order shown.

CALL CSRL16J

,(L16J
,return_code)

 Parameters
The parameters are explained as follows:

L16J
Specifies the parameter list (CSRYL16J) containing the entry characteristics and
environment for the target routine.

return_code
Specifies a fullword to contain the return code from the CSRL16J service.

 ABEND Codes
None.

176 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRL16J Callable Service

Return and Reason Codes
If the CSRL16J service returns control to the caller, CSRL16J was unable to transfer control
to the target routine. In this case, return_code contains a nonzero value.

When the CSRL16J service successfully transfers control to the target routine, return_code
contains a value of zero.

Return codes from the CSRL16J service are as follows:

Figure 14. Return Codes for the CSRL16J Service

Hexadecimal
Return Code

Meaning and Action

00 Meaning : Successful completion. The calling program does not receive this return code
because it indicates that the target routine received control.

Action : None.

04 Meaning : The value specified in the L16JVERSION field of the L16J data area was not
zero. The L16JVERSION field must contain a value of zero.

Action : When you build CSRYL16J, first clear the entire data area and then fill in the
required fields. This process ensures that all fields that must contain zeros are correct.

08 Meaning : The calling program was not in 31-bit addressing mode, which is required.

Action : Make sure the calling program is in 31-bit addressing mode.

0C Meaning : One of the fields in CSRYL16J that is reserved for IBM use contained a nonzero
value. Any field reserved for IBM use must contain a value of zero.

Action : When you build CSRYL16J, first clear the entire data area and then fill in the
required fields. This process ensures that all fields that must contain zeros are correct.

10 Meaning : The value specified in field L16JLENGTH in CSRYL16J was less than the actual
length of the data area.

Action : Make sure that the value in the L16JLENGTH field reflects the actual length of the
data area.

18 Meaning : The PSW provided in field L16JPSW of CSRYL16J specified an ASC mode that
is not valid.

Action : In the L16JPSW field, specify either primary or AR ASC mode.

 CSRL16J — Transfer Control with All Registers Intact 177

 CSRL16J Callable Service

178 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPACT Callable Service

CSRPACT — Activate Previously Connected Storage

 Description
Call the CSRPACT cell pool service to activate the extent cell storage for allocation. You
must specify which extent you want to activate.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must be in

31-bit addressing mode when calling the service. All input
addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are located in
a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in a single address or data space. They must be in the

primary address space or in an address/data space that is
addressable through a public entry on the caller's dispatchable unit
access list (DU-AL).

 Programming Requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR before you
call CSRPACT so the CALL macro can generate the correct code for AR mode.

Before you use cell pool services, you can optionally include the CSRCPASM macro to
generate cell pool services equate (EQU) statements. CSRCPASM provides the following
constants for use in your program:

\ Length of the cell pool anchor data area:
\
CSR_ANCHOR_LENGTH EQU 64
\
\
\ Base length of the cell pool extent data area:
\
CSR_EXTENT_BASE EQU 128
\
\
\ Length of the user-supplied pool name:
\
CSR_POOL_NAME_LEN EQU 8
\
\

 Restrictions
None.

 Copyright IBM Corp. 1988, 1999 179

 CSRPACT Callable Service

Input Register Information
Before calling the CSRPACT service, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram. You must code all parameters on the CALL
statement in the order shown.

CALL CSRPACT

,(cntl_alet
,anchor_addr
,extent_num
,return_code)

180 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPACT Callable Service

 Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET identifying the location of the anchor and
extents. Initialize the ALET to 0 if your program is in AR mode and the anchor and
extents are in the primary address space. If your program is running in primary ASC
mode, the value is ignored, but you must code the parameter anyway.

,anchor_addr
Identifies the variable containing the address of the 64-byte anchor.

,extent_num
Identifies the variable containing the number of the extent to be connected. The extent
number must be within the range 0 to 65536.

,return_code)
When CSRPACT completes, the variable specified by return_code contains the return
code.

 ABEND Codes
None.

Return and Reason Codes
When the CSRPACT service returns control to your program, GPR 15 (and return_code)
contains one of the following return codes:

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

1C 28 Meaning: Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor
address or inadvertently overlaid the anchor area.

30 48 Meaning: Program error. The extent number is not valid.

Action: Make sure the extent number is within the range 0 to 65536.

34 52 Meaning: Program error. The extent is in the incorrect state.

Action: Check to see if your program passed the wrong extent
number. Make sure the extent is not already in an active state (that
is, it has not been activated through CSRPACT or CSRPEXP).

64 100 Meaning: Program or system error. An extent chain was broken.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

68 104 Meaning: Program or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

6C 108 Meaning: Program or system error. An extent could not be found.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that the anchor address being passed is for the right
cell pool.

 CSRPACT — Activate Previously Connected Storage 181

 CSRPACT Callable Service

182 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPBLD Callable Service

CSRPBLD — Build a Cell Pool and Initialize an Anchor

 Description
Call the CSRPBLD cell pool service to format a 64-byte area for the cell pool anchor. You
must first have acquired the storage for the anchor. You can call this service only once for a
given cell pool.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must be in

31-bit addressing mode when calling the service. All input
addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are located in
a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: All parameters must reside in a single address or data space, and

must be addressable by the caller. They must be in the primary
address space or in an address/data space that is addressable
through a public entry on the caller's dispatchable unit access list
(DU-AL).

 Programming Requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR before you
call the CSRPBLD service so the CALL macro can generate the correct code for AR mode.

Before you use cell pool services, you can optionally include the CSRCPASM macro to
generate cell pool services equate (EQU) statements. CSRCPASM provides the following
constants for use in your program:

\ Length of the cell pool anchor data area:
\
CSR_ANCHOR_LENGTH EQU 64
\
\
\ Base length of the cell pool extent data area:
\
CSR_EXTENT_BASE EQU 128
\
\
\ Length of the user-supplied pool name:
\
CSR_POOL_NAME_LEN EQU 8
\
\

 Restrictions
None.

 Copyright IBM Corp. 1988, 1999 183

 CSRPBLD Callable Service

Input Register Information
Before calling the CSRPBLD service, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs)contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram. You must code all parameters on the CALL
statement in the order shown.

CALL CSRPBLD

,(cntl_alet
,anchor_addr
,user_name
,cell_size
,return_code)

 Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the anchor and
extents. Initialize the ALET to 0 if your program is running in AR mode and the anchor
and extents are in the primary address space. If your program is running in primary
ASC mode, the value is ignored, but you must code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the cell pool anchor.

,user_name
Specifies the 8-byte variable containing the name you want the service to assign to the
pool. There are no restrictions on the name.

184 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPBLD Callable Service

,cell_size
Specifies the variable containing the cell size in this pool. You can use any positive
binary or hexadecimal number as the cell size.

,return_code)
When CSRPBLD completes, return_code contains the return code.

 ABEND Codes
None.

Return and Reason Codes
When the CSRPBLD service returns control to your program, GPR 15 (and return_code)
contains one of the following return codes:

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

18 24 Meaning: Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor
address. If the anchor is in a data space, make sure the anchor
address is at least 63 bytes less than the address of the last byte of
the data space.

44 68 Meaning: Program error. The cell size is not valid: it cannot be
negative or 0.

Action: Specify a positive value for the cell size.

 CSRPBLD — Build a Cell Pool and Initialize an Anchor 185

 CSRPBLD Callable Service

186 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPCON Callable Service

CSRPCON — Connect Cell Storage to an Extent

 Description
Call the CSRPCON cell pool service to connect cell storage to the extent that you specify or
to reuse a disconnected extent. The CSRPEXP service returned the extent number. The
extent must be in the disconnected state, which means that you have not called CSRPACT
to activate this particular extent.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must be in

31-bit addressing mode when calling the service. All input
addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are located in
a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in a single address or data space. They must be in a

primary address space or in an address/data space that is
addressable through a public entry on the caller's dispatchable unit
access list (DU-AL).

 Programming Requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR before you
call CSRPCON so the CALL macro can generate the correct code for AR mode.

Before you use cell pool services, you can optionally include the CSRCPASM macro to
generate cell pool services equate (EQU) statements. CSRCPASM provides the following
constants for use in your program:

\ Length of the cell pool anchor data area:
\
CSR_ANCHOR_LENGTH EQU 64
\
\
\ Base length of the cell pool extent data area:
\
CSR_EXTENT_BASE EQU 128
\
\
\ Length of the user-supplied pool name:
\
CSR_POOL_NAME_LEN EQU 8
\
\

 Restrictions
None.

 Copyright IBM Corp. 1988, 1999 187

 CSRPCON Callable Service

Input Register Information
Before calling the CSRPCON service, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the content of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram. You must code all parameters on the CALL
statement in the order shown.

CALL CSRPCON

,(cntl_alet
,anchor_addr
,area_addr
,area_size
,extent_num
,return_code)

 Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the anchor and
extents. Initialize the ALET to 0 if your program is running in AR mode and the anchor
and extents are in the primary address space. If your program is running in primary
ASC mode, you must code this parameter, even though any value that you code is
ignored.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

188 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPCON Callable Service

,area_addr
Specifies the variable containing the starting address of the cell storage area. The
starting address of this area must be consistent with any cell boundary requirements
that you might have.

,area_size
Specifies the variable containing the length of the cell storage area. CSRPCON
determines the number of cells that will fit in the area.

,extent_num
Specifies the variable containing the number of the extent to be connected. The extent
number must be within the range 0 to 65536.

,return_code)
When CSRPCON completes, the variable specified by return_code contains the return
code.

 ABEND Codes
None.

Return and Reason Codes
When the CSRPCON service returns control to your program, GPR 15 (and return_code)
contains one of the following return codes:

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

1C 28 Meaning: Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor
address or inadvertently overlaid the anchor area.

30 48 Meaning: Program error. The extent number is not valid.

Action: Specify the extent number within the range 0 to 65536.

34 52 Meaning: Program error. You issued the services in the wrong order,
or did not issue a necessary service.

Action: Check to see if your program passed the wrong extent
number. Make sure that the extent is in a disconnected state (that is,
it has not been activated through CSRPACT or CSRPEXP).

48 72 Meaning: Program error. The cell area length is not valid.

Action: Check the specified cell area length. It should not be less
than the cell size.

4C 76 Meaning: Program error. The service could not access the cell area
address.

Action: If the cell area is in a data space, make sure the cell area is
completely within the data space.

50 80 Meaning: Program error. The cell area is too large.

Action: Specify a larger extent size or a smaller cell area size.

64 100 Meaning: Program or system error. An extent chain was broken.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

68 104 Meaning: Program or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

6C 108 Meaning: Program or system error. An extent could not be found.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that the anchor address being passed is for the right
cell pool.

 CSRPCON — Connect Cell Storage to an Extent 189

 CSRPCON Callable Service

190 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPDAC Callable Service

CSRPDAC — Deactivate an Extent

 Description
Call the CSRPDAC cell pool service to deactivate a specific extent. Use this service to
prepare the cell pool for contraction. You must specify which extent you want to deactivate.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must be in

31-bit addressing mode when calling the service. All input
addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are located in
a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in a single address or data space. They must be in the

primary address space or in an address/data space that is
addressable through a public entry on the caller's dispatchable unit
access list (DU-AL).

 Programming Requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR before you
call CSRPDAC so the CALL macro can generate the correct code for AR mode.

Before you use cell pool services, you can optionally include the CSRCPASM macro to
generate cell pool services equate (EQU) statements. CSRCPASM provides the following
constants for use in your program:

\ Length of the cell pool anchor data area:
\
CSR_ANCHOR_LENGTH EQU 64
\
\
\ Base length of the cell pool extent data area:
\
CSR_EXTENT_BASE EQU 128
\
\
\ Length of the user-supplied pool name:
\
CSR_POOL_NAME_LEN EQU 8
\
\

 Restrictions
After calling CSRPDAC, you can still free (or return) cells, but you cannot get (or allocate)
any others for this extent.

 Copyright IBM Corp. 1988, 1999 191

 CSRPDAC Callable Service

Input Register Information
Before calling the CSRPDAC service, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram. You must code all parameters on the CALL
statement in the order shown.

CALL CSRPDAC

,(cntl_alet
,anchor_addr
,extent_num
,return_code)

 Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the anchor and
extents. Initialize the ALET to 0 if your program is running in AR mode and the anchor
and extents are in the primary address space. If your program is running in primary
ASC mode, the value is ignored, but you must code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

,extent_num
Specifies the variable containing the number of the extent that CSRPDAC will
deactivate. The extent number must be within the range 0 to 65536.

192 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPDAC Callable Service

,return_code)
When CSRPDAC completes, the variable specified for return_code contains the return
code.

 ABEND Codes
None.

Return and Reason Codes
When the CSRPDAC service returns control to your program, GPR 15 (and return_code)
contains one of the following return codes:

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

04 04 Meaning: The last cell has been returned to an inactive extent.

Action: None required. However, you might take some action
depending on your application.

1C 28 Meaning: Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor
address or inadvertently overlaid the anchor area.

30 48 Meaning: Program error. The extent number is not valid.

Action: Make sure the extent number is within the range 0 to 65536.

34 52 Meaning: Program error. You issued the services in the wrong order,
or did not issue a necessary service.

Action: Check to see if your program passed the wrong extent
number. Make sure that the extent is in active state before calling the
service.

64 100 Meaning: Program error or system error. An extent chain was
broken.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

6C 108 Meaning: Program error or system error. An extent could not be
found.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that the anchor address being passed is for the right
cell pool.

 CSRPDAC — Deactivate an Extent 193

 CSRPDAC Callable Service

194 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPDIS Callable Service

CSRPDIS — Disconnect the Cell Storage for an Extent

 Description
Call the CSRPDIS cell pool service to disconnect cell storage for a specific extent.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must be in

31-bit addressing mode when calling the service.
ASC mode: Primary or AR mode. (If the anchor and the extents are located in

a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be in

the primary address space or in an address/data space that is
addressable through a public entry on the caller's dispatchable unit
access list (DU-AL).

 Programming Requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR before you
call CSRPDIS so the CALL macro can generate the correct code for AR mode.

Before you call CSRPDIS, you must have returned all cells associated with the extent and
have called CSRPDAC to deactivate the extent.

Before you use cell pool services, you can optionally include the CSRCPASM macro to
generate cell pool services equate (EQU) statements. CSRCPASM provides the following
constants for use in your program:

\ Length of the cell pool anchor data area:
\
CSR_ANCHOR_LENGTH EQU 64
\
\
\ Base length of the cell pool extent data area:
\
CSR_EXTENT_BASE EQU 128
\
\
\ Length of the user-supplied pool name:
\
CSR_POOL_NAME_LEN EQU 8
\
\

 Restrictions
None.

 Copyright IBM Corp. 1988, 1999 195

 CSRPDIS Callable Service

Input Register Information
Before calling the CSRPDIS service, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
4 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-14 Unchanged
15 Used as a work register by the system

Some callers depend on the register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram. You must code all parameters on the CALL
statement in the order shown.

CALL CSRPDIS

,(cntl_alet
,anchor_addr
,extent_num
,area_addr
,area_size
,return_code)

 Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the anchor and
extents. Initialize the ALET to 0 if your program is running in AR mode and the anchor
and extents are in the primary address space. If your program is running in primary
ASC mode, the value is ignored, but you must code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

,extent_num
Specifies the variable containing the number of the extent that CSRPDIS will disconnect.
The extent number must be within the range 0 to 65536.

196 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPDIS Callable Service

,area_addr
When CSRPDIS completes, the variable specified by area_addr contains the address of
the disconnected storage area.

,area_size
When CSRPDIS completes, the variable specified by area_size contains the size of the
disconnected area.

,return_code)
When CSRPDIS completes, the variable specified by return_code contains the return
code.

 ABEND Codes
None.

Return and Reason Codes
When the CSRPDIS service returns control to your program, GPR 15 (and return_code)
contains one of the following return codes:

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

1C 28 Meaning: Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor
address or inadvertently overlaid the anchor area.

30 48 Meaning: Program error. The extent number is not valid.

Action: Make sure the extent number is within the range 0 to 65536.

34 52 Meaning: Program error. You issued the services in the wrong order,
or did not issue a necessary service.

Action: Call CSRPDAC to deactivate the extent before calling
CSRPDIS to disconnect the cell storage for the extent.

38 56 Meaning: Program error. The service cannot disconnect the extent
because some cells are still allocated.

Action: Return all the cells associated with the extent before calling
CSRPDIS to disconnect the cell storage for the extent.

64 100 Meaning: Program or system error. An extent chain was broken.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

68 104 Meaning: Program or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

6C 108 Meaning: Program or system error. An extent could not be found.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that the anchor address being passed is for the right
cell pool.

 CSRPDIS — Disconnect the Cell Storage for an Extent 197

 CSRPDIS Callable Service

198 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPEXP Callable Service

CSRPEXP — Expand a Cell Pool

 Description
Call the CSRPEXP cell pool service to:

� Add an extent to the cell pool
� Assign a number to the extent
� Optionally, establish a connection between the extent and cell storage
� Optionally, make the cell storage available for allocation.

Note: If you are reusing an extent, use CSRPCON and CSRPACT instead of CSRPEXP.

If you specify zero for the cell storage size, CSRPEXP will add an extent to the cell pool, but
will keep it in a disconnected state. When you specify the extent size, allow 128 bytes plus
one byte per eight cells of cell storage. CSRPEXP allocates cells contiguously, starting at
the address you specify. If you specify zero for the area length, CSRPEXP ignores the area
address.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must be in

31-bit addressing mode when calling the service. All input
addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are located in
a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be in

the primary address space or in an address/data space that is
addressable through a public entry on the caller's dispatchable unit
access list (DU-AL).

 Programming Requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR before you
call CSRPEXP so the CALL macro can generate the correct code for AR mode.

Before you use cell pool services, you can optionally include the CSRCPASM macro to
generate cell pool services equate (EQU) statements. CSRCPASM provides the following
constants for use in your program:

\ Length of the cell pool anchor data area:
\
CSR_ANCHOR_LENGTH EQU 64
\
\
\ Base length of the cell pool extent data area:
\
CSR_EXTENT_BASE EQU 128
\
\
\ Length of the user-supplied pool name:
\
CSR_POOL_NAME_LEN EQU 8
\
\

 Copyright IBM Corp. 1988, 1999 199

 CSRPEXP Callable Service

 Restrictions
None.

Input Register Information
Before calling the CSRPEXP service, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram. You must code all parameters on the CALL
statement in the order shown.

CALL CSRPEXP

,(cntl_alet
,anchor_addr
,extent_addr
,extent_size
,area_addr
,area_size
,extent_num
,return_code)

 Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the anchor and
extents. Initialize the ALET to 0 if your program is running in AR mode and the anchor
and extents are in the primary address space. If your program is running in primary
ASC mode, the value is ignored, but you must code the parameter anyway.

200 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPEXP Callable Service

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

,extent_addr
Specifies the variable containing the address of the extent.

,extent_size
Specifies the variable containing the size of the extent.

,area_addr
Specifies the variable containing starting address of the cell storage area. The starting
address of this area must be consistent with any boundary requirements that you might
have.

,area_size
Specifies the variable containing the length (binary or hexadecimal) of the storage area
for the cells.

,extent_num
When CSRPEXP completes, the variable specifying extent_num contains the number of
the extent to be connected. You will use this number on subsequent CALLs.

,return_code)
When CSRPEXP completes, the variable specifying return_code contains the return
code.

 ABEND Codes
None.

Return and Reason Codes
When the CSRPEXP service returns control to your program, GPR 15 (and return_code)
contains one of the following return codes:

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

0C 12 Meaning: Program error. There are too many extents in the cell
pool.

Action: Check to see if your program contains a logic error that
caused the limit of 65536 extents per cell pool to be exceeded. If your
program works as expected, consider using a larger cell pool.

1C 28 Meaning: Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor
address or inadvertently overlaid the anchor area.

28 40 Meaning: Program error. The service could not use the extent
address.

Action: If the extent is in a data space, make sure the extent address
is at least 128 bytes less than the address of the last byte of the data
space. Also make sure the extent area does not overlap the anchor
area.

2C 44 Meaning: Program error. The extent length is not valid.

Action: Correct the extent length. It cannot be less than 129 bytes.

48 72 Meaning: Program error. The cell area length is not valid.

Action: Correct the cell area length. The cell area size cannot be less
than the cell size.

4C 76 Meaning: Program error. The service could not use the cell area
address.

Action: If the cell area is in a data space, make sure the cell area is
completely within the data space.

 CSRPEXP — Expand a Cell Pool 201

 CSRPEXP Callable Service

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

50 80 Meaning: Program error. The cell area is too large.

Action: Specify a larger extent size or a smaller cell area size.

64 100 Meaning: Program error or system error. An extent chain was
broken.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

70 112 Meaning: Program error or system error. An anchor has been
overlaid.

Action: Check to see if your program inadvertently overlaid the
anchor area.

74 116 Meaning: Program error or system error. An extent has been
overlaid.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

202 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPFRE Callable Service

CSRPFRE — Return a Cell to a Cell Pool

 Description
Call the CSRPFRE cell pool service to return an allocated cell to a cell pool. You must
specify the address of the cell that you want to return. (The CSRPFR1 service provides the
same function with slightly enhanced performance.)

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must be in

31-bit addressing mode when calling the service. All input
addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are located in
a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be in

the primary address space or in an address/data space that is
addressable through a public entry on the caller's dispatchable unit
access list (DU-AL).

 Programming Requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR before you
CALL CSRPFRE so the CALL macro can generate the correct code for AR mode.

Before you use cell pool services, you can optionally include the CSRCPASM macro to
generate cell pool services equate (EQU) statements. CSRCPASM provides the following
constants for use in your program:

\ Length of the cell pool anchor data area:
\
CSR_ANCHOR_LENGTH EQU 64
\
\
\ Base length of the cell pool extent data area:
\
CSR_EXTENT_BASE EQU 128
\
\
\ Length of the user-supplied pool name:
\
CSR_POOL_NAME_LEN EQU 8
\
\

 Restrictions
None.

 Copyright IBM Corp. 1988, 1999 203

 CSRPFRE Callable Service

Input Register Information
Before calling the CSRPFRE service, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram. You must code all parameters on the CALL
statement in the order shown.

CALL CSRPFRE

,(cntl_alet
,anchor_addr
,cell_addr
,return_code)

 Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the anchor and
extents. Initialize the ALET to 0 if your program is running in AR mode and the anchor
and extents are in the primary address space. If your program is running in primary
ASC mode, the value is ignored, but you must code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

204 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPFRE Callable Service

,cell_addr
Specifies the variable containing the address of the cell that CSRPFRE is to free.

,return_code)
When CSRPFRE completes, the variable specified for return_code contains the return
code.

 ABEND Codes
None.

Return and Reason Codes
When the CSRPFRE service returns control to your program, GPR 15 (and return_code)
contains one of the following return codes:

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

04 04 Meaning: The last cell has been returned to an inactive extent.

Action: None required. However, you might take some action
depending on your application.

1C 28 Meaning: Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor
address or inadvertently overlaid the anchor area.

54 84 Meaning: Program error. The cell address is not valid.

Action: Investigate the following possible causes:

� The input cell address does not point to the beginning of a cell.
� The cell is not in the cell pool specified by the anchor address.

58 88 Meaning: Program error. Either you have already returned the cell or
you never allocated it.

Action: Check to see if your program contains a logic error that
caused this situation to occur.

64 100 Meaning: Program error or system error. An extent chain was
broken.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

74 116 Meaning: Program error or system error. An extent has been
overlaid.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell.

 CSRPFRE — Return a Cell to a Cell Pool 205

 CSRPFRE Callable Service

206 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPFR1 Callable Service

CSRPFR1 — Return a Cell to a Cell Pool

 Description
Call the CSRPFR1 cell pool service to return an allocated cell to a cell pool. You must
specify the address of the cell that you want to return. (The CSRPFRE service provides the
same function but slightly slower performance.)

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must be in

31-bit addressing mode when calling the service. All input
addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are located in
a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be in

the primary address space or in an address/data space that is
addressable through a public entry on the caller's dispatchable unit
access list (DU-AL).

 Programming Requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR before you
CALL CSRPFR1 so the CALL macro can generate the correct code for AR mode.

Before you use cell pool services, you can optionally include the CSRCPASM macro to
generate cell pool services equate (EQU) statements. CSRCPASM provides the following
constants for use in your program:

\ Length of the cell pool anchor data area:
\
CSR_ANCHOR_LENGTH EQU 64
\
\
\ Base length of the cell pool extent data area:
\
CSR_EXTENT_BASE EQU 128
\
\
\ Length of the user-supplied pool name:
\
CSR_POOL_NAME_LEN EQU 8
\
\

 Restrictions
None.

 Copyright IBM Corp. 1988, 1999 207

 CSRPFR1 Callable Service

Input Register Information
Before calling the CSRPFR1 service, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram. You must code all parameters on the CALL
statement in the order shown.

CALL CSRPFR1

,(cntl_alet
,anchor_addr
,cell_addr
,return_code
,save_area)

 Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the anchor and
extents. Initialize the ALET to 0 if your program is running in AR mode and the anchor
and extents are in the primary address space. If your program is running in primary
ASC mode, the value is ignored, but you must code the parameter anyway.

208 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPFR1 Callable Service

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

,cell_addr
Specifies the variable containing the address of the cell that CSRPFR1 is to free.

,return_code)
When CSRPFR1 completes, the variable specified for return_code contains the return
code.

,save_area)
Specifies a 144-byte save area. The system does not change the first 8 bytes or the
last 8 bytes of this area.

 ABEND Codes
None.

 CSRPFR1 — Return a Cell to a Cell Pool 209

 CSRPFR1 Callable Service

Return and Reason Codes
When the CSRPFR1 service returns control to your program, GPR 15 (and return_code)
contains one of the following return codes:

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

04 04 Meaning: The last cell has been returned to an inactive extent.

Action: None required. However, you might take some action
depending on your application.

1C 28 Meaning: Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor
address or inadvertently overlaid the anchor area.

54 84 Meaning: Program error. The cell address is not valid.

Action: Investigate the following possible causes:

� The input cell address does not point to the beginning of a cell.
� The cell is not in the cell pool specified by the anchor address.

58 88 Meaning: Program error. Either you have already returned the cell or
you never allocated it.

Action: Check to see if your program contains a logic error that
caused this situation to occur.

64 100 Meaning: Program error or system error. An extent chain was
broken.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

74 116 Meaning: Program error or system error. An extent has been
overlaid.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell.

210 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPGET Callable Service

CSRPGET — Allocate a Cell from a Cell Pool

 Description
Call the CSRPGET cell pool service to allocate a cell from the cell pool. CSRPGET
allocates cells from the lowest- to highest-numbered active extents, and within each extent,
from the lowest to the highest cell address. CSRPGET passes back to the calling program
the address of the cell it allocated but does not clear the cell storage to binary zeros. (The
CSRPGT1 service provides the same function with slightly enhanced performance.)

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must be in

31-bit addressing mode when calling the service. All input
addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are located in
a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be in

the primary address space or in an address/data space that is
addressable through a public entry on the caller's dispatchable unit
access list (DU-AL).

 Programming Requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR before you
call CSRPGET so the CALL macro can generate the correct code for AR mode.

Before you use cell pool services, you can optionally include the CSRCPASM macro to
generate cell pool services equate (EQU) statements. CSRCPASM provides the following
constants for use in your program:

\ Length of the cell pool anchor data area:
\
CSR_ANCHOR_LENGTH EQU 64
\
\
\ Base length of the cell pool extent data area:
\
CSR_EXTENT_BASE EQU 128
\
\
\ Length of the user-supplied pool name:
\
CSR_POOL_NAME_LEN EQU 8
\
\

 Copyright IBM Corp. 1988, 1999 211

 CSRPGET Callable Service

 Restrictions
None.

Input Register Information
Before calling the CSRPGET service, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram. You must code all parameters on the CALL
statement in the order shown.

CALL CSRPGET

,(cntl_alet
,anchor_addr
,cell_addr
,return_code)

 Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the anchor and
extents. Initialize the ALET to 0 if your program is running in AR mode and the anchor
and extents are in the primary address space. If your program is running in primary
ASC mode, the value is ignored, but you must code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

212 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPGET Callable Service

,cell_addr
When CSRPGET completes, the variable specified by cell_addr contains the address of
the cell that CSRPGET allocated.

,return_code)
When CSRPGET completes, the variable specified by return_code contains the return
code.

 ABEND Codes
None.

Return and Reason Codes
When the CSRPGET service returns control to your program, GPR 15 (and return_code)
contains one of the following return codes:

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

08 08 Meaning: Program error. There were no available cells in the pool.
More than one program could be using the cell pool.

Action: Retry the request one or more times. If the problem persists,
consider freeing existing cells or adding new cells to the cell pool, or
both.

1C 28 Meaning: Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor
address or inadvertently overlaid the anchor area.

64 100 Meaning: Program or system error. An extent chain was broken.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

68 104 Meaning: Program or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

74 116 Meaning: Program or system error. An extent has been overlaid.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

 CSRPGET — Allocate a Cell from a Cell Pool 213

 CSRPGET Callable Service

214 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPGT1 Callable Service

CSRPGT1 — Allocate a Cell from a Cell Pool

 Description
Call the CSRPGT1 cell pool service to allocate a cell from the cell pool. CSRPGT1 allocates
cells from the lowest- to highest-numbered active extents, and within each extent, from the
lowest to the highest cell address. CSRPGT1 passes back to the calling program the
address of the cell it allocated but does not clear the cell storage to binary zeros. (The
CSRPGET service provides the same function but slightly slower performance.)

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must be in

31-bit addressing mode when calling the service. All input
addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are located in
a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be in

the primary address space or in an address/data space that is
addressable through a public entry on the caller's dispatchable unit
access list (DU-AL).

 Programming Requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR before you
call CSRPGT1 so the CALL macro can generate the correct code for AR mode.

Before you use cell pool services, you can optionally include the CSRCPASM macro to
generate cell pool services equate (EQU) statements. CSRCPASM provides the following
constants for use in your program:

\ Length of the cell pool anchor data area:
\
CSR_ANCHOR_LENGTH EQU 64
\
\
\ Base length of the cell pool extent data area:
\
CSR_EXTENT_BASE EQU 128
\
\
\ Length of the user-supplied pool name:
\
CSR_POOL_NAME_LEN EQU 8
\
\

 Copyright IBM Corp. 1988, 1999 215

 CSRPGT1 Callable Service

 Restrictions
None.

Input Register Information
Before calling the CSRPGT1 service, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram. You must code all parameters on the CALL
statement in the order shown.

CALL CSRPGT1

,(cntl_alet
,anchor_addr
,cell_addr
,return_code
,save_area)

216 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPGT1 Callable Service

 Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the anchor and
extents. Initialize the ALET to 0 if your program is running in AR mode and the anchor
and extents are in the primary address space. If your program is running in primary
ASC mode, the value is ignored, but you must code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

,cell_addr
When CSRPGT1 completes, the variable specified by cell_addr contains the address of
the cell that CSRPGT1 allocated.

,return_code
When CSRPGT1 completes, the variable specified by return_code contains the return
code.

,save_area)
Specifies a 144-byte save area. The system does not change the first 8 bytes or the
last 8 bytes of this area.

 ABEND Codes
None.

Return and Reason Codes
When the CSRPGT1 service returns control to your program, GPR 15 (and return_code)
contains one of the following return codes:

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

08 08 Meaning: Program error. There were no available cells in the pool.
More than one program could be using the cell pool.

Action: Retry the request one or more times. If the problem persists,
consider freeing existing cells or adding new cells to the cell pool, or
both.

1C 28 Meaning: Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor
address or inadvertently overlaid the anchor area.

64 100 Meaning: Program or system error. An extent chain was broken.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

68 104 Meaning: Program or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

74 116 Meaning: Program or system error. An extent has been overlaid.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

 CSRPGT1 — Allocate a Cell from a Cell Pool 217

 CSRPGT1 Callable Service

218 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPQCL Callable Service

CSRPQCL — Query a Cell

 Description
Call the CSRPQCL cell pool service to receive status information about a specified cell in a
cell pool. CSRPQCL reports whether the cell is free or allocated, and returns the number of
the extent associated with the cell. CSRPQCL does not prevent other programs from
changing the pool during or after a query. CSRPQCL returns the status as it was at the time
you issued the CALL.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must be in

31-bit addressing mode when calling the service. All input
addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are located in
a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be in

the primary address space or in an address/data space that is
addressable through a public entry on the caller's dispatchable unit
access list (DU-AL).

 Programming Requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR before you
call CSRPQCL so the CALL macro can generate the correct code for AR mode.

Before you use cell pool services, you can optionally include the CSRCPASM macro to
generate cell pool services equate (EQU) statements. CSRCPASM provides the following
constants for use in your program:

\ Length of the cell pool anchor data area:
\
CSR_ANCHOR_LENGTH EQU 64
\
\
\ Base length of the cell pool extent data area:
\
CSR_EXTENT_BASE EQU 128
\
\
\ Length of the user-supplied pool name:
\
CSR_POOL_NAME_LEN EQU 8
\
\

 Copyright IBM Corp. 1988, 1999 219

 CSRPQCL Callable Service

 Restrictions
None.

Input Register Information
Before calling the CSRPQCL service, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram. You must code all parameters on the CALL
statement in the order shown.

CALL CSRPQCL

,(cntl_alet
,anchor_addr
,cell_addr
,cell_avail
,extent_num
,return_code)

 Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the anchor and
extents. Initialize the ALET to 0 if your program is running in AR mode and the anchor
and extents are in the primary address space. If your program is running in primary
ASC mode, the value is ignored, but you must code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

220 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPQCL Callable Service

,cell_addr
Specifies the variable containing the address of the cell the service will query.

,cell_avail
When CSRPQCL completes, the variable specified for cell_avail contains one of the
following values. These indicate the status of the specified cell at the time you issued
the CALL.

0 Cell available
1 Cell allocated

,extent_num
When CSRPQCL completes, the variable specified for extent_num contains the number
of the extent that contains the specified cell.

,return_code)
When CSRPQCL completes, the variable specified for return_code contains the return
code.

 ABEND Codes
None.

Return and Reason Codes
When the CSRPQCL service returns control to your program, GPR 15 (and return_code)
contains one of the following return codes:

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

1C 28 Meaning: Program error. The anchor address is not valid.

Action: Check to see if the program passed the wrong anchor
address or inadvertently overlaid the anchor area.

54 84 Meaning: Program error. The cell address is not valid.

Action: Investigate the following possible causes:

� The input cell address does not point to the beginning of a cell
� The cell is not in the cell pool specified by the anchor address.

64 100 Meaning: Program error or system error. An extent chain was
broken.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

 CSRPQCL — Query a Cell 221

 CSRPQCL Callable Service

222 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPQEX Callable Service

CSRPQEX — Query a Cell Pool Extent

 Description
Call the CSRPQEX cell pool service to receive status information about a specified extent.

CSRPQEX does not prevent other programs from changing the pool during or after a query.
CSRPQEX returns the status as it was at the time you issued the CALL.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must be in

31-bit addressing mode when calling the service. All input
addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are located in
a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. Control parameters

must be in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

 Programming Requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR before you
call CSRPQEX so the CALL macro can generate the correct code for AR mode.

Before you use cell pool services, you can optionally include the CSRCPASM macro to
generate cell pool services equate (EQU) statements. CSRCPASM provides the following
constants for use in your program:

\ Length of the cell pool anchor data area:
\
CSR_ANCHOR_LENGTH EQU 64
\
\
\ Base length of the cell pool extent data area:
\
CSR_EXTENT_BASE EQU 128
\
\
\ Length of the user-supplied pool name:
\
CSR_POOL_NAME_LEN EQU 8
\
\

 Restrictions
None.

 Copyright IBM Corp. 1988, 1999 223

 CSRPQEX Callable Service

Input Register Information
Before calling the CSRPQEX service, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram. You must code all parameters on the CALL
statement in the order shown.

CALL CSRPQEX

,(cntl_alet
,anchor_addr
,extent_num
,extent_addr
,extent_len
,area_addr
,area_size
,total_cells
,avail_cells
,return_code)

 Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the anchor and
extents. Initialize the ALET to 0 if your program is running in AR mode and the anchor
and extents are in the primary address space. If your program is running in primary
ASC mode, the value is ignored, but you must code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

224 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPQEX Callable Service

,extent_num
Specifies the variable containing the number of the extent the service will query.

,status
When CSRPQEX completes, the variable specified for status contains one of the
following decimal numbers. These indicate the status of the extent at the time of the
CALL.

1 Disconnected and inactive
2 Connect in progress
3 Connected and inactive
4 Connected and active
5 Disconnect in progress

,extent_addr
When CSRPQEX completes, the variable specified for extent_addr contains the address
of the extent.

,extent_len
When CSRPQEX completes, the variable specified for extent_len contains the length of
the extent, in bytes.

,area_addr
When CSRPQEX completes, the variable specified for area_addr contains the address
of cell storage.

,area_size
When CSRPQEX completes, the variable specified for area_size contains the size of
cell storage for the extent.

,total_cells
When CSRPQEX completes, the variable specified for total_cells contains the total
number of cells associated with the extents.

,avail_cells
When CSRPQEX completes, the variable specified for avail_cells contains the total
number of cells associated with the specified extent that are available for allocation.

,return_code)
When CSRPQEX completes, the variable specified for return_code contains the return
code.

 ABEND Codes
None.

 CSRPQEX — Query a Cell Pool Extent 225

 CSRPQEX Callable Service

Return and Reason Codes
When the CSRPQEX service returns control to your program , GPR 15 (and return_code)
contains one of the following return codes.

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

1C 28 Meaning: Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor
address or inadvertently overlaid the anchor area.

30 48 Meaning: Program error. The extent number is not valid.

Action: Make sure the extent number is within the range of 0 through
65536.

64 100 Meaning: Program error or system error. An extent chain was
broken.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

6C 108 Meaning: Program error or system error. An extent could not be
found.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that the anchor address for the right cell pool is
being passed.

74 116 Meaning: Program error or system error. An extent has been
overlaid.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

226 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPQPL Callable Service

CSRPQPL — Query the Cell Pool

 Description
Call the CSRPQPL cell pool service to receive status information about the cell pool.

CSRPQPL does not prevent other programs from changing the pool during or after a query.
CSRPQPL returns the status as it was at the time you issued the CALL.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must be in

31-bit addressing mode when calling the service. All input
addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are located in
a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be in

the primary address space or in an address/data space that is
addressable through a public entry on the caller's dispatchable unit
access list (DU-AL).

 Programming Requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR before you
call CSRPQPL so the CALL macro can generate the correct code for AR mode.

Before you use cell pool services, you can optionally include the CSRCPASM macro to
generate cell pool services equate (EQU) statements. CSRCPASM provides the following
constants for use in your program:

\ Length of the cell pool anchor data area:
\
CSR_ANCHOR_LENGTH EQU 64
\
\
\ Base length of the cell pool extent data area:
\
CSR_EXTENT_BASE EQU 128
\
\
\ Length of the user-supplied pool name:
\
CSR_POOL_NAME_LEN EQU 8
\
\

 Restrictions
None.

 Copyright IBM Corp. 1988, 1999 227

 CSRPQPL Callable Service

Input Register Information
Before calling the CSRPQPL service, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram. You must code all parameters on the CALL
statement in the order shown.

CALL CSRPQPL

,(cntl_alet
,anchor_addr
,user_name
,cell_size
,total_cells
,avail_cells
,number_extents
,return_code)

 Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the anchor and
extents. Initialize the ALET to 0 if your program is running in AR mode and the anchor
and extents are in the primary address space. If your program is running in primary
ASC mode, the value is ignored, but you must code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

228 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPQPL Callable Service

,user_name
When CSRPQPL completes, the variable specified by user_name contains the name on
the CSRPBLD service that created the cell pool.

,cell_size
When CSRPQPL completes, the variable specified by cell_size contains the size of each
cell at the time the cell pool was created.

,total_cells
When CSRPQPL completes, the variable specified by total_cells contains the total
number of cells associated with the extents.

,avail_cells
When CSRPQPL completes, the variable specified by avail_cells contains the total
number of cells in active extents that are available for allocation.

,number_extents
When CSRPQPL completes, the variable specified by number_extents contains the total
number of extents (active or inactive, and connected or disconnected) in the cell pool.

,return_code)
When CSRPQPL completes, the variable specified by return_code contains the return
code.

 ABEND Codes
None.

Return and Reason Codes
When the CSRPQPL service returns control to your program, GPR 15 (and return_code)
contains one of the following return codes:

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

1C 28 Meaning: Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong address or
inadvertently overlaid the anchor area.

64 100 Meaning: Program error or system error. The extent address is not
valid.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

 CSRPQPL — Query the Cell Pool 229

 CSRPQPL Callable Service

230 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPRFR Callable Service

CSRPRFR — Return a Cell to a Cell Pool (Register Interface)

 Description
Call the CSRPRFR cell pool service to return an allocated cell to a cell pool using the
register interface, if your program cannot obtain storage for a parameter list. (The
CSRPRFR1 service provides the same function with slightly enhanced performance.)

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must be in

31-bit addressing mode when calling the service.
ASC mode: Primary or AR mode. (If the anchor and the extents are located in

a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None.

 Programming Requirements
Before you use cell pool services, you can optionally include the CSRCPASM macro to
generate cell pool services equate (EQU) statements. CSRCPASM provides the following
constants for use in your program:

\ Length of the cell pool anchor data area:
\
CSR_ANCHOR_LENGTH EQU 64
\
\
\ Base length of the cell pool extent data area:
\
CSR_EXTENT_BASE EQU 128
\
\
\ Length of the user-supplied pool name:
\
CSR_POOL_NAME_LEN EQU 8
\
\

 Restrictions
None.

Input Register Information
Before calling the CSRPRFR service, the caller must ensure that the following access
registers (ARs) and general purpose registers (GPRs) contain the specified information:

Register Contents
AR 1 The ALET used to access all the cell storage areas. Specify 0 if your program

is running in AR mode and the anchor and extents are in the primary address
space. If your program is running in primary ASC mode, CSRPRFR ignores
the value.

GPR 0 The address of the cell you want freed.
GPR 1 The anchor address.

 Copyright IBM Corp. 1988, 1999 231

 CSRPRFR Callable Service

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram.

CALL CSRPRFR

 Parameters
See “Input Register Information” on page 231.

 ABEND Codes
None.

232 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPRFR Callable Service

Return and Reason Codes
When the CSRPRFR service returns control to your program, GPR 15 contains one of the
following return codes:

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

04 04 Meaning: The last cell has been returned to an inactive extent.

Action: None required. However, you might want to take some
action depending on your application.

1C 28 Meaning: Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor
address or inadvertently overlaid the anchor area.

54 84 Meaning: Program error. The cell address is not valid.

Action: Investigate the following possible causes:

� The input cell address does not point to the beginning of a cell
� The cell is not in the cell pool specified by the anchor address.

58 88 Meaning: Program error. Either you have already returned the cell or
you never allocated it.

Action: Check to see if your program contains a logic error that
caused this situation to occur.

64 100 Meaning: Program error or system error. An extent chain was
broken.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

74 116 Meaning: Program error or system error. An extent has been
overlaid.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

 CSRPRFR — Return a Cell to a Cell Pool (Register Interface) 233

 CSRPRFR Callable Service

234 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPRFR1 Callable Service

CSRPRFR1 — Return a Cell to a Cell Pool (Register Interface)

 Description
Call the CSRPRFR1 cell pool service to return an allocated cell to a cell pool using the
register interface, if your program cannot obtain storage for a parameter list. (The
CSRPRFR service provides the same function but slightly slower performance.)

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must be in

31-bit addressing mode when calling the service.
ASC mode: Primary or AR mode. (If the anchor and the extents are located in

a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None.

 Programming Requirements
Before you use cell pool services, you can optionally include the CSRCPASM macro to
generate cell pool services equate (EQU) statements. CSRCPASM provides the following
constants for use in your program:

\ Length of the cell pool anchor data area:
\
CSR_ANCHOR_LENGTH EQU 64
\
\
\ Base length of the cell pool extent data area:
\
CSR_EXTENT_BASE EQU 128
\
\
\ Length of the user-supplied pool name:
\
CSR_POOL_NAME_LEN EQU 8
\
\

 Restrictions
None.

Input Register Information
Before calling the CSRPRFR1 service, the caller must ensure that the following access
registers (ARs) and general purpose registers (GPRs) contain the specified information:

Register Contents
AR 1 The ALET used to access all the cell storage areas. Specify 0 if your program

is running in AR mode and the anchor and extents are in the primary address
space. If your program is running in primary ASC mode, CSRPRFR1 ignores
the value.

GPR 0 The address of the cell you want freed.
GPR 1 The anchor address.

 Copyright IBM Corp. 1988, 1999 235

 CSRPRFR1 Callable Service

GPR 13 The address of a 144-byte save area that your program provides. The system
does not change the first 8 bytes or the last 8 bytes of this area.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram.

CALL CSRPRFR1

 Parameters
See “Input Register Information” on page 235.

 ABEND Codes
None.

236 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPRFR1 Callable Service

Return and Reason Codes
When the CSRPRFR1 service returns control to your program, GPR 15 contains one of the
following return codes:

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

04 04 Meaning: The last cell has been returned to an inactive extent.

Action: None required. However, you might want to take some
action depending on your application.

1C 28 Meaning: Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor
address or inadvertently overlaid the anchor area.

54 84 Meaning: Program error. The cell address is not valid.

Action: Investigate the following possible causes:

� The input cell address does not point to the beginning of a cell
� The cell is not in the cell pool specified by the anchor address.

58 88 Meaning: Program error. Either you have already returned the cell or
you never allocated it.

Action: Check to see if your program contains a logic error that
caused this situation to occur.

64 100 Meaning: Program error or system error. An extent chain was
broken.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

74 116 Meaning: Program error or system error. An extent has been
overlaid.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

 CSRPRFR1 — Return a Cell to a Cell Pool (Register Interface) 237

 CSRPRFR1 Callable Service

238 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPRGT Callable Service

CSRPRGT — Allocate a Cell from a Cell Pool (Register Interface)

 Description
Call the CSRPRGT cell pool service to allocate a cell from the cell pool using the register
interface, if your program cannot obtain storage for a parameter list. CSRPRGT allocates
cells from the lowest- to highest-numbered active extents, and within each extent, from the
lowest to highest cell address. (The CSRPRGT1 service provides the same function with
slightly enhanced performance.)

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must be in

31-bit addressing mode when calling the service. All input
addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are located in
a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None.

 Programming Requirements
Before you use cell pool services, you can optionally include the CSRCPASM macro to
generate cell pool services equate (EQU) statements. CSRCPASM provides the following
constants for use in your program:

\ Length of the cell pool anchor data area:
\
CSR_ANCHOR_LENGTH EQU 64
\
\
\ Base length of the cell pool extent data area:
\
CSR_EXTENT_BASE EQU 128
\
\
\ Length of the user-supplied pool name:
\
CSR_POOL_NAME_LEN EQU 8
\
\

 Restrictions
None.

Input Register Information
Before calling the CSRPRGT service, the caller must ensure that the following access
registers (ARs) and general purpose registers (GPRs) contain the specified information:

 Copyright IBM Corp. 1988, 1999 239

 CSRPRGT Callable Service

Register Contents
AR 1 The ALET used to access all the cell storage areas. Specify 0 if your program

is running in AR mode and the anchor and extents are in the primary address
space. If your program is running in primary ASC mode, CSRPRGT ignores
the value.

GPR 1 The anchor address

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Used as a work register by the system
1 Address of the allocated cell
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0 Used as a work register by the system
1-14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

240 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPRGT Callable Service

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram.

CALL CSRPRGT

 Parameters
See “Input Register Information” on page 239.

 ABEND Codes
None.

Return and Reason Codes
When the CSRPRGT service returns control to your program, GPR 15 contains one of the
following return codes:

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

08 08 Meaning: Program error. There were no available cells in the pool.

Action: Retry the request one or more times. If the problem persists,
consider freeing existing cells, adding new cells to the cell pool, or
both.

1C 28 Meaning: Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor
address or inadvertently overlaid the anchor area.

64 100 Meaning: Program error or system error. An extent chain was
broken.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

74 116 Meaning: Program error or system error. An extent has been
overlaid.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

 CSRPRGT — Allocate a Cell from a Cell Pool (Register Interface) 241

 CSRPRGT Callable Service

242 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPRGT1 Callable Service

CSRPRGT1 — Allocate a Cell from a Cell Pool (Register Interface)

 Description
Call the CSRPRGT1 cell pool service to allocate a cell from the cell pool using the register
interface, if your program cannot obtain storage for a parameter list. CSRPRGT1 allocates
cells from the lowest- to highest-numbered active extents, and within each extent, from the
lowest to highest cell address. (The CSRPRGT service provides the same function but
slightly slower performance.)

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must be in

31-bit addressing mode when calling the service. All input
addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are located in
a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None.

 Programming Requirements
Before you use cell pool services, you can optionally include the CSRCPASM macro to
generate cell pool services equate (EQU) statements. CSRCPASM provides the following
constants for use in your program:

\ Length of the cell pool anchor data area:
\
CSR_ANCHOR_LENGTH EQU 64
\
\
\ Base length of the cell pool extent data area:
\
CSR_EXTENT_BASE EQU 128
\
\
\ Length of the user-supplied pool name:
\
CSR_POOL_NAME_LEN EQU 8
\
\

 Restrictions
None.

Input Register Information
Before calling the CSRPRGT1 service, the caller must ensure that the following access
registers (ARs) and general purpose registers (GPRs) contain the specified information:

 Copyright IBM Corp. 1988, 1999 243

 CSRPRGT1 Callable Service

Register Contents
AR 1 The ALET used to access all the cell storage areas. Specify 0 if your program

is running in AR mode and the anchor and extents are in the primary address
space. If your program is running in primary ASC mode, CSRPRGT1 ignores
the value.

GPR 1 The anchor address
GPR 13 The address of a 144-byte save area that your program provides. The system

does not change the first 8 bytes or the last 8 bytes of this area.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Used as a work register by the system
1 Address of the allocated cell
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0 Used as a work register by the system
1-14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

244 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRPRGT1 Callable Service

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram.

CALL CSRPRGT1

 Parameters
See “Input Register Information” on page 243.

 ABEND Codes
None.

Return and Reason Codes
When the CSRPRGT1 service returns control to your program, GPR 15 contains one of the
following return codes:

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

08 08 Meaning: Program error. There were no available cells in the pool.

Action: Retry the request one or more times. If the problem persists,
consider freeing existing cells, adding new cells to the cell pool, or
both.

1C 28 Meaning: Program error. The anchor address is not valid.

Action: Check to see if your program passed the wrong anchor
address or inadvertently overlaid the anchor area.

64 100 Meaning: Program error or system error. An extent chain was
broken.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent chain is circular.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

74 116 Meaning: Program error or system error. An extent has been
overlaid.

Action: Check to see if your program inadvertently overlaid an extent
area. Make sure that no extent belongs to more than one cell pool.

 CSRPRGT1 — Allocate a Cell from a Cell Pool (Register Interface) 245

 CSRPRGT1 Callable Service

246 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRREFR Callable Service

CSRREFR — Refresh an Object

 Description
To refresh changed data that is in a window, a scroll area, or a temporary object, call the
CSRREFR window service. CSRREFR refreshes changed data within specified blocks as
follows:

� If the object is permanent, CSRREFR replaces specified changed blocks in windows or
the scroll area with corresponding blocks from the object on DASD.

� For a temporary object, CSRREFR refreshes specified changed blocks in windows and
the object by setting the blocks to binary zeros.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit, but all addresses must be 31-bit addresses
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Programming Requirements
None.

 Restrictions
The caller must follow all the restrictions imposed by the DIV macro.

Input Register Information
Before calling the CSRREFR service, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register Contents
13 The address of a standard 18-word save area

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Contains the reason code.
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

 Copyright IBM Corp. 1988, 1999 247

 CSRREFR Callable Service

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the CALL as shown on the syntax diagram. You must code all parameters on the
CALL statement in the order shown.

CALL CSRREFR

,(object_id
,offset
,span
,return_code
,reason_code)

 Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(object_id
Specifies the object identifier. Supply the same object identifier that CSRIDAC returned
when you obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset into the object in blocks of 4096 bytes. A value of 0 specifies the
first block of 4096 bytes or bytes 0 to 4095 of the object; a value of 1 specifies the
second block of 4096 bytes, or bytes 4096 to 8191 of the object, and so forth.

Define offset as integer data of length 4.

offset and span, together, determine what part of the object window services refreshes.
To refresh the entire object, specify 0 for offset and 0 for span.

,span
Specifies how many 4096-byte blocks CSRREFR is to refresh.

Define span as integer data of length 4.

,return_code
When CSRREFR completes, return_code contains the return code. Define return_code
as integer data of length 4.

,reason_code)
When CSRREFR completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

248 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRREFR Callable Service

 ABEND Codes
CSRREFR might abnormally terminate with abend code X'019D'. See OS/390 MVS
System Codes for an explanation and programmer responses.

Return and Reason Codes
When the CSRREFR service returns control to your program, GPR 15 (and return_code)
contains a return code and GPR 0 (and reason_code) contains a reason code. The
following table identifies return code and reason code combinations and explains their
meanings.

The data-in-virtual reason code, which is returned with CSRREFR return code X'C', is two
bytes long and right justified. It is explained in the description of the DIV macro (“DIV —
Data-in-Virtual” on page 361).

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00000000 00000000 Meaning: The operation was successful.

Action: None.

00000008 00000152 Meaning: Program error. The system could not refresh all the
temporary objects within the specified span.

Action: Investigate the following possible causes:

� The window to be refreshed contains an I/O DEFINEd block
� The data space in which the window is located is deleted.

0000000C xxxxnnnn Meaning: The value nnnn is a data-in-virtual reason code. The value
xxxx is not part of the intended programming interface.

Action: See the DIV macro description for an explanation of nnnn.

0000002C 00000004 Meaning: Program error. Window services have not been defined to
your system, or the link to the service failed.

Action: If window services are available on your system, rerun the
program one or more times. If the problem persists, record the return
and reason code, and contact the appropriate IBM support personnel.

 CSRREFR — Refresh an Object 249

 CSRREFR Callable Service

250 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRSAVE Callable Service

CSRSAVE — Save Changes Made to a Permanent Object

 Description
To update specified blocks of a permanent object with changes, call the CSRSAVE window
service. The changes can be in blocks that are mapped to the scroll area, in blocks that are
mapped to windows, or in a combination of these places.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit, but all addresses must be 31-bit addresses
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Programming Requirements
None.

 Restrictions
You cannot use CSRSAVE to save changes made to a temporary object. If you call
CSRSAVE for a temporary object, CSRSAVE ignores the request and returns control to your
program with a return code of 8. To save changes made to a temporary object, call
CSRSCOT.

The caller must follow all the restrictions imposed by the DIV macro.

Input Register Information
Before calling the CSRSAVE service, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register Contents
13 The address of a standard 18-word save area

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

 Copyright IBM Corp. 1988, 1999 251

 CSRSAVE Callable Service

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the CALL as shown in the syntax diagram. You must code all parameters on the
CALL statement in the order shown.

CALL CSRSAVE

,(object_id
,offset
,span
,new_hi_offset
,return_code
,reason_code)

 Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(object_id
Specifies the object identifier. Supply the same object identifier that CSRIDAC returned
when you obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset into the object in blocks of 4096 bytes. A value of 0 specifies the
first block of 4096 bytes or bytes 0 to 4095 of the object; a value of 1 specifies the
second block of 4096 bytes, or bytes 4096 to 8191 of the object, and so forth.

Define offset as integer data of length 4.

offset and span, together, determine what part of the object window services saves. To
save the entire object, specify 0 for offset and 0 for span.

,span
Specifies how many 4096-byte blocks CSRSAVE is to save.

Define span as integer data of length 4.

,new_hi_offset
When CSRSAVE completes, new_hi_offset contains the new size of the object
expressed in units of 4096 bytes.

Define new_hi_offset as integer data of length 4.

,return_code
When CSRSAVE completes, return_code contains the return code. Define return_code
as integer data of length 4.

252 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRSAVE Callable Service

,reason_code)
When CSRSAVE completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

 ABEND Codes
CSRSAVE might abnormally terminate with abend code X'019'. See OS/390 MVS System
Codes for an explanation and programmer responses.

Return and Reason Codes
When the CSRSAVE service returns control to your program, GPR 15 (and return_code)
contains a return code. GPR 0 (and reason_code) contains a reason code. The following
table identifies return code and reason code combinations, and explains their meanings.

A return code of X'4' with a reason code of X'0807' or a return code of X'C' with any
reason code means that data-in-virtual encountered a problem or an unexpected condition.
Data-in-virtual reason codes, which are two bytes long and right justified, are explained in
the description of the DIV macro (“DIV — Data-in-Virtual” on page 361).

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00000000 00000000 Meaning: The operation was successful.

Action: None.

00000004 xxxx0807 Meaning: Environmental error. Media damage might be present in
allocated DASD space. The damage is beyond the currently saved
portion of the object. The SAVE operation completed successfully.
The value X'0807' is a data-in-virtual reason code. The value xxxx is
not part of the intended programming interface.

Action: See the DIV macro description for an explanation of
X'0807'.

00000008 00000143 Meaning: Program error. You cannot use the SAVE service for a
temporary object.

Action: Call CSRSCOT to save changes made to a temporary object.

0000000C xxxxnnnn Meaning: The value nnnn is a data-in-virtual reason code. The value
xxxx is not part of the intended programming interface.

Action: See the DIV macro description for an explanation of nnnn.

0000002C 00000004 Meaning: Program error. Window services have not been defined to
your system, or the link to the service failed.

Action: If window services are available on your system, rerun the
program one or more times. If the problem persists, contact the
appropriate IBM support personnel.

 CSRSAVE — Save Changes Made to a Permanent Object 253

 CSRSAVE Callable Service

254 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRSCOT Callable Service

CSRSCOT — Save Object Changes in a Scroll Area

 Description
Call the CSRSCOT window service to:

� Update specified blocks of a permanent object's scroll area with changes that appear in
a window you have defined for the object. CSRSCOT requires that the permanent
object have a scroll area. CSRSCOT changes only the content of the scroll area and
not the content of the permanent data object.

� Update specified blocks of a temporary data object with the changes that appear in a
window you have defined for the data object.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit, but all addresses must be 31-bit addresses
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Programming Requirements
None.

 Restrictions
The caller must follow all the restrictions imposed by the DIV macro.

Input Register Information
Before calling the CSRSCOT service, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register Contents
13 The address of a standard 18-word save area

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

 Copyright IBM Corp. 1988, 1999 255

 CSRSCOT Callable Service

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the CALL as shown in the syntax diagram. You must code all parameters on the
CALL statement in the order shown.

CALL CSRSCOT

,(object_id
,offset
,span
,return_code
,reason_code)

 Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(object_id
Specifies the object identifier. Supply the same object identifier that CSRIDAC returned
when you obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset into the object in blocks of 4096 bytes. A value of 0 specifies the
first block of 4096 bytes or bytes 0 to 4095 of the object; a value of 1 specifies the
second block of 4096 bytes, or bytes 4096 to 8191 of the object, and so forth.

Define offset as integer data of length 4.

offset and span, together, determine what part of the object CSRSCOT updates. To
update the entire object, specify 0 for offset and 0 for span.

,span
Specifies how many 4096-byte blocks CSRSCOT is to update.

Define span as integer data of length 4.

,return_code
When CSRSCOT completes, return_code contains the return code. Define return_code
as integer data of length 4.

,reason_code)
When CSRSCOT completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

 ABEND Codes
CSRSCOT might abnormally terminate with abend code X'019'. See OS/390 MVS System
Codes for an explanation and programmer responses.

256 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRSCOT Callable Service

Return and Reason Codes
When CSRSCOT returns control to your program, GPR 15 (and return_code) contains a
return code. GPR 0 (and reason_code) contains a reason code. The following table
identifies return code and reason code combinations and tells what each means.

A return code of X'4' with a reason code of X'0807' or a return code of X'C' with any
reason code means that data-in-virtual encountered a problem or an unexpected condition.
Data-in-virtual reason codes, which are two bytes long and right justified, are explained in
the description of the DIV macro (“DIV — Data-in-Virtual” on page 361).

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00000000 00000000 Meaning: The operation was successful.

Action: None.

00000004 xxxx0807 Meaning: Environmental error. Media damage might be present in
allocated DASD space. The damage is beyond the currently saved
portion of the object. The SAVE operation completed successfully.
The value X'0807' is a data-in-virtual reason code. The value xxxx is
not part of the intended programming interface.

Action: See the DIV macro description for an explanation of
X'0807'.

0000000C xxxxnnnn Meaning: The value nnnn is a data-in-virtual reason code. The value
xxxx is not part of the intended programming interface.

Action: See the DIV macro description for an explanation of nnnn.

0000002C 00000004 Meaning: Program error or system error. Window services have not
been defined to your system, or the link to the service failed.

Action: If window services are available on your system, rerun the
program one or more times. If the problem persists, contact the
appropriate IBM support personnel.

 CSRSCOT — Save Object Changes in a Scroll Area 257

 CSRSCOT Callable Service

258 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRSI Callable Service

CSRSI — System Information Service

 Description
Use the CSRSI service to retrieve system information. You can request information about
the machine itself, the logical partition (LPAR) in which the machine is running, or the virtual
machine hypervisor (VM) under which the system is running. The returned information is
mapped by DSECTs in macro CSRSIIDF (for assembler language callers) or structures in
header file CSRSIC (for C language callers).

The information available depends upon the availability of the Store System Information
(STSI) instruction. When the STSI instruction is not available (which would be indicated by
receiving the return code 4 (equate symbol CSRSI_STSINOTAVAILABLE), only the
SI00PCCACPID, SI00PCCACPUA, and SI00PCCACAFM fields within the returned infoarea
are valid. When the STSI instruction is available, the validity of the returned infoarea
depends upon the system:

� If the system is running neither under LPAR nor VM, then only the
CSRSI_Request_V1CPC_Machine data are valid.

� If the system is running under a logical partition (LPAR), then both the
CSRSI_Request_V1CPC_Machine data and CSRSI_Request_V2CPC_LPAR data are
valid.

� If the system is running under a virtual machine hypervisor (VM), then all of the data
(CSRSI_Request_V1CPC_Machine, CSRSI_Request_V2CPC_LPAR, and
CSRSI_Request_V3CPC_VM) are valid.

You can request any or all of the information regardless of your system, and validity bits will
indicate which returned areas are valid.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state, key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit when using the CALL CSRSI form (or csrsi in C),

31-bit when using an alternate form
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: The caller may hold a LOCAL lock, the CMS lock, or the CPU lock,

but is not required to hold any locks.

 Programming Requirements
The caller should include the CSRSIIDF macro to map the returned information and to
provide equates for the service.

 Restrictions:
None.

 Copyright IBM Corp. 1988, 1999 259

 CSRSI Callable Service

Input Register Information
The caller is not required to set up any registers.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system.
2-13 unchanged
14-15 Used as work registers by the system.

 Performance Implications
None.

 Syntax

In C: the syntax is similar. You can use either of the following techniques to invoke the
service:

 1. CSRSI (Request,...Returncode);

When you use this technique, you must link edit your program with a linkage-assist
routine (also called a stub) in SYS1.CSSLIB.

2. CSRSI_byaddr (Request,...Returncode);

This second technique requires AMODE=31, and, before you issue the CALL, you must
verify that the CSRSI service is available (in the CVT, both CVTOSEXT and CVTCSRSI
bits are set on).

In Assembler: Link edit your program with a linkage-assist routine (also called a stub) in
SYS1.CSSLIB unless you use either of the following techniques as an alternative to CALL
CSRSI:

1. LOAD EP=CSRSI
Save the entry point address

 ...
Put the saved entry point address into R15
Issue CALL (15),...

2. L 15,X'1ð' Get CVT
 L 15,X'22ð'(,15)

L 15,X'3ð'(,15) Get address of CSRSI
 CALL (15),(...)

This second technique requires AMODE=31, and, before you issue the CALL, you must
verify that the CSRSI service is available (in the CVT, both CVTOSEXT and CVTCSRSI
bits are set on).

CALL CSRSI

(Request
,Infoarealen
,Infoarea
,Returncode)

 Parameters
Request

Supplied parameter:

 � Type: Integer
� Length: Full word

260 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRSI Callable Service

Request identifies the type of system information to be returned. The field must contain
a value that represents one or more of the possible request types. You add the values
to create the full word. Do not specify a request type more than once. The possible
request types, and their meanings, are:

CSRSI_Request_V1CPC_Machine
The system is to return information about the machine.

CSRSI_Request_V2CPC_LPAR
The system is to return information about the logical partition (LPAR).

CSRSI_Request_V3CPC_VM
The system is to return information about the virtual machine (VM).

,Infoarealen
Supplied parameter:

 � Type: Integer
� Range: X'1040', X'2040', X'3040', X'4040'
� Length: Full word

Infoarealen specifies the length of the infoarea parameter.

,Infoarea
Returned parameter:

 � Type: Character
� Length: X'1040', X'2040', X'3040', X'4040' bytes

Infoarea is to contain the retrieved system information. (Infoarealen specifies the length
of the provided area.) The infoarea must be of the proper length to hold the requested
information. This length depends on the value of the Request parameter.

� When the Request parameter is CSRSI_Request_V1CPC_Machine, the returned
infoarea is mapped by SIV1 and the infoarealen parameter must be X'2040'.

� When the Request parameter is CSRSI_Request_V1CPC_Machine plus
CSRSI_Request_V2CPC_LPAR, the returned infoarea is mapped by SIV1V2 and
the infoarealen parameter must be X'3040'.

� When the Request parameter is CSRSI_Request_V1CPC_Machine plus
CSRSI_Request_V2CPC_LPAR plus CSRSI_Request_V3CPC_VM, the returned
infoarea is mapped by SIV1V2V3 and the infoarealen parameter must be X'4040'.

� When the Request parameter is CSRSI_Request_V1CPC_Machine plus
CSRSI_Request_V3CPC_VM, the returned infoarea is mapped by SIV1V3 and the
infoarealen parameter must be X'3040'.

� When the Request parameter is CSRSI_Request_V2CPC_LPAR, the returned
infoarea is mapped by SIV2 and the infoarealen parameter must be X'1040'.

� When the Request parameter is CSRSI_Request_V2CPC_LPAR plus
CSRSI_Request_V3CPC_VM, the returned infoarea is mapped by SIV2V3 and the
infoarealen parameter must be X'2040'.

� When the Request parameter is CSRSI_Request_V3CPC_VM, the returned
infoarea is mapped by SIV3 and the infoarealen parameter must be X'1040'.

,Returncode
Returned parameter:

 � Type: Integer
� Length: Full word

Returncode contains the return code from the CSRSI service.

 CSRSI — System Information Service 261

 CSRSI Callable Service

 Return Codes
When the CSRSI service returns control to the caller, Returncode contains the return code.
To obtain the equates for the return codes:

� If you are coding in assembler, include mapping macro CSRSIIDF, described in OS/390
MVS Data Areas, Vol 2 (DCCB-ITTCTE).

� If you are coding in C, use include file CSRSIC. See Figure 15.

The following table describes the return codes, shown in decimal.

Return Code
(decimal) Equate Symbol Meaning and Action

00 Equate Symbol : CSRSI_SUCCESS

Meaning : The CSRSI service completed successfully. All information requested was
returned.

Action : Check the si00validityflags field to determine the validity of each returned area.

04 Equate Symbol : CSRSI_STSINOTAVAILABLE

Meaning : The CSRSI service completed successfully, but since the Store System
Information (STSI) instruction was not available, only the SI00PCCACPID, SI00PCCACPUA,
and SI00PCCACAFM fields are valid.

Action : None required.

08 Equate Symbol : CSRSI_SERVICENOTAVAILABLE

Meaning : Environmental error: The CSRSI service is not available on this system.

Action : Avoid calling the CSRSI service unless running on a system on which it is available.

12 Equate Symbol : CSRSI_BADREQUEST

Meaning : User error: The request parameter did not specify a word formed from any
combination of CSRSI_Request_V1CPC_Machine, CSRSI_Request_V2CPC_LPAR, and
CSRSI_Request_V3CPC_VM.

Action : Correct the parameter.

16 Equate Symbol : CSRSI_BADINFOAREALEN

Meaning : User error: The Infoarealen parameter did not match the length of the area
required to return the requested information.

Action : Correct the parameter.

20 Equate Symbol : CSRSI_BADLOCK

Meaning : User error: The service was called while holding a system lock other than CPU.
LOCAL/CML, or CMS.

Action : Avoid calling in this environment.

CSRSIC C/370 Header File
For a C programmer, include file CSRSIC provides equates for return codes and data
constants, such as Register service request types. To use CSRSIC, copy the file from
SYS1.SAMPLIB to the appropriate local C library. The contents of the file are displayed in
Figure 15.

262 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRSI Callable Service

#ifndef __CSRSI

#define __CSRSI

/\\\
 \ Type Definitions for User Specified Parameters \
 \\\/

/\ Type for Request operand of CSRSI \/
typedef int CSRSIRequest;

/\ Type for InfoAreaLen operand of CSRSI \/
typedef int CSRSIInfoAreaLen;

/\ Type for Return Code \/
typedef int CSRSIReturnCode;

/\\\
 \ Function Prototypes for Service Routines \
 \\\/

#ifdef __cplusplus
extern "OS" ??<

#else
 #pragma linkage(CSRSI_calltype,OS)
#endif
typedef void CSRSI_calltype(

CSRSIRequest __REQUEST, /\ Input - request type \/
CSRSIInfoAreaLen __INFOAREALEN, /\ Input - length of infoarea \/
void __INFOAREA, /\ Input - info area \/
CSRSIReturnCode __RC); /\ Output - return code \/

extern CSRSI_calltype csrsi;

#ifdef __cplusplus
 ??>
#endif

#ifndef __cplusplus
#define csrsi_byaddr(Request, Flen, Fptr, Rcptr) \
??< \
 struct CSRSI_PSA\ CSRSI_pagezero = ð; \
 CSRSI_pagezero->CSRSI_cvt->CSRSI_cvtcsrt->CSRSI_addr \
 (Request,Flen,Fptr,Rcptr); \
??>;
#endif
 ??>;
struct CSRSI_CSRT ??<

unsigned char CSRSI_csrt_filler1 ??(48??);
 CSRSI_calltype\ CSRSI_addr;

Figure 15 (Part 1 of 14). CSRSIC from SYS1.SAMPLIB

 CSRSI — System Information Service 263

 CSRSI Callable Service

struct CSRSI_CVT ??<
unsigned char CSRSI_cvt_filler1 ??(116??);

 struct ??<
int CSRSI_cvtdcb_rsvd1 : 4; /\ Not needed \/
int CSRSI_cvtosext : 1; /\ If on, indicates that the

CVTOSLVL fields are valid \/
int CSRSI_cvtdcb_rsvd2 : 3; /\ Not needed \/

 ??> CSRSI_cvtdcb;
unsigned char CSRSI_cvt_filler2 ??(427??);
struct CSRSI_CSRT \ CSRSI_cvtcsrt;
unsigned char CSRSI_cvt_filler3 ??(716??);
unsigned char CSRSI_cvtoslvð;
unsigned char CSRSI_cvtoslv1;
unsigned char CSRSI_cvtoslv2;
unsigned char CSRSI_cvtoslv3;

 struct ??<
int CSRSI_cvtcsrsi : 1; /\ If on, indicates that the

CSRSI service is available \/
int CSRSI_cvtoslv1_rsvd1 : 7; /\ Not needed \/

 ??> CSRSI_cvtoslv4;
unsigned char CSRSI_cvt_filler4 ??(11??); /\ \/

??>;

struct CSRSI_PSA ??<
 char CSRSI_psa_filler??(16??);

struct CSRSI_CVT\ CSRSI_cvt;
??>;

/\ End of CSRSI Header \/

#endif

/\\\/
/\ si11v1 represents the output for a V1 CPC when general CPC \/
/\ information is requested \/
/\\\/

typedef struct ??<
 unsigned char _filler1??(32??); /\ Reserved \/
 unsigned char si11v1cpcmanufacturer??(16??); /\

The 16-character (ð-9
or uppercase A-Z) EBCDIC name
of the manufacturer of the V1
CPC. The name is
left-justified with trailing
blank characters if necessary.

 \/
unsigned char si11v1cpctype??(4??); /\ The 4-character (ð-9) EBCDIC

type identifier of the V1 CPC.
 \/
 unsigned char _filler2??(12??); /\ Reserved \/

Figure 15 (Part 2 of 14). CSRSIC from SYS1.SAMPLIB

264 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRSI Callable Service

unsigned char si11v1cpcmodel??(16??); /\ The 16-character (ð-9 or
uppercase A-Z) EBCDIC model
identifier of the V1 CPC. The
identifier is left-justified
with trailing blank characters

 if necessary. \/
 unsigned char si11v1cpcsequencecode??(16??); /\

The 16-character (ð-9
or uppercase A-Z) EBCDIC
sequence code of the V1 CPC.
The sequence code is
right-justified with leading
EBCDIC zeroes if necessary.

 \/
unsigned char si11v1cpcplantofmanufacture??(4??); /\ The 4-character

(ð-9 or uppercase A-Z) EBCDIC
plant code that identifies the
plant of manufacture for the
V1 CPC. The plant code is
left-justified with trailing
blank characters if necessary.

 \/
unsigned char _filler3??(3996??); /\ Reserved \/

??> si11v1;

/\\\/
/\ si22v1 represents the output for a V1 CPC when information \/
/\ is requested about the set of CPUs \/
/\\\/

typedef struct ??<
 unsigned char _filler1??(32??); /\ Reserved \/
 unsigned char si22v1cpucapability??(4??); /\

An unsigned binary integer
that specifies the capability
of one of the CPUs contained
in the V1 CPC. It is used as
an indication of the
capability of the CPU relative
to the capability of other CPU

 models. \/
unsigned int si22v1totalcpucount : 16; /\ A 2-byte

 unsigned integer
that specifies the
total number of CPUs contained
in the V1 CPC. This number
includes all CPUs in the
configured state, the standby
state, and the reserved state.

 \/

Figure 15 (Part 3 of 14). CSRSIC from SYS1.SAMPLIB

 CSRSI — System Information Service 265

 CSRSI Callable Service

unsigned int si22v1configuredcpucount : 16; /\ A 2-byte
 unsigned binary

integer that specifies
the total number of CPUs that
are in the configured state. A
CPU is in the configured state
when it is described in the

 V1-CPC configuration
definition and is available to
be used to execute programs.

 \/
unsigned int si22v1standbycpucount : 16; /\ A 2-byte

 unsigned integer
that specifies the
total number of CPUs that are
in the standby state. A CPU is
in the standby state when it
is described in the V1-CPC
configuration definition, is
not available to be used to
execute programs, but can be
used to execute programs by
issuing instructions to place
it in the configured state.

 \/
unsigned int si22v1reservedcpucount : 16; /\ A 2-byte

 unsigned binary
integer that specifies
the total number of CPUs that
are in the reserved state. A
CPU is in the reserved state
when it is described in the

 V1-CPC configuration
definition, is not available
to be used to execute
programs, and cannot be made
available to be used to
execute programs by issuing
instructions to place it in
the configured state, but it
may be possible to place it in
the standby or configured
state through manually

 initiated actions \/
 struct ??<

unsigned char _si22v1mpcpucapaf??(2??); /\ Each individual
 adjustment factor. \/
 unsigned char _filler2??(4ð5ð??);
 ??> si22v1mpcpucapafs;
??> si22v1;

#define si22v1mpcpucapaf si22v1mpcpucapafs._si22v1mpcpucapaf

Figure 15 (Part 4 of 14). CSRSIC from SYS1.SAMPLIB

266 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRSI Callable Service

/\\\/
/\ si22v2 represents the output for a V2 CPC when information \/
/\ is requested about the set of CPUs \/
/\\\/

typedef struct ??<
 unsigned char _filler1??(32??); /\ Reserved \/
unsigned int si22v2cpcnumber : 16; /\ A 2-byte

 unsigned integer
which is the number of
this V2 CPC. This number
distinguishes this V2 CPC from
all other V2 CPCs provided by
the same logical-partition

 hypervisor \/
 unsigned char _filler2; /\ Reserved \/
 struct ??<

unsigned int _si22v2lcpudedicated : 1; /\
When one, indicates that
one or more of the logical
CPUs for this V2 CPC are
provided using V1 CPUs that
are dedicated to this V2 CPC
and are not used to provide
logical CPUs for any other V2
CPCs. The number of logical
CPUs that are provided using
dedicated V1 CPUs is specified
by the dedicated-LCPU-count
value. When zero, bit ð
indicates that none of the
logical CPUs for this V2 CPC
are provided using V1 CPUs
that are dedicated to this V2

 CPC. \/
unsigned int _si22v2lcpushared : 1; /\

When one, indicates that
or more of the logical CPUs
for this V2 CPC are provided
using V1 CPUs that can be used
to provide logical CPUs for
other V2 CPCs. The number of
logical CPUs that are provided
using shared V1 CPUs is
specified by the
shared-LCPU-count value. When
zero, it indicates that none
of the logical CPUs for this
V2 CPC are provided using
shared V1 CPUs. \/

Figure 15 (Part 5 of 14). CSRSIC from SYS1.SAMPLIB

 CSRSI — System Information Service 267

 CSRSI Callable Service

unsigned int _si22v2lcpuulimit : 1; /\
Utilization limit. When one,
indicates that the amount of
use of the V1-CPC CPUs that
are used to provide the
logical CPUs for this V2 CPC
is limited. When zero, it
indicates that the amount of
use of the V1-CPC CPUs that
are used to provide the
logical CPUs for this V2 CPC

 is unlimited. \/
unsigned int _filler3 : 5; /\ Reserved

 \/
 ??> si22v2lcpuc; /\ Characteristics \/
unsigned int si22v2totallcpucount : 16; /\

A 2-byte unsigned
integer that specifies the
total number of logical CPUs
that are provided for this V2
CPC. This number includes all
of the logical CPUs that are
in the configured state, the
standby state, and the

 reserved state. \/
unsigned int si22v2configuredlcpucount : 16; /\

A 2-byte unsigned
binary integer that specifies
the total number of logical
CPUs for this V2 CPC that are
in the configured state. A
logical CPU is in the
configured state when it is
described in the V2-CPC
configuration definition and
is available to be used to

 execute programs. \/
unsigned int si22v2standbylcpucount : 16; /\

A 2-byte unsigned
binary integer that specifies
the total number of logical
CPUs that are in the standby
state. A logical CPU is in the
standby state when it is
described in the V2-CPC
configuration definition, is
not available to be used to
execute programs, but can be
used to execute programs by
issuing instructions to place
it in the configured state.

 \/

Figure 15 (Part 6 of 14). CSRSIC from SYS1.SAMPLIB

268 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRSI Callable Service

unsigned int si22v2reservedlcpucount : 16; /\
A 2-byte unsigned
binary integer that specifies
the total number of logical
CPUs that are in the reserved
state. A logical CPU is in the
reserved state when it is
described in the V2-CPC
configuration definition, is
not available to be used to
execute programs, and cannot
be made available to be used
to execute programs by issuing
instructions to place it in
the configured state, but it
may be possible to place it in
the standby or configured
state through manually

 initiated actions \/
 unsigned char si22v2cpcname??(16??); /\

The 8-character EBCDIC name of
this V2 CPC. The name is
left-justified with trailing
blank characters if necessary.

 \/
unsigned char si22v2cpccapabilityaf??(4??); /\ Capability Adjustment

Factor (CAF). An unsigned
binary integer of 1ððð or
less. The adjustment factor
specifies the amount of the
V1-CPC capability that is
allowed to be used for this V2
CPC by the logical-partition
hypervisor. The fraction of
V1-CPC capability is
determined by dividing the CAF
value by 1ððð. \/

 unsigned char _filler4??(16??); /\ Reserved \/
unsigned int si22v2dedicatedlcpucount : 16; /\

A 2-byte unsigned
binary integer that specifies
the number of configured-state
logical CPUs for this V2 CPC
that are provided using
dedicated V1 CPUs. (See the
description of bit

 si22v2lcpudedicated.) \/

Figure 15 (Part 7 of 14). CSRSIC from SYS1.SAMPLIB

 CSRSI — System Information Service 269

 CSRSI Callable Service

unsigned int si22v2sharedlcpucount : 16; /\
A 2-byte unsigned
integer that specifies the
number of configured-state
logical CPUs for this V2 CPC
that are provided using shared
V1 CPUs. (See the description
of bit si22v2lcpushared.)

 \/
unsigned char _filler5??(4ð12??); /\ Reserved \/

 ??> si22v2;

#define si22v2lcpudedicated si22v2lcpuc._si22v2lcpudedicated
#define si22v2lcpushared si22v2lcpuc._si22v2lcpushared
#define si22v2lcpuulimit si22v2lcpuc._si22v2lcpuulimit

/\\\/
/\ si22v3db is a description block that comprises part of the \/
/\ si22v3 data. \/
/\\\/

typedef struct ??<
 unsigned char _filler1??(4??); /\ Reserved \/
unsigned int si22v3dbtotallcpucount : 16; /\

A 2-byte unsigned
binary integer that specifies
the total number of logical
CPUs that are provided for
this V3 CPC. This number
includes all of the logical
CPUs that are in the
configured state, the standby
state, and the reserved state.

 \/
unsigned int si22v3dbconfiguredlcpucount : 16; /\

A 2-byte unsigned
binary integer that specifies
the number of logical CPUs for
this V3 CPC that are in the
configured state. A logical
CPU is in the configured state
when it is described in the

 V3-CPC configuration
definition and is available to
be used to execute programs.

 \/

Figure 15 (Part 8 of 14). CSRSIC from SYS1.SAMPLIB

270 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRSI Callable Service

unsigned int si22v3dbstandbylcpucount : 16; /\
A 2-byte unsigned
binary integer that specifies
the number of logical CPUs for
this V3 CPC that are in the
standby state. A logical CPU
is in the standby state when
it is described in the V3-CPC
configuration definition, is
not available to be used to
execute programs, but can be
used to execute programs by
issuing instructions to place
it in the configured state.

 \/
 unsigned int si22v3dbreservedlcpucount : 16; /\

A 2-byte unsigned
binary integer that specifies
the number of logical CPUs for
this V3 CPC that are in the
reserved state. A logical CPU
is in the reserved state when
it is described in the V2-CPC
configuration definition, is
not available to be used to
execute programs, and cannot
be made available to be used
to execute programs by issuing
instructions to place it in
the configured state, but it
may be possible to place it in
the standby or configured
state through manually

 initiated actions \/
unsigned char si22v3dbcpcname??(8??); /\ The 8-character EBCDIC name

of this V3 CPC. The name is
left-justified with trailing
blank characters if necessary.

 \/
unsigned char si22v3dbcpccaf??(4??); /\ A 4-byte unsigned binary

integer that specifies an
adjustment factor. The
adjustment factor specifies
the amount of the V1-CPC or
V2-CPC capability that is
allowed to be used for this V3
CPC by the

 virtual-machine-hypervisor
 program. \/

Figure 15 (Part 9 of 14). CSRSIC from SYS1.SAMPLIB

 CSRSI — System Information Service 271

 CSRSI Callable Service

unsigned char si22v3dbvmhpidentifier??(16??); /\ The 16-character
EBCDIC identifier of the

 virtual-machine-hypervisor
program that provides this V3
CPC. (This identifier may
include qualifiers such as
version number and release
level). The identifier is
left-justified with trailing
blank characters if necessary.

 \/
 unsigned char _filler2??(24??); /\ Reserved \/
??> si22v3db;
/\\\/
/\ si22v3 represents the output for a V3 CPC when information \/
/\ is requested about the set of CPUs \/
/\\\/

typedef struct ??<
 unsigned char _filler1??(28??); /\ Reserved \/
 unsigned char _filler2??(3??); /\ Reserved \/
 struct ??<

unsigned int _filler3 : 4; /\ Reserved
 \/

unsigned int _si22v3dbcount : 4; /\
Description Block Count. A
4-bit unsigned binary integer
that indicates the number (up
to 8) of V3-CPC description
blocks that are stored in the

 si22v3dbe array. \/
 ??> si22v3dbcountfield; /\ \/
 si22v3db si22v3dbe??(8??); /\ Array of entries. Only the number

indicated by si22v3dbcount
 are valid \/
unsigned char _filler5??(3552??); /\ Reserved \/

??> si22v3;

#define si22v3dbcount si22v3dbcountfield._si22v3dbcount

/\\\/
/\ SIðð represents the "starter" information. This structure is \/
/\ part of the information returned on every CSRSI request. \/
/\\\/

Figure 15 (Part 10 of 14). CSRSIC from SYS1.SAMPLIB

272 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRSI Callable Service

typedef struct ??<
 char siððcpcvariety; /\ SIððCPCVariety_V1CPC_MACHINE,
 SIððCPCVariety_V2CPC_LPAR, or
 SIððCPCVariety_V3CPC_VM \/
 struct ??<

int _siððvalidsi11v1 : 1; /\ si11v1 was requested and
the information returned is valid

 \/
int _siððvalidsi22v1 : 1; /\ si22v2 was requested and

the information returned is valid
 \/

int _siððvalidsi22v2 : 1; /\ si22v2 was requested and
the information returned is valid

 \/
int _siððvalidsi22v3 : 1; /\ si22v3 was requested and

the information returned is valid
 \/

int _filler1 : 4; /\ Reserved \/
 ??> siððvalidityflags;
 unsigned char _filler2??(2??); /\ Reserved \/
unsigned char siððpccacpid??(12??); /\ PCCACPID value for this CPU

 \/
unsigned char siððpccacpua??(2??); /\ PCCACPUA value for this CPU

 \/
unsigned char siððpccacafm??(2??); /\ PCCACAFM value for this CPU

 \/
 unsigned char _filler3??(4??); /\ Reserved \/
unsigned char siððlastupdatetimestamp??(8??); /\ Time of last STSI

update, via STCK \/
 unsigned char _filler4??(32??); /\ Reserved \/
 ??> siðð;

#define siððvalidsi11v1 siððvalidityflags._siððvalidsi11v1
#define siððvalidsi22v1 siððvalidityflags._siððvalidsi22v1
#define siððvalidsi22v2 siððvalidityflags._siððvalidsi22v2
#define siððvalidsi22v3 siððvalidityflags._siððvalidsi22v3

/\\\/
/\ siv1 represents the information returned when V1CPC_MACHINE \/
/\ data is requested \/
/\\\/

typedef struct ??<
siðð siv1siðð; /\ Area mapped by

 struct siðð \/
 si11v1 siv1si11v1; /\ Area

mapped by struct si11v1 \/
 si22v1 siv1si22v1; /\ Area

mapped by struct si22v1 \/
??> siv1;

Figure 15 (Part 11 of 14). CSRSIC from SYS1.SAMPLIB

 CSRSI — System Information Service 273

 CSRSI Callable Service

/\\\/
/\ siv1v2 represents the information returned when V1CPC_MACHINE \/
/\ data and V2CPC_LPAR data is requested \/
/\\\/

typedef struct ??<
siðð siv1v2siðð; /\ Area mapped by

by struct siðð \/
 si11v1 siv1v2si11v1; /\ Area

mapped by struct si11v1 \/
 si22v1 siv1v2si22v1; /\ Area

mapped by struct si22v2 \/
 si22v2 siv1v2si22v2; /\ Area

mapped by struct si22v2 \/
??> siv1v2;

/\\\/
/\ siv1v2v3 represents the information returned when V1CPC_MACHINE \/
/\ data, V2CPC_LPAR data and V3CPC_VM data is requested \/
/\\\/

 typedef struct ??<
 siðð siv1v2v3siðð; /\ Area

mapped by struct siðð \/
 si11v1 siv1v2v3si11v1; /\ Area

mapped by struct si11v1 \/
 si22v1 siv1v2v3si22v1; /\ Area

mapped by struct si22v1 \/
 si22v2 siv1v2v3si22v2; /\ Area

mapped by struct si22v2 \/
 si22v3 siv1v2v3si22v3; /\ Area

mapped by struct si22v3 \/
 ??> siv1v2v3;

/\\\/
/\ siv1v3 represents the information returned when V1CPC_MACHINE \/
/\ data and V3CPC_VM data is requested \/
/\\\/

typedef struct ??<
siðð siv1v3siðð; /\ Area mapped

by struct siðð \/
 si11v1 siv1v3si11v1; /\ Area

mapped by struct si11v1 \/
 si22v1 siv1v3si22v1; /\ Area

mapped by struct si22v1 \/
 si22v3 siv1v3si22v3; /\ Area

mapped by struct si22v3 \/
??> siv1v3;

Figure 15 (Part 12 of 14). CSRSIC from SYS1.SAMPLIB

274 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRSI Callable Service

/\\\/
/\ siv2 represents the information returned when V2CPC_LPAR \/
/\ data is requested \/
/\\\/

typedef struct ??<
siðð siv2siðð; /\ Area mapped by

 struct siðð \/
 si22v2 siv2si22v2; /\ Area

mapped by struct si22v2 \/
??> siv2;

/\\\/
/\ siv2v3 represents the information returned when V2CPC_LPAR \/
/\ and V3CPC_VM data is requested \/
/\\\/

typedef struct ??<
siðð siv2v3siðð; /\ Area mapped

by struct siðð \/
 si22v2 siv2v3si22v2; /\ Area

mapped by struct si22v2 \/
 si22v3 siv2v3si22v3; /\ Area

mapped by struct si22v3 \/
??> siv2v3;

/\\\/
/\ siv3 represents the information returned when V3CPC_VM \/
/\ data is requested \/
/\\\/

typedef struct ??<
siðð siv3siðð; /\ Area mapped by

 struct siðð \/
 si22v3 siv3si22v3; /\ Area

mapped by struct si22v3 \/
??> siv3;

Figure 15 (Part 13 of 14). CSRSIC from SYS1.SAMPLIB

 CSRSI — System Information Service 275

 CSRSI Callable Service

/\\
 \ Fixed Service Parameter and Return Code Defines \
 \\\/

/\ SIðð Constants \/

#define SIððCPCVARIETY_V1CPC_MACHINE 1
#define SIððCPCVARIETY_V2CPC_LPAR 2
#define SIððCPCVARIETY_V3CPC_VM 3

/\ CSRSI Constants \/

#define CSRSI_REQUEST_V1CPC_MACHINE 1
#define CSRSI_REQUEST_V2CPC_LPAR 2
#define CSRSI_REQUEST_V3CPC_VM 4

/\ CSRSI Return codes \/

#define CSRSI_SUCCESS ð
#define CSRSI_STSINOTAVAILABLE 4
#define CSRSI_SERVICENOTAVAILABLE 8
#define CSRSI_BADREQUEST 12
#define CSRSI_BADINFOAREALEN 16
#define CSRSI_BADLOCK 2ð

Figure 15 (Part 14 of 14). CSRSIC from SYS1.SAMPLIB

276 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRVIEW Callable Service

CSRVIEW — View an Object

 Description
Call the CSRVIEW window service to:

� Map a window to one or more blocks of a data object. If you specified scrolling when
you called CSRIDAC to identify the object, CSRVIEW maps the window to the blocks in
the scroll area and maps the scroll area to the object.

� Specify that the reference pattern you are using is either random or sequential.

� End a view that you previously created through CSRVIEW or CSREVW, and unmap the
object.

Mapping a data object enables your program to access the data that is viewed through the
window the same way it accesses other data in your storage.

The CSREVW service also maps a data object. Use that service if your program references
the data in the window in a sequential pattern and can benefit from having more than 16
blocks come into a window at one time, or if it can benefit from having fewer than 16 at one
time.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit, but all addresses must be 31-bit addresses
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space.

 Programming Requirements
None.

 Restrictions
The caller must follow all the restrictions imposed by the DIV macro.

Input Register Information
Before calling the CSRVIEW service, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register Contents
13 The address of a standard 18-word save area

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

 Copyright IBM Corp. 1988, 1999 277

 CSRVIEW Callable Service

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the CALL as shown in the syntax diagram. You must code all parameters on the
CALL statement in the order shown.

CALL CSRVIEW

,(operation_type
,object_id
,offset
,span
,window_name
,usage
,disposition
,return_code
,reason_code)

 Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(operation_type
Specifies the type of operation CSRVIEW is to perform. To begin viewing an object,
specify BEGIN. To end a view, whether mapped by CSRVIEW or CSREVW, specify
END.

Define operation_type as character data of length 5. If you specify END, pad the string
on the right with 1 or 2 blanks.

,object_id
Specifies the object identifier. Supply the object identifier that CSRIDAC returned when
you obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset of the view into the object. Specify the offset in blocks of 4096
bytes.

Define offset as integer data of length 4.

,span
Specifies the window size in blocks of 4096 bytes.

Define span as integer data of length 4.

,window_name
Specifies the symbolic name you assigned to the window in your address space.

278 OS/390 V2R8.0 MVS Assembler Services Reference

 CSRVIEW Callable Service

,usage
Specifies the expected pattern of references to pages in the object. Specify one of the
following values:

SEQ The reference pattern is expected to be sequential. If you specify SEQ,
window services brings up to 16 blocks of data into the window at a time,
depending on the size of the window and availability of resources.

RANDOM The reference pattern is expected to be random. If you specify RANDOM,
window services brings data into the window one block at a time.

Define usage as character data of length 6. If you specify SEQ, pad the string on the
right with 1 to 3 blanks.

,disposition
Defines how CSRVIEW is to handle data that is in the window when you begin or end a
view.

� When you specify CSRVIEW BEGIN and a disposition of:

REPLACE The first time you reference a block to which the window is mapped,
CSRVIEW replaces the data in the window with the data from the
referenced block.

RETAIN When you reference a block to which the window is mapped, the data
in the window remains unchanged. When you call CSRSAVE to save
the mapped blocks, CSRSAVE saves all of the mapped blocks
because CSRSAVE considers them changed.

� When you specify CSRVIEW END and a disposition of:

REPLACE CSRVIEW discards the data that is in the window, making the window
contents unpredictable. CSRVIEW does not update mapped blocks
of the object or scroll area.

RETAIN If the object is permanent and has no scroll area, CSRVIEW retains
the data that is in the window. CSRVIEW does not update mapped
blocks of the object.

If the object is permanent and has a scroll area, or if the object is
temporary, CSRVIEW retains the data that's in the window and
updates the mapped blocks of the object or scroll area.

Define disposition as character data of length 7. If you specify RETAIN, pad the string
on the right with a blank.

,return_code
When CSRVIEW completes, return_code contains the return code. Define return_code
as integer data of length 4.

,reason_code)
When CSRVIEW completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

 ABEND Codes
The CSRVIEW service might abnormally terminate with abend code X'019'. See OS/390
MVS System Codes for an explanation and programmer responses.

 CSRVIEW — View an Object 279

 CSRVIEW Callable Service

Return and Reason Codes
When the CSRVIEW service returns control to your program, GPR 15 (and return_code)
contains a return code and GPR 0 (and reason_code) contains a reason code. The
following table identifies return code and reason code combinations and tells what each
means.

A return code of X'4' or X'C' means that data-in-virtual encountered a problem or an
unexpected condition. Data-in-virtual reason codes, which are two bytes long and right
justified, are explained in the description of the DIV macro (“DIV — Data-in-Virtual” on
page 361).

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00000000 00000000 Meaning: The operation was successful.

Action: None.

00000004 00000125 Meaning: System error. The service could not retain all the data that
was in the scroll area.

Action: Retry the request. If the problem persists, contact the
appropriate IBM support personnel.

00000004 xxxxnnnn Meaning: The value nnnn is a data-in-virtual reason code. The value
xxxx is not part of the intended programming interface.

Action: See the DIV macro description for an explanation of nnnn.

0000000C xxxxnnnn Meaning: The value nnnn is a data-in-virtual reason code. The value
xxxx is not part of the intended programming interface.

Action: See the DIV macro description for an explanation of nnnn.

0000002C 00000004 Meaning: Program error. Window services have not been defined to
your system, or the link to the service failed.

Action: If window services are available on your system, rerun the
program one or more times. If the problem persists, contact the
appropriate IBM support personnel.

280 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVAPF Macro

CSVAPF — Query the List of APF-Authorized Libraries

The CSVAPF macro allows you to determine the format and contents of the APF-authorized
library list. You can issue CSVAPF to:

� Determine whether or not a library is in the APF list
� Determine the current format (dynamic or static) of the APF list
� Obtain a list of all library entries in the APF list.

You can issue CSVAPF to perform any of the listed functions on either a dynamic or static
APF list.

 Environment
The requirements for the caller are:

Minimum authorization : Problem state and any PSW key.
Dispatchable unit mode : Task
Cross memory mode : Any PASN, any HASN, any SASN
AMODE: For a QUERY or QUERYFORMAT request, 31-bit. For a LIST

request, 24- or 31-bit.
ASC mode : For a QUERY request, primary. For all other requests, primary or

access register (AR).
Interrupt status : Enabled for I/O and external interrupts
Locks : No locks held
Control parameters : Control parameters must be in the primary address space or, for

AR-mode callers, must be in an address/data space that is
addressable through a public entry on the caller's dispatchable unit
access list (DU-AL).

 Programming Requirements
If you code the LIST option on the REQUEST parameter, you must include the CSVAPFAA
mapping macro (see OS/390 MVS Data Areas, Vol 1 (ABEP-DALT)). For all other requests,
you can optionally include the CSVAPFAA mapping macro to define variables and values for:

� Return and reason codes returned by CSVAPF

� The APF list format, which is returned by CSVAPF when you specify
REQUEST=QUERYFORMAT.

 Restrictions
None.

Input Register Information
Before issuing the CSVAPF macro, the caller must ensure that the following general purpose
registers (GPRs) contain the specified information:

Register Contents
13 For a QUERY request, the address of a standard 72-byte save area

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 If REQUEST=QUERYFORMAT is not specified, and the value in register 15 is

not 0, reason code; otherwise, used as a work register by the system
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system

 Copyright IBM Corp. 1988, 1999 281

 CSVAPF Macro

15 For a QUERYFORMAT request, used as a work register by the system; for all
other requests, return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as a work register by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The standard form of the CSVAPF macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede CSVAPF.

CSVAPF

␣ One or more blanks must follow CSVAPF.

 Valid parameters (Required parameters are underlined) :
REQUEST=QUERY DSNAME, VOLTYPE, VOLUME, RETCODE, RSNCODE
REQUEST=QUERYFORMAT FORMAT
REQUEST=LIST ANSAREA, ANSLEN, RETCODE, RSNCODE

 ,DSNAME=libname libname: RS-type address or address in register (2) - (12).

 ,VOLTYPE=SMS Default: VOLTYPE=SMS
 ,VOLTYPE=ANY, VOLUME is required with VOLTYPE=ANY.
 VOLUME=volume volume: RS-type or address in register (2) - (12).

 ,FORMAT=format format: RS-type address or address in register (2) - (12).

 ,ANSAREA=ansarea ansarea: RS-type address or address in register (2) - (12).

 ,ANSLEN=anslen anslen: RS-type address or address in register (2) - (12).

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,MF=S

282 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVAPF Macro

 Parameters
The parameters are explained as follows:

REQUEST=QUERY
REQUEST=QUERYFORMAT
REQUEST=LIST

Specifies the type of service to be performed on the list of APF-authorized program
libraries. Specify one of the following:

QUERY Determine if a particular library is in the APF list.

QUERYFORMAT Determine the current format (dynamic or static) of the APF list. The
system returns information to the one byte field specified on the
FORMAT parameter. If the output is 00, the list is static; if the
output is 01, the list is dynamic. When you specify this parameter,
you cannot specify the RETCODE, RSNCODE, and MF parameters.
The system does not provide return and reason codes for a
QUERYFORMAT request.

LIST Request a list of the libraries in the APF list. The system returns the
list to the area specified by the ANSAREA parameter. See the
description of the ANSAREA parameter for information on how to
read the entries in the list.

,DSNAME=libname
Specifies a field (or a register containing the address of a field) containing a
44-character name of an APF-authorized library. If the library name is less than 44
characters, it must be left-justified in a 44-character field and padded with blanks.

You can specify an alias of an APF authorized library instead of the actual library name.
However, the CSVAPF service considers an alias to be APF-authorized only when it is
defined in the APF list.

Note: Usually, you do not need to define the alias of an APF-authorized library in the
APF list. IBM's data management services (for example, OPEN processing) map an
alias to the actual library name, and therefore does not require the alias to be defined in
the APF list. An alias must be defined in the APF list only when the alias is to be used
as input to the CSVAPF QUERY macro request, or on the SETPROG APF or DISPLAY
PROG,APF operator commands.

,VOLTYPE=SMS
,VOLTYPE=ANY,VOLUME= volume

Specifies the status of the library specified on the DSNAME parameter, which is one of
the following:

SMS The library is managed by the storage management subsystem (SMS).

ANY The library may or may not be SMS-managed. The library is located on volume
volume, which specifies the address of a 6-character volume serial number; for
an ADD request, you can also specify ****** (six asterisks) to indicate the current
sysres volume, or *MCAT* to indicate the volume on which the master catalog
resides. If volume is all zeros, the system assumes that the library is
SMS-managed.

,FORMAT=format
Specifies a 1-byte field (or a register containing the address of a field) for output that the
system is to use to indicate the current format of the APF list.

,ANSAREA= ansarea
Specifies an area (or a register containing the address of an area) where the system is
to store the current list of APF-authorized libraries. Use the CSVAPFAA mapping macro
to map this area. Specify the length of this area on the ANSLEN parameter.

The system returns a header that indicates the total number of libraries in the list and
the offset to the first library entry. To find the next entry, add the value in the length
field (APFELEN) to the address of the current entry.

 CSVAPF — Query the List of APF-Authorized Libraries 283

 CSVAPF Macro

For each library entry, the volume identifier in field APFEVOLUME is valid only when the
library is not SMS-managed (the bit APFESMS in field APFEFLAGS is off). If the library
is SMS-managed, field APFEVOLUME contains “*SMS* ”.

,ANSLEN=anslen
Specifies a fullword (or a register containing the address of a fullword) that contains the
length of the area where the system is to return the current APF list. This value must be
equal to or greater than the length of the APFHDR structure in the CSVAPFAA mapping
macro.

If the area is not long enough to contain the entire APF list, the system returns as many
entries as it can provide. The system indicates the length that is currently required to
contain all the information in field APFHTLEN in the CSVAPFAA mapping macro.

,RETCODE=retcode
Specifies a fullword (or a register) where the system is to store the return code. The
return code is also in general purpose register (GPR) 15. Do not specify this parameter
on a QUERYFORMAT request.

,RSNCODE=rsncode
Specifies a fullword (or a register) where the system is to store the reason code. The
reason code is also in general purpose register (GPR) 0. Do not specify this parameter
on a QUERYFORMAT request.

,MF=S
Specifies the standard form of the CSVAPF macro. Do not specify this parameter on a
QUERYFORMAT request.

 ABEND Codes
None.

Return and Reason Codes
When the CSVAPF macro returns control to your program, GPR 15 (and retcode) contains a
return code. When the value in GPR 15 is not zero, GPR 0 (and rsncode) contains a
reason code. xxxx indicates internal information. If you specified the QUERYFORMAT
option, CSVAPF does not return any return or reason code to your program.

Figure 16 (Page 1 of 2). Return and Reason Codes for the CSVAPF Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 — Meaning : The CSVAPF request completed successfully. The result
depends on the option:

� QUERY - The system found the library in the APF list.

� LIST - The system returned a list of all the libraries in the APF
list.

Action : None.

04 xxxx0401 Meaning : For a QUERY request, the library is in the list, and is
SMS-managed.

Action : None.

04 xxxx0402 Meaning : For a QUERY request, the library is not in the APF list.

Action : None.

04 xxxx0403 Meaning : Program error. For a LIST request, the value specified on
the ANSLEN parameter is not large enough to contain the entire list
of APF-authorized libraries.

Action : Check the answer area field APFHTLEN in the CSVAPFAA
mapping macro to see how much space is required to return the
APF list. Issue the CSVAPF macro again, specifying, on the
ANSLEN parameter, a fullword containing a value large enough to
contain the entire APF list.

284 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVAPF Macro

Figure 16 (Page 2 of 2). Return and Reason Codes for the CSVAPF Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 xxxx0801 Meaning : Program error. The system could not access the
parameter list that the CSVAPFAA macro created.

Action : Ensure that the parameter list is addressable.

08 xxxx0804 Meaning : Program error. The caller is not authorized to issue the
CSVAPF macro for the specified request.

Action : See the authorization requirements described in the
“Environment” section for this macro.

08 xxxx0805 Meaning : Program error. The system could not perform the
function because the home address space is different from the
primary address space.

Action : For the specified request, do not issue the CSVAPF macro
while running in cross memory mode.

08 xxxx0806 Meaning : Program error. The ALET of the area specified on the
ANSAREA parameter is not correct.

Action : Ensure that the ALET is 0, or that the ALET represents a
valid entry on the DU-AL. If you specified register notation “(n),”
make sure that the ALET in register n is correct.

08 xxxx0807 Meaning : Program error. The system found an error when
accessing the answer area specified on the ANSAREA parameter.

Action : Ensure that the answer area address specified on the
ANSAREA parameter is valid.

08 xxxx0808 Meaning : Program error. For a QUERY request, the length of the
answer area specified on the ANSLEN parameter is not equal to or
greater than the length of the APFHDR structure in the CSVAPFAA
mapping macro.

Action : On the ANSLEN parameter, specify a fullword containing a
value that is equal to or greater than the length of the APFHDR
structure in the CSVAPFAA mapping macro.

08 xxxx0809 Meaning : Program error. The request type is not valid.

Action : Check for a possible overlay in the parameter list that the
CSVAPFAA mapping macro created.

08 xxxx080A Meaning : Program error. The CSVAPF macro could not establish
an ESTAEX recovery routine. xxxx is the return code from the
ESTAEX service.

Action : See the description of the ESTAEX macro for the action
associated with the xxxx return code.

08 xxxx080B Meaning : Program error. A reserved field is not zero in the
parameter list that the CSVAPFAA macro created.

Action : Check for a possible overlay in the parameter list that the
CSVAPFAA macro created.

08 xxxx080C Meaning : Program error. The library name specified on the
DSNAME parameter is not valid. The first character is blank.

Action : On the DSNAME parameter, specify a library name that
does not include a blank as the first character.

08 xxxx080D Meaning : Program error: The system found an error in the access
list entry token (ALET) for the parameter list that the CSVAPFAA
macro created.

Action : Ensure that the ALET is 0 or that the ALET represents a
valid entry on the DU-AL.

08 xxxx080E Meaning : Program error. The system found an incorrect version
number in the parameter list that the CSVAPF macro created.

Action : Verify that your program is not overwriting the parameter
list, and that the execute form of the macro correctly addresses the
parameter list. If you are using the modify form of the macro, make
sure that you specified the COMPLETE option on at least one
invocation.

10 xxxx1001 Meaning : System error. An internal error occurred.

Action : Contact the system programmer. Provide the return code,
the reason code, and the explanation of the error.

 CSVAPF — Query the List of APF-Authorized Libraries 285

 CSVAPF Macro

 Example 1
Determine the current format of the APF list:

 CSVAPF REQUEST=QUERYFORMAT,FORMAT=LFORMAT
 CLI LFORMAT,CSVAPFFORMATDYNAMIC
 BE LAB1
\ Format is static
 .
 .
LAB1 DS ðH Format is dynamic
 .
 .
LFORMAT DS X Output Format

CSVAPFAA , Include CSVAPFAA mapping

 Example 2
Change a program to use the CSVAPF macro to access the APF list (this program uses the
LIST function as an example of one way to access the APF list):

L 15,X'1ð' Get CVT address
TM CVTDCB-CVTMAP(15),CVTOSEXT OS Extension present
BZ OLDLIST No, old (static) list
TM CVTOSLV1-CVTMAP(15),CVTDYAPF Is dynamic APF present?
BZ OLDLIST No, old (static) list
MVC APAALEN,=AL4(4ð96) Assume length is 4K

 L 2,APAALEN Get length
GETMAIN RU,LV=(2) Get storage for answer area
ST 1,APAA@ Save answer area address

LAB1 DS ðH
L 4,APAA@ Get answer area address

 CSVAPF REQUEST=LIST,ANSAREA=(4),ANSLEN=APAALEN, \
 RETCODE=LRETCODE,RSNCODE=LRSNCODE
 CLC LRETCODE,=AL4(CSVAPFRC_OK) Success?

BE LAB3 Yes, process data
 CLC LRETCODE,=AL4(CSVAPFRC_WARN) Warning?

BNE LAB2 No, Process other return codes
NC LRSNCODE,=AL4(CSVAPFRSNCODEMASK) Clear high order bits

 CLC LRSNCODE,=AL4(CSVAPFRSNNOTALLDATARETURNED) More data?
BNE LAB2 No, Process other return codes
L 3,APAALEN Get current length
L 2,APFHTLEN-APFHDR(4) Get required length
ST 2,APAALEN Save total required length
FREEMAIN RU,LV=(3),A=(4) Free previous area
GETMAIN RU,LV=(2) Get storage for answer area
ST 1,APAA@ Save answer area address
B LAB1 Re-do LIST request

LAB2 DS ðH Process other return codes
 .
 .
OLDLIST DS ðH
\ Current code to process static format APF list
 .
 .
 B LAB9
LAB3 DS ðH

286 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVAPF Macro

\ New code to scan return information from CSVAPF
 .
 .
 L 4,APAA@
 L 3,APAALEN
 FREEMAIN RU,LV=(3),A=(4) Release APAA
LAB9 DS ðH End of processing
 .
 .
APAA@ DS A Address of APF answer area
APAALEN DS F Length of APF answer area
LRETCODE DS F Return code
LRSNCODE DS F Reason code

CSVAPFAA , Include CSVAPFAA mapping

 CSVAPF — Query the List of APF-Authorized Libraries 287

 CSVAPF Macro

 CSVAPF—List Form
Use the list form of the CSVAPF macro together with the execute form of the macro for
applications that require reentrant code. The list form of the macro defines an area of
storage, which the execute form of the macro uses to store the parameters.

The list form of the CSVAPF macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede CSVAPF.

CSVAPF

␣ One or more blanks must follow CSVAPF.

MF=(L,list addr) list addr: symbol.
MF=(L,list addr,attr) attr: 1- to 60-character input string.
MF=(L,list addr,0D) Default: 0D

 Parameters
The parameters are explained under the standard form of the CSVAPF macro with the
following exception:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the CSVAPF macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
0D, which forces the parameter list to a doubleword boundary.

288 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVAPF Macro

 CSVAPF—Execute Form
Use the execute form of the CSVAPF macro together with the list form of the macro for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

The execute form of the CSVAPF macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede CSVAPF.

CSVAPF

␣ One or more blanks must follow CSVAPF.

 Valid parameters (Required parameters are underlined) :
REQUEST=QUERY DSNAME, VOLTYPE, VOLUME, RETCODE, RSNCODE
REQUEST=LIST ANSAREA, ANSLEN, RETCODE, RSNCODE

 ,DSNAME=dsname dsname: RS-type address or register (2) - (12).

 ,VOLTYPE=SMS Default: VOLTYPE=SMS
 ,VOLTYPE=ANY, VOLUME is required with VOLTYPE=ANY.
 VOLUME=volume volume: RS-type or register (2) - (12).

 ,FORMAT=format format: RS-type address, or register (2) - (12).

 ,ANSAREA=ansarea ansarea: A-type address, or register (2) - (12).

 ,ANSLEN=anslen anslen: A-type address, or register (2) - (12).

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,MF=(E,list addr) list addr:RS-type address, or register (2) - (12).
,MF=(E,list addr,COMPLETE) Default: COMPLETE

 Parameters
The parameters are explained under the standard form of the CSVAPF macro with the
following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the CSVAPF macro.

list addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for required
parameters and supply optional parameters that you did not specify.

 CSVAPF — Query the List of APF-Authorized Libraries 289

 CSVAPF Macro

290 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVINFO Macro

CSVINFO — Obtain Information about Loaded Modules

 Description
Use CSVINFO to obtain information about modules:

� Loaded into the link pack area (LPA): specify FUNC=LPA

� Loaded into the job pack area (JPA): specify FUNC=JPA

� Loaded by a specific task using the LOAD macro: specify FUNC=TASKLOAD

� Running under all program request blocks (PRBs) and supervisor request blocks
(SVRBs) associated with a specific task, including those that received control through
the LINK(X), ATTACH(X), or XCTL(X) macro; or through the OpenMVS EXEC
command: specify FUNC=TASKALL

� Running under a specific PRB or SVRB: specify FUNC=RB

� Copied from the parent address space into the job pack area under the OpenMVS fork
process: specify FUNC=JPA.

When providing information about a loaded module, CSVINFO returns information separately
for each of the following types of entry points:

� The major entry point

� Each entry point created using the IDENTIFY macro

� Each minor entry point specified on a LOAD, LINK(X), ATTACH(X), or XCTL(X)
invocation the system is processing while CSVINFO is running

� The OpenMVS entry point (including its file name), if the loaded module is an OpenMVS
module.

The CSVINFO macro can return information about one loaded module (such as the module
running under a specific PRB) or group of loaded modules (such as all modules in LPA).
The CSVQUERY macro, which also provides information about loaded modules, returns
information about only one particular loaded module at a time.

CSVINFO obtains information about one loaded module at a time, stores the information in
the CSVMODI data area, and passes the data area to a user-written module information
processing routine (MIPR). The MIPR examines this data and returns control to CSVINFO,
either requesting information about an additional loaded module or indicating that no more
information is needed. For instance, if you request information for all modules loaded by a
particular task, CSVINFO calls the MIPR multiple times, passing information about each
loaded module of interest. CSVINFO continues to pass loaded module information to the
MIPR until either of the following occurs:

� CSVINFO has returned all available information.

� The MIPR indicates that no more information is needed by returning a nonzero return
code to CSVINFO.

You can issue the CSVINFO macro from a program to obtain information about loaded
modules in system storage, or from an IPCS exit to search a dump for information about
loaded modules.

 Copyright IBM Corp. 1988, 1999 291

 CSVINFO Macro

 References

For detailed information about any of the following, see the program management topic
in OS/390 MVS Programming: Assembler Services Guide:

� How the CSVINFO macro compares with the CSVQUERY macro
� How to use the CSVINFO macro
� How to code a MIPR
� Load modules and their characteristics

For information about the CSVMODI data area, see OS/390 MVS Data Areas, Vol 1
(ABEP-DALT).

 Environment
Requirements for the caller:

Minimum authorization: Problem state with any PSW key
See additional information under “Programming Requirements.”

Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: Supervisor state and PSW key 0 callers may hold the LOCAL and

the CMS locks.
Other callers may not hold any locks.

Control parameters: Must be in the primary address space

 Programming Requirements
If you are requesting information about loaded modules in common storage or if multi-tasking
is taking place in your address space, the module information you request might be changing
while the CSVINFO service is retrieving information unless serialization has been obtained.

If your program runs in supervisor state and invokes the CSVINFO macro, the CSVINFO
service obtains the appropriate locks if your program does not already hold them.

Other callers might receive incorrect data or end abnormally if the CSVINFO service
accesses a data area that is being updated.

 Restrictions
The TCB specified with the TCBADDR keyword must reside in the caller's primary address
space unless the CSVINFO macro is being issued from an IPCS exit.

When you issue the CSVINFO macro from an IPCS exit, CSVINFO does not:

 � Provide serialization
� Establish a recovery environment before passing control to your MIPR.

Input Register Information
Before issuing the CSVINFO macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

292 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVINFO Macro

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
If you require information about a specific loaded module, use the CSVQUERY macro to
obtain better performance.

 Syntax
The standard form of the CSVINFO macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CSVINFO.

CSVINFO

␣ One or more blanks must follow CSVINFO.

FUNC=LPA
FUNC=JPA,TCBADDR=tcbaddr
FUNC=TASKLOAD,TCBADDR=tcbaddr
FUNC=TASKALL,TCBADDR=tcbaddr
FUNC=RB,RBADDR=rbaddr

 tcbaddr: RS-type address or address in register (2) - (12).
 rbaddr: RS-type address or address in register (2) - (12).

,ENV=MVS
,ENV=IPCS,ABDPLPTR=abdplptr,ASID=asid

 abdplptr: RS-type address or address in register (2) - (12).
 asid: RS-type address or address in register (2) - (12).

,MIPR=mipr mipr: RS-type address or address in register (2) - (12).

 ,USERDATA=userdata userdata: RS-type address.

 ,COM=com com: Comment text enclosed in single quotes.

 ,RETCODE=retcode retcode: RS-type address or address in register (2) - (12).

 CSVINFO — Obtain Information about Loaded Modules 293

 CSVINFO Macro

 ,RSNCODE=rsncode rsncode: RS-type address or address in register (2) - (12).

 Parameters
The parameters are explained as follows:

FUNC=LPA
FUNC=JPA,TCBADDR= tcbaddr
FUNC=TASKLOAD,TCBADDR= tcbaddr
FUNC=TASKALL,TCBADDR= tcbaddr
FUNC=RB,RBADDR= rbaddr

A required parameter that specifies the function CSVINFO is to perform.

FUNC=LPA requests that CSVINFO place into the CSVMODI data area information
about link pack area (LPA) modules. The search order for LPA modules is the active link
pack area (MLPA and FLPA), followed by PLPA. If CSVINFO encounters more than one
copy of a loaded module, CSVINFO provides information about each copy.

FUNC=JPA,TCBADDR=tcbaddr requests that CSVINFO place into the CSVMODI data
area information for modules in the job pack area for the job step task TCB specified by
tcbaddr. When you specify FUNC=JPA, CSVINFO retrieves information for:

� All modules in the private area known to the specified job step task

� All modules in common storage that have been loaded by an authorized task
running under the specified job step task, using the LOAD macro with the GLOBAL
parameter.

FUNC=TASKLOAD,TCBADDR=tcbaddr requests that CSVINFO place into the
CSVMODI data area information about all modules loaded by the task specified by
tcbaddr, using the LOAD macro. Only modules that have not yet been deleted are
processed.

FUNC=TASKALL,TCBADDR=tcbaddr requests that CSVINFO place into the CSVMODI
data area information about all modules running under PRBs and SVRBs under the task
specified by tcbaddr, including all modules that have received control through the
LINK(X), ATTACH(X), or XCTL(X) macro. FUNC=TASKALL returns information on LPA
modules as well as private modules. If CSVINFO encounters more than one copy of a
loaded module, CSVINFO provides information about each copy.

TCBADDR=tcbaddr specifies the address of a required 4-byte field that contains the
address of the TCB about which you want information.

FUNC=RB,RBADDR=rbaddr requests that CSVINFO place into the CSVMODI data area
information about the module running under the PRB or SVRB specified by rbaddr.

RBADDR=rbaddr specifies the address of a required 4-byte field that contains the
address of the PRB or SVRB about which you want information.

,ENV=MVS
,ENV=IPCS,ABDPLPTR= abdplptr,ASID=asid

A required parameter that specifies whether you are issuing CSVINFO from a program
(to search system storage) or from an IPCS exit (to examine a dump).

ENV=MVS specifies that you are issuing CSVINFO from a program and that you want
CSVINFO to examine system storage.

ENV=IPCS specifies that you are issuing CSVINFO from an IPCS exit to search a
dump. When you specify ENV=IPCS you must also specify ABDPLPTR=abdplptr and
ASID=asid.

ABDPLPTR=abdplptr specifies the address of the ABDUMP parameter list (ABDPL) that
is currently in use. When your IPCS exit routine gets control, GPR 1 contains the
address of the ABDUMP parameter list. CSVINFO passes the address of the ABDPL to
the caller's MIPR in the input parameter list mapped by the CSVMODI mapping macro.

294 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVINFO Macro

ASID=asid identifies the address space id (ASID) in the dump from which the requested
module information is to be obtained. asid contains the address of a 16-bit address
space identifier. The specified address space identifier is stored in the ADPLASID field
of the ABDPL, and the ADPLASID field contains this value when CSVINFO passes
control to your MIPR.

,MIPR=mipr
A required parameter that contains the address of the caller's module information
processing routine (MIPR).

,USERDATA=userdata
Specifies the address of an optional 16-byte input field that contains user data to be
passed to the MIPR. The CSVINFO macro places the user data into the CSVMODI
data area before it passes control to the MIPR.

,COM=com
Specifies an optional character input. You can use this keyword to produce a comment
in the macro expansion. The comment string must be enclosed in single quotes if it
contains lowercase characters.

,RETCODE=retcode
Specifies the location where the system is to store the return code. The return code is
also in GPR 15. If you specify a storage location, it must be on a fullword boundary.

,RSNCODE=rsncode
Specifies the location where the system is to store the reason code. The reason code is
also in GPR 0. If you specify a storage location, it must be on a fullword boundary.

 ABEND Codes
None.

Return and Reason Codes
When CSVINFO returns control to your program, GPR 15 (and retcode, if you coded
RETCODE) contains the return code.

For a return code of X'8', GPR 0 (and rsncode, if you coded RSNCODE) contains a reason
code set by the MIPR. For other return codes, the reason code is always 0.

Figure 17 (Page 1 of 2). Return Codes for the CSVINFO Macro

Hexadecimal
Return Code

Meaning and Action

0 Meaning : Successful completion.

Action : None.

4 Meaning : Successful completion.

Action : None. There was no information for CSVINFO to return.

8 Meaning : CSVINFO processing was ended by a nonzero return code from the caller's
MIPR. GPR 0 (and rsncode, if you coded RSNCODE) contains a reason code from the
MIPR.

Action : Check the reason code from the MIPR and take appropriate action.

C Meaning : Program error. CSVINFO was unable to obtain the local lock needed for
serialization for a supervisor state caller.

Action : Release the CML lock before invoking CSVINFO.

10 Meaning : Program error. A parameter specified for CSVINFO was inaccessible or not valid.

Action : Correct the parameters and rerun the program.

14 Meaning : Environmental error. The CSVINFO service should have been available but
wasn't.

Action : Ask the system programmer to determine why the CSVINFO service is unavailable.

 CSVINFO — Obtain Information about Loaded Modules 295

 CSVINFO Macro

Figure 17 (Page 2 of 2). Return Codes for the CSVINFO Macro

Hexadecimal
Return Code

Meaning and Action

18 Meaning : System or program error. CSVINFO processing ended because the requested
information could not be retrieved from the dump. This return code applies only when
CSVINFO is issued from an IPCS exit. The message BLS18100I accompanies this return
code. See OS/390 MVS Dump Output Messages for further information about this message.

Action : Ensure that you have not passed the CSVINFO service an incorrect address and
rerun the program. If the program receives this return code again, either the necessary data
areas are not in the dump or there might be an error in the control blocks used to keep track
of loaded modules.

1C Meaning : System error. This return code is for IBM diagnostic purposes only.

Action : Rerun the program one or more times. If the problem persists, record the return
code and message text and supply it to the appropriate IBM support personnel.

20 Meaning : Environmental error. The CSVINFO service is not supported on this level of the
system; it requires MVS/ESA SP 4.3 or higher.

Action : Check with your system programmer to determine which system your program
should run on to use the CSVINFO service.

24 Meaning : Environmental error. The CSVINFO parameter list is not valid with the level of
CSVINFO service on the system.

Action : Record the return code and supply it to the appropriate IBM support personnel.

28 Meaning : System error. CSVINFO timed out after entering an infinite loop while accessing
information about loaded modules.

Action : If you specified ENV=MVS and your program was not in supervisor state, rerun the
program. The error might have been temporary, resulting from a lack of serialization while
accessing control blocks.

If the error persists or CSVINFO was running with serialization when the error occurred,
record the return code and supply it to the appropriate IBM support personnel.

2C Meaning : Program error. The RB address specified using the RBADDR parameter on a
FUNC=RB request is not the address of a PRB or an SVRB.

Action : Ensure that you pass the address of a PRB or an SVRB. CSVINFO does not
process requests for other types of RBs.

30 Meaning : Program error. The MIPR failed.

Action : Ensure that the MIPR restores GPRs 2-13 before returning control to CSVINFO. If
this was not the problem and the MIPR did not have its own recovery routine, your options
depend on whether your program was running in an authorized state.

CSVINFO's recovery routine issued an SVC dump if your program was authorized in at least
one of the following ways:

 � Supervisor state
� PSW key 0-7

 � APF authorization.

If a dump was taken, examine it for information about why the MIPR might have failed.

If your program was running in an unauthorized state, the information recorded in the job log
at the time of the failure is the only information provided.

34 Meaning : System error. While processing the RB chain, CSVINFO entered an infinite loop,
signalled by reaching 1000 iterations. The RB address specified on the RBADDR parameter
for a FUNC=RB request caused a circular RB chain.

Action : Ensure that you pass the address of a PRB or an SVRB. CSVINFO does not
process requests for other types of RBs.

If you passed a valid RB address, record the return code and supply it to the appropriate
IBM support personnel.

296 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVINFO Macro

 CSVINFO—List Form
Use the list form of the CSVINFO macro together with the execute form of the macro for
applications that require reentrant code. The list form of the macro defines an area of
storage, which the execute form of the macro uses to store the parameters.

 Syntax
The list form of the CSVINFO macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CSVINFO.

CSVINFO

␣ One or more blanks must follow CSVINFO.

MF=(L,list addr) list addr: RS-type address or register (2) - (12).
MF=(L,list addr, attr) attr: 1- to 60-character string input. Default : 0D.
MF=(L,list addr, 0D)

 Parameters
The parameters are explained under the standard form of the macro with the following
exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr, 0D)

Specifies the list form of the CSVINFO macro. list addr is the name of a storage area to
contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
0D, which forces the parameter list to a doubleword boundary.

 CSVINFO — Obtain Information about Loaded Modules 297

 CSVINFO Macro

 CSVINFO—Execute Form
Use the execute form of the CSVINFO macro together with the list form of the macro for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

 Syntax
The execute form of the CSVINFO macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CSVINFO.

CSVINFO

␣ One or more blanks must follow CSVINFO.

FUNC=LPA
FUNC=JPA,TCBADDR=tcbaddr
FUNC=TASKLOAD,TCBADDR=tcbaddr
FUNC=TASKALL,TCBADDR=tcbaddr
FUNC=RB,RBADDR=rbaddr

 tcbaddr: RS-type address or address in register (2) - (12).
 rbaddr: RS-type address or address in register (2) - (12).

,ENV=MVS
,ENV=IPCS,ABDPLPTR=abdplptr,ASID=asid

 abdplptr: RS-type address or address in register (2) - (12).
 asid: RS-type address or address in register (2) - (12).

,MIPR=mipr mipr: RS-type address or address in register (2) - (12).

 ,USERDATA=userdata userdata: RS-type address.
 ,USERDATA=NULL Default : NULL

 ,COM=com com: Comment text enclosed in single quotes.
 ,COM=NULL Default : NULL

 ,RETCODE=retcode retcode: RS-type address or address in register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or address in register (2) - (12).

,MF=(E,list addr) list addr: RS-type address or register (2) - (12).
,MF=(E,list addr,COMPLETE) Default : COMPLETE
,MF=(E,list addr,NOCHECK)

298 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVINFO Macro

 Parameters
The parameters are explained under the standard form of the macro with the following
exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

Specifies the execute form of the CSVINFO macro. list addr specifies the area that the
system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for required
parameters and supply defaults for omitted optional parameters.

NOCHECK specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

 CSVINFO — Obtain Information about Loaded Modules 299

 CSVINFO Macro

 CSVINFO—Modify Form
Use the modify form of the CSVINFO macro together with the list and execute forms of the
macro for service routines that need to provide different options according to user-provided
input. Use the list form to define the storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

 Syntax
The modify form of the CSVINFO macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CSVINFO.

CSVINFO

␣ One or more blanks must follow CSVINFO.

FUNC=LPA
FUNC=JPA,TCBADDR=tcbaddr
FUNC=TASKLOAD,TCBADDR=tcbaddr
FUNC=TASKALL,TCBADDR=tcbaddr
FUNC=RB,RBADDR=rbaddr

 tcbaddr: RS-type address or address in register (2) - (12).
 rbaddr: RS-type address or address in register (2) - (12).

,ENV=MVS
,ENV=IPCS,ABDPLPTR=abdplptr,ASID=asid

 abdplptr: RS-type address or address in register (2) - (12).
 asid: RS-type address or address in register (2) - (12).

,MIPR=mipr mipr: RS-type address or address in register (2) - (12).

 ,USERDATA=userdata userdata: RS-type address.
 ,USERDATA=NULL Default : NULL

 ,COM=com com: Comment text enclosed in single quotes.
 ,COM=NULL Default : NULL

 ,RETCODE=retcode retcode: RS-type address or address in register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or address in register (2) - (12).

,MF=(M,list addr) list addr: RS-type address or register (2) - (12).
,MF=(M,list addr,COMPLETE) Default : COMPLETE
,MF=(M,list addr,NOCHECK)

300 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVINFO Macro

 Parameters
The parameters are explained under the standard form of the macro with the following
exceptions:

,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Specifies the modify form of the CSVINFO macro. list addr specifies the area that the
system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for required
parameters and supply defaults for omitted optional parameters.

NOCHECK specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

 CSVINFO — Obtain Information about Loaded Modules 301

 CSVINFO Macro

302 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVQUERY Macro

CSVQUERY — Contents Supervisor Query Service

 Description
Use CSVQUERY to obtain information about the attributes of a loaded module residing in
the job pack area (JPA) or the link pack area (LPA). Specify the module you want
information about, using an entry point name, entry point token, or any address within the
loaded module. See the INEPTKN parameter description for information about obtaining an
entry point token.

CSVQUERY returns information for the following types of entry points:

� Major entry points

� Entry points created using the IDENTIFY macro

� Minor entry points specified on a LOAD, LINK(X), ATTACH(X), or XCTL(X) invocation
the system is processing while CSVQUERY is running.

For information about load modules and their characteristics, as well as a comparison of the
CSVQUERY and CSVINFO macros, see the program management topic in OS/390 MVS
Programming: Assembler Services Guide.

 Environment
Requirements for CSVQUERY callers are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=SASN=HASN
AMODE: 24 or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller may hold the LOCAL or CMS lock, but is not required to

hold any locks.
Control parameters: Must be in the primary address space or be in an address/data

space that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL)

Input Register Information
Before issuing the CSVQUERY macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as a work register by the system

 Copyright IBM Corp. 1988, 1999 303

 CSVQUERY Macro

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Programming Requirements
If the program is in AR mode, issue the SYSSTATE macro with the ASCENV=AR parameter
before you issue CSVQUERY. SYSSTATE ASCENV=AR tells the system to generate code
appropriate for AR mode.

 Restrictions
None.

 Performance Implications
If you specify an address as a search argument for a module in the PLPA, the search might
take longer than if you specify a name because the PLPA is organized by name. You can
obtain the best performance on a CSVQUERY request by specifying an entry point token.

 Syntax
The standard form of the CSVQUERY macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CSVQUERY.

CSVQUERY

␣ One or more blanks must follow CSVQUERY.

INEPNAME=entryname entryname: RS-type address or register (2) - (12).
INEPTKN=ineptkn ineptkn: RS-type address or register (2) - (12).
INADDR=ptr name ptr name: RS-type address or register (2) - (12).

 ,SEARCH=JPALPA Default: JPALPA
 ,SEARCH=JPA
 ,SEARCH=LPA

 ,SEARCHMINOR=NO Default: NO
 ,SEARCHMINOR=YES

 ,OUTLENGTH=length length: RS-type address or register (2) - (12).

 ,OUTEPNM=entryname entryname: RS-type address or register (2) - (12).

 ,OUTEPTKN=outeptkn outeptkn: RS-type address or register (2) - (12).

 ,OUTEPA=entry addr entry addr: RS-type address or register (2) - (12).

 ,OUTMJNM=major name major name: RS-type address or register (2) - (12).

 ,OUTLOADPT=outloadpt outloadpt: RS-type address or register (2) - (12).

 ,OUTSP=subpool subpool: RS-type address or register (2) - (12).

 ,OUTATTR1=attr1 attr1: RS-type address or register (2) - (12).

 ,OUTATTR2=attr2 attr2: RS-type address or register (2) - (12).

304 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVQUERY Macro

 ,OUTATTR3=attr3 attr3: RS-type address or register (2) - (12).

 ,OUTVALID=valid valid: RS-type address or register (2) - (12).

 ,OUTPID=outpid outpid: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 0 - 2

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,MF=S

 Parameters
The parameters are explained as follows:

INEPNAME=entryname
INEPTKN=ineptkn
INADDR=ptr name

INEPNAME=entryname specifies an 8-character variable that contains the name of the
entry point. The entry point name must be eight characters long, padded to the right
with blanks if necessary.

INEPTKN=ineptkn specifies an 8-character variable that contains the entry point token.
An entry point token is a unique, 8-character token assigned to each loaded module. To
obtain the input token, invoke the CSVQUERY macro with INADDR or INEPNAME,
specifying the OUTEPTKN parameter. Use the output entry point token from that
invocation of CSVQUERY as the input entry point token on subsequent invocations of
CSVQUERY for the same module.

INADDR=ptr name specifies an address that CSVQUERY attempts to match to a loaded
module. The address may be anywhere within the module.

You must specify one of the following mutually exclusive parameters: INEPNAME,
INEPTKN, or INADDR.

,SEARCH=JPALPA
,SEARCH=JPA
,SEARCH=LPA

Specifies the type of search CSVQUERY is to perform.

JPALPA (the default) causes CSVQUERY to search the caller's job pack area. If the
search fails, CSVQUERY searches the link pack area.

JPA causes CSVQUERY to search only the caller's job pack area.

LPA causes CSVQUERY to search only the link pack area.

,SEARCHMINOR=NO
,SEARCHMINOR=YES

Specifies whether or not to search for minor entry points. SEARCHMINOR is an
optional parameter.

SEARCHMINOR=NO specifies that CSVQUERY is not to search for minor entry points.
NO is the default.

SEARCHMINOR=YES specifies that CSVQUERY is to search for minor entry points.
CSVQUERY locates the minor entry point closest to the address specified on the
INADDR parameter. Because the search is for the closest, CSVQUERY must check all
entries.

,OUTLENGTH=length
Specifies an optional fullword variable where CSVQUERY is to return the length of the
module that it has located. The length returned is the text size of the module in bytes.

 CSVQUERY — Contents Supervisor Query Service 305

 CSVQUERY Macro

If you specify SEARCHMINOR=YES and CSVQUERY finds a minor entry point,
CSVQUERY returns the length of the module that contains the major entry point
associated with the minor entry point.

,OUTEPNM=entryname
Specifies an optional eight-character variable where CSVQUERY is to return the name
of the entry point of the module. When you specify OUTEPNM with INADDR,
CSVQUERY returns the module's major entry point name in entryname.

,OUTEPTKN=outeptkn
Specifies an optional 8-character variable where CSVQUERY returns the output entry
point token. Use this token as the input entry point token (INEPTKN) on subsequent
invocations of CSVQUERY for the same module.

,OUTEPA=entry addr
Specifies an optional fullword variable where CSVQUERY is to return the address of the
entry point of the module. When you specify OUTEPA with INADDR, CSVQUERY
returns the module's major entry point address in entry addr.

,OUTMJNM=major name
Specifies an optional eight-character variable where CSVQUERY returns the major
name (which is not an alias name) of the module.

,OUTLOADPT=outloadpt
Specifies an optional fullword variable where CSVQUERY is to return the module's load
address.

If you specify SEARCHMINOR=YES and CSVQUERY finds a minor entry point,
CSVQUERY returns the load address of the module that contains the major entry point
associated with the minor entry point.

,OUTSP=subpool
Specifies an optional one-byte variable where CSVQUERY returns the subpool number
of the module.

If you specify SEARCHMINOR=YES and CSVQUERY finds a minor entry point,
CSVQUERY returns the subpool number of the module that contains the major entry
point associated with the minor entry point.

,OUTATTR1=attr1
Specifies an optional one-byte variable where CSVQUERY returns the attributes of the
module.

The bit settings have the following meanings:

,OUTATTR2=attr2
Specifies an optional one-byte variable where CSVQUERY returns the attributes of the
module.

The bit settings have the following meanings:

Bit Meaning When Set
0 End-of-memory deletion
1 Loaded-to-global
2 Reentrant
3 Serially reusable
4 Not loadable only
5 Overlay format
6 Alias
7 Not part of the programming interface

Bit Meaning When Set
0 Authorized library
1 Authorized program
2 AMODE ANY
3 AMODE 31
4-7 Not part of the programming interface

306 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVQUERY Macro

,OUTATTR3=attr3
Specifies an optional one-byte variable where CSVQUERY returns the attributes of the
module.

The bit settings have the following meanings:

,OUTVALID=valid
Specifies an optional fullword variable that indicates whether or not the returned output
fields contain valid data. If the bit is set to 1, the corresponding field is valid.
Otherwise, the bit is 0.

,OUTPID=outpid
Specifies an optional char(4) variable where CSVQUERY returns a string representing
the loading service (provider) that loaded the module. The values mean the following:

Value Meaning
'UNK ' Unknown provider
'LPA' LPA
'PGMF' Program fetch
'LLAF' LLA
'AOSL' AOS loader
'JPA' JPA

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list the
system generates. PLISTVER is an optional input parameter on all forms of the macro,
including the list form. When using PLISTVER, specify it on all macro forms used for a
request and with the same value on all of the macro forms. The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might

Bit Meaning When Set
0 Resident above 16 megabytes
1 Job pack area resident
2 PLPA resident
3 MLPA resident
4 FLPA resident
5 CSA resident
6-7 Not part of the programming interface

Bit Valid Field When Set
0 OUTLENGTH
1 OUTEPA
2 OUTEPNM
3 OUTMJNM
4 OUTSP
5 OUTATTR1
6 OUTATTR2
7 OUTATTR3
8 OUTLOADPT
9 Not part of the programming interface
10 OUTPID
11 OUTEPTKN
12-31 Not part of the programming interface

 CSVQUERY — Contents Supervisor Query Service 307

 CSVQUERY Macro

specify on the execute form; in this way, MAX ensures that the parameter list does
not overwrite nearby storage.

� 0, if you use only the following parameters:

� 1, if you use the OUTLOADPT parameter and parameters from plistver 0.

� 2, if you use any of the following parameters and parameters from plistver 0, 1, or
both.

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 0, 1, or 2

,RETCODE=retcode
Specifies the location where the system is to store the return code. The return code is
also in GPR 15. If you specify a storage location, it must be on a fullword boundary.

,MF=S
Specifies the standard form of CSVQUERY. The standard form places the parameters
into an inline parameter list.

INEPNAME
MF
OUTATTR1
OUTATTR2
OUTATTR3

OUTEPA
OUTEPNM
OUTLENGTH
OUTMJNM
OUTSP

OUTVALID
PLISTVER
RETCODE
SEARCH
SEARCHMINOR

INADDR
INEPTKN

OUTEPTKN OUTPID

Return and Reason Codes
When control returns from CSVQUERY, GPR 15 (and retcode, if you coded RETCODE)
contains one of the following decimal return codes:

Decimal
Return Code

Meaning

00 CSVQUERY retrieved all the requested information.

04 CSVQUERY located the specified module but was unable to retrieve all of the
requested information.

08 CSVQUERY could not locate the specified module.

12 CSVQUERY could not obtain the lock(s) needed to process the request.

16 CSVQUERY encountered an unexpected error.

20 The requested function is not available on the system on which CSVQUERY
was issued.

308 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVQUERY Macro

 CSVQUERY—List Form
Use the list form of the CSVQUERY macro to construct a nonexecutable parameter list.

 Syntax
The list form of the CSVQUERY macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CSVQUERY.

CSVQUERY

␣ One or more blanks must follow CSVQUERY.

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 0 - 2

MF=(L,list addr) list addr: Symbol.
MF=(L,list addr,attr) attr: 1- to 60-character input string. Default : 0D

 Parameters
The parameters are explained under the standard form of the macro with the following
exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)

Specifies the list form of the CSVQUERY macro. list addr defines the area that the
system is to use for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
0D, which forces the parameter list to a doubleword boundary.

 CSVQUERY — Contents Supervisor Query Service 309

 CSVQUERY Macro

 CSVQUERY—Execute Form
The execute form of the CSVQUERY macro can refer to and modify the parameter list
constructed by the list form of the macro.

 Syntax
The execute form of the CSVQUERY macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CSVQUERY.

CSVQUERY

␣ One or more blanks must follow CSVQUERY.

Valid parameters

INEPNAME=entryname entryname: RS-type address or register (2) - (12).
INEPTKN=ineptkn ineptkn: RS-type address or register (2) - (12).
INADDR=ptr name ptr name: RS-type address or register (2) - (12).

 ,SEARCH=JPALPA Default: JPALPA
 ,SEARCH=JPA
 ,SEARCH=LPA

 ,SEARCHMINOR=NO Default: NO
 ,SEARCHMINOR=YES

 ,OUTLENGTH=length length: RS-type address or register (2) - (12).

 ,OUTEPNM=entryname entryname:: RS-type address or register (2) - (12).

 ,OUTEPTKN=outeptkn outeptkn: RS-type address or register (2) - (12).

 ,OUTEPA=entry addr entry addr: RS-type address or register (2) - (12).

 ,OUTMJNM=major name major name: RS-type address or register (2) - (12).

 ,OUTSP=subpool subpool: RS-type address or register (2) - (12).

 ,OUTLOADPT=outloadpt outloadpt: RS-type address or register (2) - (12).

 ,OUTATTR1=attr1 attr1: RS-type address or register (2) - (12).

 ,OUTATTR2=attr2 attr2: RS-type address or register (2) - (12).

 ,OUTATTR3=attr3 attr3: RS-type address or register (2) - (12).

 ,OUTVALID=valid valid: RS-type address or register (2) - (12).

 ,OUTPID=outpid outpid: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 0 - 2

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,MF=(E,list addr) list addr: RS-type address or register (2) - (12).
,MF=(E,list addr,COMPLETE) Default: COMPLETE
,MF=(E,list addr,NOCHECK)

310 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVQUERY Macro

 Parameters
The parameters are explained under the standard form of the macro with the following
exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

Specifies the execute form of the CSVQUERY macro. list addr defines the area that the
system uses for the parameter list.

COMPLETE specifies that the system is to check for required parameters and supply
optional parameters that are not specified. COMPLETE is the default.

NOCHECK specifies that the system is to check only parameters that you specified.

 CSVQUERY — Contents Supervisor Query Service 311

 CSVQUERY Macro

 CSVQUERY—Modify Form
The modify form of the CSVQUERY macro can refer to and modify the parameter list
constructed by the list form of the macro.

 Syntax
The modify form of the CSVQUERY macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede CSVQUERY.

CSVQUERY

␣ One or more blanks must follow CSVQUERY.

Valid parameters

INEPNAME=entryname entryname: RS-type address or register (2) - (12).
INEPTKN=ineptkn ineptkn: RS-type address or register (2) - (12).
INADDR=ptr name ptr name: RS-type address or register (2) - (12).

 ,SEARCH=JPALPA Default: JPALPA
 ,SEARCH=JPA
 ,SEARCH=LPA

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 0 - 2

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,MF=(M,list addr) list addr: RS-type address or register (2) - (12).
,MF=(M,list addr,COMPLETE) Default: COMPLETE
,MF=(M,list addr,NOCHECK)

 Parameters
The parameters are explained under the standard form of the macro with the following
exceptions:

,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Specifies the modify form of the CSVQUERY macro. list addr defines the area that the
system uses for the parameter list.

COMPLETE specifies that the system is to check for required parameters and supply
optional parameters that are not specified. COMPLETE is the default.

NOCHECK specifies that the system is to check only parameters that you specified.

312 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVRTLS Macro

CSVRTLS — Define the RTLS Configuration

CSVRTLS provides an interface to request functions of run-time library services (RTLS).
With CSVRTLS, you can request services for the following operations:

� Connect to a particular library managed by RTLS (REQUEST=CONNECT).

� Load a particular load module from a library managed by RTLS (REQUEST=LOAD).

� Delete a load module previously loaded by REQUEST=LOAD (REQUEST=DELETE).

� Disconnect from a particular connection (REQUEST=DISCONNECT).

� Obtain a list of RTLS libraries and users (REQUEST=LIST).

Following the descriptions of the standard forms of all requests are:

� The return and reason codes.
� Examples of using CSVRTLS.

 Copyright IBM Corp. 1988, 1999 313

 CSVRTLS Macro

REQUEST=CONNECT Option of CSVRTLS
REQUEST=CONNECT allows you to connect to a particular library managed by run-time
library services (RTLS).

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and PSW key 8-15.

An installation can indicate that the CONNECT request not be
successful for those denied READ access to RACF FACILITY
class resource CSVRTLS.LIBRARY.library.version. If no version is
specified on the CONNECT request, the version of the default for
that library name is used.

An authorized program can request more than 32 connections from
a single address space.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or, for

AR-mode callers, must be in an address/data space that is
addressable through a public entry on the caller's dispatchable unit
access list (DU-AL).

 Programming Requirements
The caller should include the CSVRTAA macro to get equate symbols for the return and
reason codes.

 Restrictions
The caller must not have functional recovery routines (FRRs) established.

All addresses are treated as 31-bit addresses, even when the caller is AMODE 24.

Input Register Information
Before issuing the CSVRTLS macro, the caller does not have to place any information into
any general purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

Before issuing the CSVRTLS macro, the caller does not have to place any information into
any access register (AR) unless using it in register notation for a particular parameter, or
using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code if GPR15 is not 0
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system

314 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVRTLS Macro

2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The CSVRTLS macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede CSVRTLS.

CSVRTLS

␣ One or more blanks must follow CSVRTLS.

REQUEST=CONNECT

 ,LIBRARY=library library: RS-type address or address in register (2) - (12).

 ,LIBVERS=libvers libvers: RS-type address or address in register (2) - (12).
 ,LIBVERS=DEFAULT_VERSION
 Default: LIBVERS=DEFAULT_VERSION

 ,CONTOKEN=contoken contoken: RS-type address or address in register (2) - (12).

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 Default: PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX
 ,PLISTVER=0

 ,MF=S Default: MF=S
 ,MF=(L,list addr) list addr: RS-type address or register (1) - (12).
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)

 Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the CSVRTLS macro
invocation. The name must conform to the rules for an ordinary assembler language
symbol.

 CSVRTLS — Define the RTLS Configuration 315

 CSVRTLS Macro

REQUEST=CONNECT
A required parameter. REQUEST=CONNECT indicates to connect to a particular RTLS
library.

,LIBRARY= library
A required input parameter that contains the name of the RTLS logical library. This
library must have been defined to RTLS by the RTLS=xx system parameter or by SET
RTLS=xx.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

,LIBVERS= libvers
,LIBVERS=DEFAULT_VERSION

An optional input parameter that contains the library version. A value of hexadecimal
zeroes is interpreted as one of the following:

1. If there is a logical library with matching library name that has been identified as the
default, then use that one

2. Otherwise, use the first-found logical library with matching library name.

The default is DEFAULT_VERSION.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

,CONTOKEN=contoken
A required output parameter that is to contain the token identifying this connection.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an optional input
parameter on all forms of the macro, including the list form. When using PLISTVER,
specify it on all macro forms used for a request and with the same value on all of the
macro forms. The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form, when both are assembled with the same level of the
system. In this way, MAX ensures that the parameter list does not overwrite nearby
storage.

� 0, if you use the currently available parameters.

316 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVRTLS Macro

To code: Specify one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with
the list form of the macro for applications that require reentrant code. The execute form
of the macro stores the parameters into the storage area defined by the list form, and
generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this
can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment
of the parameter list. Use a value of 0F to force the parameter list to a word
boundary, or 0D to force the parameter list to a doubleword boundary. If you do not
code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

 ABEND Codes
The caller may get the following abend codes:

0F8-04 The service was called in SRB mode.
0F8-08 The service was called locked.
0F8-0C The service was called disabled.
0F8-10 The service was called in XM mode.
0F8-14 The service was called holding a Functional Recovery

Routine (FRR).

Return and Reason Codes
See “Return and Reason Codes” on page 337 for the return and reason codes.

 CSVRTLS — Define the RTLS Configuration 317

 CSVRTLS Macro

 Examples
See “Examples” on page 340 for an example.

318 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVRTLS Macro

REQUEST=LOAD Option of CSVRTLS
REQUEST=LOAD allows you to load a particular load module from a library managed by
run-time library services (RTLS).

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and PSW key 8-15.

Use of the TCBADDR parameter requires supervisor state, system
key, or APF authorization.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or, for

AR-mode callers, must be in an address/data space that is
addressable through a public entry on the caller's dispatchable unit
access list (DU-AL).

 Programming Requirements
The caller should include the CSVRTAA macro to get equate symbols for the return and
reason

 Restrictions
The caller must not have functional recovery routines (FRRs) established.

All addresses are treated as 31-bit addresses, even when the caller is AMODE 24.

Input Register Information
Before issuing the CSVRTLS macro, the caller does not have to place any information into
any general purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

Before issuing the CSVRTLS macro, the caller does not have to place any information into
any access register (AR) unless using it in register notation for a particular parameter, or
using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code if GPR15 is not 0
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the

 CSVRTLS — Define the RTLS Configuration 319

 CSVRTLS Macro

caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The CSVRTLS macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede CSVRTLS.

CSVRTLS

␣ One or more blanks must follow CSVRTLS.

REQUEST=LOAD

 ,CONTOKEN=contoken contoken: RS-type address or address in register (2) - (12).

 ,MODNAME=modname modname: RS-type address or address in register (2) - (12).

 ,TCBADDR=tcbaddr tcbaddr: RS-type address or address in register (2) - (12).
 ,TCBADDR=CURRENT_TCB
 Default: TCBADDR=CURRENT_TCB

 ,OUTEPA=outepa outepa: RS-type address or address in register (2) - (12).

 ,OUTXTLST=outxtlst outxtlst: RS-type address or address in register (2) - (12).

 ,OUTAUTH=outauth outauth: RS-type address or address in register (2) - (12).

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 Default: PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX
 ,PLISTVER=0

 ,MF=S Default: MF=S
 ,MF=(L,list addr) list addr: RS-type address or register (1) - (12).
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)

 Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the CSVRTLS macro
invocation. The name must conform to the rules for an ordinary assembler language
symbol.

320 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVRTLS Macro

REQUEST=LOAD
A required parameter. REQUEST=LOAD indicates to load a particular module.

Because the system removes the connection upon the termination of the job step task of
the task that issued the CONNECT request, you should avoid issuing a LOAD request
during resource manager processing of that job step task. If you must issue a LOAD
request during resource manager processing of that job step task, you must issue the
CONNECT request during that processing before the LOAD request, and must issue the
DISCONNECT request afterwards (but still during resource manager processing).

,CONTOKEN=contoken
A required input parameter that contains the connect token returned by the CONNECT
request.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

,MODNAME=modname
A required input parameter that contains the name of the module to be loaded.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

,TCBADDR= tcbaddr
,TCBADDR=CURRENT_TCB

An optional input parameter that contains the address that identifies the owning task for
the module. The task must be the current task or one of the task's ancestors up to and
including the connection-owning task. If not deleted explicitly, the module will be deleted
upon termination of the identified task. It will not be deleted upon termination of the
current task, unless that is the task that is identified. This parameter may only be
specified by authorized requestors. The default is CURRENT_TCB.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

,OUTEPA=outepa
A required output parameter that is to contain the address of the entry point. The
outepa field will have bit 0 on when

� the module is AMODE 31, or
� the module is AMODE ANY and the caller is AMODE 31.

The outepa field will have bit 0 off when

� the module is AMODE 24, or
� the module is AMODE ANY and the caller is AMODE 24.

When the return code is 8 (symbol CsvrtlsRc_InvParm) and the reason code is
X'xxxx082D' (symbol CsvrtlsRsnModuleNotLoaded), this field contains additional
diagnostic data. The data is in the hexadecimal format 00aaarr where aaa represents a
system completion code, and rr the reason code for that completion code. Further
information about those errors can be found in OS/390 MVS System Codes. Note,
however, that the publication may refer to additional messages. Those messages are
not produced for this CSVRTLS request.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

,OUTXTLST=outxtlst
An optional output parameter, area that is to contain the extent information from the
CDE located by CSVQUERY. The first 4-bytes in the area should be initialized to 16
(the number of entries for which room is provided). On output, the second 4-bytes of
the area will contain the number of entries that follow. Each 8-byte entry that follows
consists of a 4-byte address (the load point for that extent) and a 4-byte length (the
length of that extent). The length value is expressed in bytes. The extent list area is
mapped by DSECT RTLSXTL within mapping macro CSVRTAA. Each entry is mapped
by DSECT RTLSXTLE within CSVRTAA.

 CSVRTLS — Define the RTLS Configuration 321

 CSVRTLS Macro

To code: Specify the RS-type address, or address in register (2)-(12), of a
136-character field.

,OUTAUTH=outauth
An optional output parameter that is to contain the load module's APF authorization
code.

To code: Specify the RS-type address, or address in register (2)-(12), of an one-byte
field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an optional input
parameter on all forms of the macro, including the list form. When using PLISTVER,
specify it on all macro forms used for a request and with the same value on all of the
macro forms. The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form, when both are assembled with the same level of the
system. In this way, MAX ensures that the parameter list does not overwrite nearby
storage.

� 0, if you use the currently available parameters.

To code: Specify one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter may be coded with the list form of the macro.

322 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVRTLS Macro

Use MF=E to specify the execute form of the macro. Use the execute form together with
the list form of the macro for applications that require reentrant code. The execute form
of the macro stores the parameters into the storage area defined by the list form, and
generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this
can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment
of the parameter list. Use a value of 0F to force the parameter list to a word
boundary, or 0D to force the parameter list to a doubleword boundary. If you do not
code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

 ABEND Codes
The caller may get the following abend codes:

0F8-04 The service was called in SRB mode.
0F8-08 The service was called locked.
0F8-0C The service was called disabled.
0F8-10 The service was called in XM mode.
0F8-14 The service was called holding a Functional Recovery

Routine (FRR).

Return and Reason Codes
See “Return and Reason Codes” on page 337 for the return and reason codes.

 Examples
See “Examples” on page 340 for an example.

 CSVRTLS — Define the RTLS Configuration 323

 CSVRTLS Macro

REQUEST=DELETE Option of CSVRTLS
REQUEST=DELETE allows you to delete a load module previously loaded from a library
managed by run-time library services (RTLS).

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and PSW key 8-15.

Use of the TCBADDR parameter requires supervisor state, system
key, or APF authorization.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or, for

AR-mode callers, must be in an address/data space that is
addressable through a public entry on the caller's dispatchable unit
access list (DU-AL).

 Programming Requirements
The caller should include the CSVRTAA macro to get equate symbols for the return and
reason

 Restrictions
The caller must not have functional recovery routines (FRRs) established.

All addresses are treated as 31-bit addresses, even when the caller is AMODE 24.

Input Register Information
Before issuing the CSVRTLS macro, the caller does not have to place any information into
any general purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

Before issuing the CSVRTLS macro, the caller does not have to place any information into
any access register (AR) unless using it in register notation for a particular parameter, or
using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code if GPR15 is not 0
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the

324 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVRTLS Macro

caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The CSVRTLS macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede CSVRTLS.

CSVRTLS

␣ One or more blanks must follow CSVRTLS.

REQUEST=DELETE

 ,CONTOKEN=contoken contoken: RS-type address or address in register (2) - (12).

 ,MODADDR=modaddr modaddr: RS-type address or address in register (2) - (12).

 ,TCBADDR=tcbaddr tcbaddr: RS-type address or address in register (2) - (12).
 ,TCBADDR=CURRENT_TCB
 Default: TCBADDR=CURRENT_TCB

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 Default: PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX
 ,PLISTVER=0

 ,MF=S Default: MF=S
 ,MF=(L,list addr) list addr: RS-type address or register (1) - (12).
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)

 Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the CSVRTLS macro
invocation. The name must conform to the rules for an ordinary assembler language
symbol.

REQUEST=DELETE
A required parameter. REQUEST=DELETE indicates to delete a particular module.

,CONTOKEN=contoken
A required input parameter that contains the connect token returned by the CONNECT
request.

 CSVRTLS — Define the RTLS Configuration 325

 CSVRTLS Macro

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

,MODADDR=modaddr
A required input parameter that contains the address of the module to be deleted.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

,TCBADDR= tcbaddr
,TCBADDR=CURRENT_TCB

An optional input parameter that contains the address that identifies the owning task for
the module. If specified, it must match the TCBADDR provided on the LOAD request.
This parameter may only be specified by authorized requestors. The default is
CURRENT_TCB.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an optional input
parameter on all forms of the macro, including the list form. When using PLISTVER,
specify it on all macro forms used for a request and with the same value on all of the
macro forms. The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form, when both are assembled with the same level of the
system. In this way, MAX ensures that the parameter list does not overwrite nearby
storage.

� 0, if you use the currently available parameters.

To code: Specify one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter

326 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVRTLS Macro

list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with
the list form of the macro for applications that require reentrant code. The execute form
of the macro stores the parameters into the storage area defined by the list form, and
generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this
can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment
of the parameter list. Use a value of 0F to force the parameter list to a word
boundary, or 0D to force the parameter list to a doubleword boundary. If you do not
code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

 ABEND Codes
The caller may get the following abend codes:

0F8-04 The service was called in SRB mode.
0F8-08 The service was called locked.
0F8-0C The service was called disabled.
0F8-10 The service was called in XM mode.
0F8-14 The service was called holding a Functional Recovery

Routine (FRR).

Return and Reason Codes
See “Return and Reason Codes” on page 337 for the return and reason codes.

 Examples
See “Examples” on page 340 for an example.

 CSVRTLS — Define the RTLS Configuration 327

 CSVRTLS Macro

REQUEST=DISCONNECT Option of CSVRTLS
REQUEST=DISCONNECT allows you to disconnect from a particular run-time library
services (RTLS) connection.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and PSW key 8-15.

Only an authorized program can disconnect from a connection
established by an authorized program.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or, for

AR-mode callers, must be in an address/data space that is
addressable through a public entry on the caller's dispatchable unit
access list (DU-AL).

 Programming Requirements
The caller should include the CSVRTAA macro to get equate symbols for the return and
reason codes.

 Restrictions
The caller must not have functional recovery routines (FRRs) established.

All addresses are treated as 31-bit addresses, even when the caller is AMODE 24.

Input Register Information
Before issuing the CSVRTLS macro, the caller does not have to place any information into
any general purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

Before issuing the CSVRTLS macro, the caller does not have to place any information into
any access register (AR) unless using it in register notation for a particular parameter, or
using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code if GPR15 is not 0
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the

328 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVRTLS Macro

caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The CSVRTLS macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede CSVRTLS.

CSVRTLS

␣ One or more blanks must follow CSVRTLS.

REQUEST=DISCONNECT

 ,CONTOKEN=contoken contoken: RS-type address or address in register (2) - (12).

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 Default: PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX
 ,PLISTVER=0

 ,MF=S Default: MF=S
 ,MF=(L,list addr) list addr: RS-type address or register (1) - (12).
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)

 Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the CSVRTLS macro
invocation. The name must conform to the rules for an ordinary assembler language
symbol.

REQUEST=DISCONNECT
A required parameter. REQUEST=DISCONNECT indicates to disconnect from a
particular connection. Only the task that issued the CONNECT request, or the task
identified by the TCBADDR parameter on the CONNECT request, can issue the
DISCONNECT request for a particular connection. You cannot issue the DISCONNECT
request if there are any RTLS LOAD or DELETE requests currently being processed for
this connection. The issuer of DISCONNECT is responsible for ensuring that there are
no longer any users of modules loaded via this connection.

If you do not issue a DISCONNECT request, the system will remove the connection
upon the termination of the job step task of the task that issued the CONNECT request.

 CSVRTLS — Define the RTLS Configuration 329

 CSVRTLS Macro

,CONTOKEN=contoken
A required input parameter that is the connect token returned by the CONNECT request.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an optional input
parameter on all forms of the macro, including the list form. When using PLISTVER,
specify it on all macro forms used for a request and with the same value on all of the
macro forms. The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form, when both are assembled with the same level of the
system. In this way, MAX ensures that the parameter list does not overwrite nearby
storage.

� 0, if you use the currently available parameters.

To code: Specify one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with
the list form of the macro for applications that require reentrant code. The execute form

330 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVRTLS Macro

of the macro stores the parameters into the storage area defined by the list form, and
generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this
can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment
of the parameter list. Use a value of 0F to force the parameter list to a word
boundary, or 0D to force the parameter list to a doubleword boundary. If you do not
code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

 ABEND Codes
The caller may get the following abend codes:

0F8-04 The service was called in SRB mode.
0F8-08 The service was called locked.
0F8-0C The service was called disabled.
0F8-10 The service was called in XM mode.
0F8-14 The service was called holding a Functional Recovery

Routine (FRR).

Return and Reason Codes
See “Return and Reason Codes” on page 337 for the return and reason codes.

 Examples
See “Examples” on page 340 for an example.

 CSVRTLS — Define the RTLS Configuration 331

 CSVRTLS Macro

REQUEST=LIST Option of CSVRTLS
REQUEST=LIST allows you to extract information about the run-time library services (RTLS)
configuration.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and PSW key 8-15.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or, for

AR-mode callers, must be in an address/data space that is
addressable through a public entry on the caller's dispatchable unit
access list (DU-AL).

The user-provided answer area (via the ANSAREA parameter) has
the same requirements and restrictions as the control parameters.

 Programming Requirements
The caller should include the CSVRTAA macro to get equate symbols for the return and
reason codes, and to map the output area specified by the ANSAREA parameter.

 Restrictions
The caller must not have functional recovery routines (FRRs) established.

All addresses are treated as 31-bit addresses, even when the caller is AMODE 24.

Input Register Information
Before issuing the CSVRTLS macro, the caller does not have to place any information into
any general purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

Before issuing the CSVRTLS macro, the caller does not have to place any information into
any access register (AR) unless using it in register notation for a particular parameter, or
using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code if GPR15 is not 0
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the

332 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVRTLS Macro

caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The CSVRTLS macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede CSVRTLS.

CSVRTLS

␣ One or more blanks must follow CSVRTLS.

REQUEST=LIST

 ,LISTTYPE=NAMES
 ,LISTTYPE=LOGICAL
 ,LISTTYPE=PHYSICAL
 ,LISTTYPE=VALUE

 ,LISTVALUE=listvalue
 listvalue: RS-type address or address in register (2) - (12).

 ,LIBRARY=library library: RS-type address or address in register (2) - (12).
 ,LIBRARY=ALL_LIBRARIES
 Default: LIBRARY=ALL_LIBRARIES

 ,LIBVERS=libvers libvers: RS-type address or address in register (2) - (12).

 ,LIBSEQ=libseq libseq: RS-type address or address in register (2) - (12).

 ,ANSAREA=ansarea ansarea: RS-type address or address in register (2) - (12).

 ,ANSLEN=anslen anslen: RS-type address or address in register (2) - (12).

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 Default: PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX
 ,PLISTVER=0

 ,MF=S Default: MF=S
 ,MF=(L,list addr) list addr: RS-type address or register (1) - (12).
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)

 CSVRTLS — Define the RTLS Configuration 333

 CSVRTLS Macro

 Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the CSVRTLS macro
invocation. The name must conform to the rules for an ordinary assembler language
symbol.

REQUEST=LIST
A required parameter. REQUEST=LIST indicates to list information about RTLS. The
returned information is mapped by mapping macro CSVRTAA.

,LISTTYPE=NAMES
,LISTTYPE=LOGICAL
,LISTTYPE=PHYSICAL
,LISTTYPE=VALUE

A required parameter that indicates the type of list request.

,LISTTYPE=NAMES
indicates to return header information plus the names of the matching libraries only.
The returned information consists of:

� A header area, mapped by DSECT RTAAHDR.
� One logical library area, mapped by DSECT RTAALO, for each matching

logical library.
� One physical library area, mapped by DSECT RTAAPH, for each matching

physical library.

,LISTTYPE=LOGICAL
indicates to return header information plus information about the matching logical
libraries. The returned information consists of:

� A header area, mapped by DSECT RTAAHDR.
� One logical library area, mapped by DSECT RTAALO, for each matching

logical library.

In addition, for each logical library area, are

� One physical library area, mapped by DSECT RTAALPH, for each physical
library of which the logical library is comprised;

� One module area, mapped by DSECT RTAAMO, for each module that is
cached on behalf of the logical library; and

� One user area, mapped by DSECT RTAALU, for each user connected to this
logical library.

,LISTTYPE=PHYSICAL
indicates to return header information plus information about the matching physical
libraries. The returned information consists of:

� A header area, mapped by DSECT RTAAHDR; and
� One physical library area, mapped by DSECT RTAAPH, for each matching

physical library.

In addition, for each physical library area, are

� One data set area, mapped by DSECT RTAADS, for each data set of which
the physical library is comprised;

� One module area, mapped by DSECT RTAAMO, for each module that is part
of the physical library common area cache; and

� One logical library area, mapped by DSECT RTAAPL, for each logical library of
which this physical library is a part.

,LISTTYPE=VALUE
indicates that the value is specified.

334 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVRTLS Macro

,LISTVALUE= listvalue
When LISTTYPE=VALUE is specified, a required input parameter that contains the
listtype value. The returned information depends upon the listtype value. You can get
equates to use when setting the listtype value by using the list form of the CSVRTLS
macro. For example, an invocation of CSVRTLS MF=(L,LNAME) will produce equates
LNAME_XLISTTYPE_NAMES, LNAME_XLISTTYPE_PHYSICAL, and
LNAME_XLISTTYPE_LOGICAL.

To code: Specify the RS-type address, or address in register (2)-(12), of an one-byte
field.

,LIBRARY= library
,LIBRARY=ALL_LIBRARIES

An optional input parameter that contains the library about which information is to be
returned. If specified for LISTTYPE(NAMES), only matching libraries will be returned.
Wildcard characters are allowed. The default is ALL_LIBRARIES.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

,LIBVERS= libvers
When LIBRARY=library is specified, a required input parameter that contains the library
version. A value of hexadecimal zeroes indicates that any version is accepted. Wildcard
characters are allowed within this specification.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

,LIBSEQ= libseq
When LIBRARY=library is specified, a required input parameter that contains the
sequence number. A value of -1 indicates that all sequence numbers are accepted. A
value of 0 indicates that the current (newest) sequence number is to be used. Any other
value indicates a specific sequence number.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,ANSAREA= ansarea
A required output parameter that is to contain the RTLS information.

To code: Specify the RS-type address, or address in register (2)-(12), of a character
field.

,ANSLEN=anslen
A required input parameter that contains the length of the provided answer area.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field,
or specify a literal decimal value.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an optional input
parameter on all forms of the macro, including the list form. When using PLISTVER,
specify it on all macro forms used for a request and with the same value on all of the
macro forms. The values are:

 CSVRTLS — Define the RTLS Configuration 335

 CSVRTLS Macro

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form, when both are assembled with the same level of the
system. In this way, MAX ensures that the parameter list does not overwrite nearby
storage.

� 0, if you use the currently available parameters.

To code: Specify one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with
the list form of the macro for applications that require reentrant code. The execute form
of the macro stores the parameters into the storage area defined by the list form, and
generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this
can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment
of the parameter list. Use a value of 0F to force the parameter list to a word
boundary, or 0D to force the parameter list to a doubleword boundary. If you do not
code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

336 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVRTLS Macro

 ABEND Codes
The caller may get the following abend codes:

0F8-04 The service was called in SRB mode.
0F8-08 The service was called locked.
0F8-0C The service was called disabled.
0F8-10 The service was called in XM mode.
0F8-14 The service was called holding a Functional Recovery

Routine (FRR).

Return and Reason Codes
When the CSVRTLS macro returns control to your program:

� GPR 15 (and retcode, when you code RETCODE) contains a return code.
� When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro CSVRTAA provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the equate
symbol associated with each reason code. IBM support personnel may request the entire
reason code, including the xxxx value.

Figure 18 (Page 1 of 4). Return and Reason Codes for the CSVRTLS Macro

Return Code Reason Code Equate Symbol
Meaning and Action

0 — Equate Symbol : CSVRTLSRc_OK

Meaning : CSVRTLS request successful.

Action : None required.

CONNECT Meaning : Connection successful.

Action : None required.

LOAD Meaning : Load successful.

Action : None required.

DELETE Meaning : Delete successful.

Action : None required.

DISCONNECT Meaning : Disconnection successful.

Action : None required.

LIST Meaning : All requested data returned.

Action : None required.

4 — Equate Symbol : CSVRTLSRc_Warn

Meaning : Warning

Action : Refer to action provided with the reason code.

4 xxxx0401 Equate Symbol : CsvrtlsRsnListNoMatches

Meaning : For LIST request, no matching logical and/or physical
libraries matches the request.

Action : Make sure that you specified the proper library name.

4 xxxx0402 Equate Symbol : CsvrtlsRsnAliasesExist

Meaning : For DISCONNECT request, there are outstanding alias
entries to modules loaded for this library. An ATTACH(X), LINK(X), or
XCTL(X) was issued using the name of a module loaded by RTLS for
this library.

Action : Avoid using DISCONNECT when there are such alias
entries. If you cancel the jobstep, the system will perform the
cleanup and disconnect on your behalf.

 CSVRTLS — Define the RTLS Configuration 337

 CSVRTLS Macro

Figure 18 (Page 2 of 4). Return and Reason Codes for the CSVRTLS Macro

Return Code Reason Code Equate Symbol
Meaning and Action

4 xxxx0403 Equate Symbol : CsvrtlsRsnNotAllDataReturned

Meaning : For LIST request, not all data was returned because the
answer area is not big enough. Answer area field RTAAHTLEN
indicates how much space is currently required.

Action : Allocate a larger area and request the function again.

8 — Equate Symbol : CSVRTLSRc_InvParm

Meaning : CSVRTLS request specifies invalid parameters.

Action : Refer to action provided with the reason code.

8 xxxx0801 Equate Symbol : CsvrtlsRsnBadParmlist

Meaning : Unable to access parameter list.

Action : Check for possible storage overlay.

8 xxxx0804 Equate Symbol : CsvrtlsRsnNotAuthorized

Meaning : For CONNECT, LOAD, or DISCONNECT - not authorized.
For CONNECT, the customer has requested that security checking
be done. You do not have read access to RACF FACILITY class
resource CSVRTLS.LIBRARY.library.version. For LOAD, the
customer has restricted access to the program that you are
attempting to access. You do not have access to that program. For
DISCONNECT, your program is not authorized and is attempting to
disconnect from a connection made by an authorized program.

Action : Request this function only when you have the proper
authority. For LOAD, see the description of completion code 306
reason code 30 in OS/390 MVS System Codes and the description of
message CSV205I in OS/390 MVS System Messages, Vol 2
(ASB-EZM) for further information. While the completion code and
message are not produced, the information pertaining to them does
apply to this situation.

8 xxxx0806 Equate Symbol : CsvrtlsRsnBadAnsareaALET

Meaning : Bad answer area ALET.

Action : Make sure that the ALET associated with the answer area is
valid. You might not have set up its access register properly.

8 xxxx0807 Equate Symbol : CsvrtlsRsnBadAnsarea

Meaning : Error accessing answer area.

Action : Make sure that the provided answer area is valid.

8 xxxx0808 Equate Symbol : CsvrtlsRsnBadAnslen

Meaning : LIST - AnsLen is less than size of the header area.

Action : Provide a larger answer area (as indicated by the ANSLEN
keyword).

8 xxxx0809 Equate Symbol : CsvrtlsRsnBadRequestType

Meaning : Request type is not valid.

Action : Check for possible storage overlay of the parameter list.

8 xxxx080A Equate Symbol : CsvrtlsRsnBadEstaex

Meaning : Unable to establish ESTAEX. "xxxx" contains ESTAE(X)
return code.

Action : Refer to documentation for ESTAEX return code "xxxx".

8 xxxx080B Equate Symbol : CsvrtlsRsnReservedNot0

Meaning : Reserved field not 0.

Action : Check for possible storage overlay of the parameter list.

8 xxxx080C Equate Symbol : CsvrtlsRsnBadOutxtlstALET

Meaning : Bad Outxtlst ALET.

Action : Make sure that the ALET of the OUTXTLST area is valid.
You might not have set up its access register properly.

8 xxxx080D Equate Symbol : CsvrtlsRsnBadParmlistALET

Meaning : Bad parmlist ALET.

Action : Make sure that the ALET of the parameter list is valid. You
might not have set up its access register properly.

338 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVRTLS Macro

Figure 18 (Page 3 of 4). Return and Reason Codes for the CSVRTLS Macro

Return Code Reason Code Equate Symbol
Meaning and Action

8 xxxx080E Equate Symbol : CsvrtlsRsnBadVersion

Meaning : Bad version number.

Action : Check for possible storage overlay of the parameter list.

8 xxxx0810 Equate Symbol : CsvrtlsRsnLibraryNotFound

Meaning : For CONNECT or LIST request, the requested library is not
defined to RTLS.

Action : Make sure that you specified the correct library name.

8 xxxx0811 Equate Symbol : CsvrtlsRsnBadListType

Meaning : For LIST, the ListType value is incorrect.

Action : Check for possible storage overlay of the parameter list.

8 xxxx082C Equate Symbol : CsvrtlsRsnBadContoken

Meaning : For LOAD, DELETE, or DISCONNECT the input contoken
does not represent a valid connection.

Action : Make sure that you specified the connect token that was
returned by the CONNECT request.

8 xxxx082D Equate Symbol : CsvrtlsRsnModuleNotLoaded

Meaning : For LOAD, the module could not be loaded. A valid copy
of the module was not located within the logical library represented
by the connect token. If you are authorized, the only copy might have
been within an unauthorized library. There might not have been
enough storage available to satisfy the request to load the module.

Action : Make sure that you specified the correct connect token and
correct module name. If you are authorized, make sure that the
library containing the module is authorized. When the field
designated by the OUTEPA parameter is non-zero, it contains
additional diagnostic information. That information is in the format
000cccrr where ccc represents a system completion code, and rr the
reason code associated with that completion code. See OS/390 MVS
System Codes for further information.

8 xxxx082E Equate Symbol : CsvrtlsRsnModaddrNotValid

Meaning : For DELETE, the provided address does not represent a
module previously loaded by the LOAD request.

Action : Make sure that you specified the correct connect token and
correct module address.

8 xxxx082F Equate Symbol : CsvrtlsRsnBadTCBADDR

Meaning : The provided TCBADDR parameter does not specify a task
that either is the current task or an ancestor task. The oldest task
allowed is the connecting task. Alternately, the caller was not
authorized.

Action : Make sure that you specified the correct TCBADDR and that
you are authorized.

8 xxxx0830 Equate Symbol : CsvrtlsRsnBadTask

Meaning : The task issuing a LOAD or DELETE request is neither the
connecting task nor a subtask of that task. The task issuing a
DISCONNECT request is not the connecting task.

Action : Make sure that you use the LOAD, DELETE, and
DISCONNECT requests only from a proper task.

8 xxxx0831 Equate Symbol : CsvrtlsRsnBadOutxtlst

Meaning : Unable to access the OutXtlst area.

Action : Check that you provided a valid area.

8 xxxx0832 Equate Symbol : CsvrtlsRsnBadOutxtlstContents

Meaning : The RtlsXtlNumEntriesProvided field had an incorrect
value.

Action : Fill in the RtlsXtlNumEntriesProvided area using equate
symbol RtlsXtlMaxNumEntries prior to invoking the macro.

 CSVRTLS — Define the RTLS Configuration 339

 CSVRTLS Macro

Figure 18 (Page 4 of 4). Return and Reason Codes for the CSVRTLS Macro

Return Code Reason Code Equate Symbol
Meaning and Action

C — Equate Symbol : CsvrtlsRc_Env

Meaning : Environmental error

Action : Refer to action provided with the reason code.

C xxxx0C01 Equate Symbol : CsvrtlsRsnNoStorage

Meaning : No storage is available to complete the request.

Action : Contact your system programmer. There might be a common
storage shortage.

C xxxx0C02 Equate Symbol : CsvrtlsRsnTooManyConnections

Meaning : The limit of 32 connections from an address space by
unauthorized callers been reached.

Action : Restructure your program so that it requests fewer
connections.

C xxxx0C03 Equate Symbol : CsvrtlsRsnLoadDeleteInProcess

Meaning : For the disconnect request, at least one load or delete
request is still in process.

Action : Avoid requesting a disconnect when there are loads or delete
requests still being done. If the load or delete is being done from a
subtask, your program could wait for that subtask to complete before
issuing the disconnect request.

C xxxx0C04 Equate Symbol : CsvrtlsRsnTaskInRTLS

Meaning : The issuing task is currently processing an RTLS request.
Another request during this time is not allowed.

Action : Avoid issuing an RTLS request from a program running as
an interrupt request block (IRB) when the interrupted program is
processing an RTLS request. Bit STCBINRT in the STCB data area
will be on if the interrupted program is in this state.

10 — Equate Symbol : CsvrtlsRC_CompError

Meaning : Unexpected failure.

Action : Refer to action provided with the reason code.

10 xxxx1001 Equate Symbol : CsvrtlsRsnCompError

Meaning : Unexpected failure. The state of the request is
unpredictable.

Action : Contact your system programmer.

 Examples
 Example 1:

 Operation:

1. CONNECT to a particular library, using the default version.
2. LOAD a module from that library.
3. DELETE that module from that library.
4. DISCONNECT from the connection.

The code is as follows.

340 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVRTLS Macro

\
\ CONNECT using the default version for the library
\
 CSVRTLS REQUEST=CONNECT,LIBRARY=L,CONTOKEN=C, \
 RETCODE=LRETCODE,RSNCODE=LRSNCODE, \
 MF=(E,RTLS)
 ...
\
\ LOAD using the connection
\
 CSVRTLS REQUEST=LOAD,CONTOKEN=C,MODNAME=M, \
 OUTEPA=E,OUTXTLST=X, \
 RETCODE=LRETCODE,RSNCODE=LRSNCODE, \
 MF=(E,RTLS)
 ...
\
\ DELETE the loaded module
\
 CSVRTLS REQUEST=DELETE,CONTOKEN=C,MODADDR=E, \
 RETCODE=LRETCODE,RSNCODE=LRSNCODE, \
 MF=(E,RTLS)
 ...
\
\ DISCONNECT from the connection
\
 CSVRTLS REQUEST=DISCONNECT,CONTOKEN=C, \
 RETCODE=LRETCODE,RSNCODE=LRSNCODE, \
 MF=(E,RTLS)
 ...
L DC CL8'LE ' The library name
M DC CL8'MYMOD ' The module name

CSVRTAA Return and reason code equates
DYNAREA DSECT
C DS CL8 The connect token
E DS A The entry point address
X DS CL136 The extent list area
LRETCODE DS F Return code
LRSNCODE DS F Reason code
 CSVRTLS MF=(L,RTLS)

 Example 2:

 Operation:

CONNECT to a particular library and version.

The code is as follows.

 CSVRTLS REQUEST=CONNECT, \
 LIBRARY=L,LIBVERS=LV, \
 CONTOKEN=C, \
 RETCODE=LRETCODE,RSNCODE=LRSNCODE, \
 MF=(E,RTLS)
 ...
L DC CL8'LE ' The library name
LV DC CL8'NEW ' The library version

CSVRTAA Return and reason code equates
DYNAREA DSECT
C DS CL8 The connect token
LRETCODE DS F Return code
LRSNCODE DS F Reason code
 CSVRTLS MF=(L,RTLS)

 CSVRTLS — Define the RTLS Configuration 341

 CSVRTLS Macro

 Example 3:

Operation:: Retrieve the names of the libraries managed by RTLS.

The code is as follows.

L 2,=AL4(INITRTAA) Initial answer area size
 ST 2,SIZERTAA Save it

GETMAIN RU,LV=(2) Allocate the answer area
ST 1,RTAAADDR Save address of answer area

LAB1 DS ðH
L 4,RTAAADDR Address of answer area

 CSVRTLS REQUEST=LIST,ANSAREA=(4),ANSLEN=SIZERTAA, \
 LISTTYPE=NAMES, \
 RETCODE=LRETCODE,RSNCODE=LRSNCODE, \
 MF=(E,RTLS)
 CLC LRETCODE(4),=AL4(CSVRTLSRC_WARN) Warning?

BNE LAB2 No, request OK or error
\ Yes, not enough room

LR 3,2 Save current size
L 2,RTAAHTLEN-RTAAHDR(4) Get required size
FREEMAIN RU,A=(4),LV=(3) Release old area

 ST 2,SIZERTAA Save it
GETMAIN RU,LV=(2) Allocate new area
ST 1,RTAAADDR Save address of answer area
B LAB1 Retry List operation

LAB2 DS ðH
 CLC LRETCODE(4),=AL4(CSVRTLSRC_OK) Success?
 BNE LAB3 No, error
\\\
\ \
\ Process information in answer area when RC=ð \
\ \
\\\
 USING RTAAHDR,4 RTAAHDR DSECT

L 5,RTAAHNUMLO Find how many RTAALO entries
LTR 5,5 Are there any entries
BZ LAB4 No, join common path
L 3,RTAAHFIRSTLOADDR Get first entry

 USING RTAALO,3 RTAALO DSECT
LAB5 DS ðH RTAALO loop
\
\ Put code to process information contained in RTAALO here
\

L 3,RTAALONEXTADDR Get next RTAALO
BCT 5,LAB5 Continue while there are more
B LAB4 Skip error case

LAB3 DS ðH Error return
\
\ Process error case
\
 DROP 3 RTAALO DSECT
LAB4 DS ðH Common path

L 5,RTAAHNUMPH Find how many RTAAPH entries
LTR 5,5 Are there any entries
BZ LAB4P No, join common path
L 3,RTAAHFIRSTPHADDR Get first entry

 USING RTAAPH,3 RTAAPH DSECT
LAB5P DS ðH RTAAPH loop
\
\ Put code to process information contained in RTAAPH here
\

L 3,RTAAPHNEXTADDR Get next RTAAPH
BCT 5,LAB5P Continue while there are more

342 OS/390 V2R8.0 MVS Assembler Services Reference

 CSVRTLS Macro

B LAB4P Skip error case
LAB3P DS ðH Error return
\
\ Process error case
\
 DROP 3 RTAAPH DSECT
LAB4P DS ðH Common path

L 2,SIZERTAA Get size of area
L 4,RTAAADDR Get address of area
FREEMAIN RU,A=(4),LV=(2) Release area

 ...
CSVRTAA LIST answer area, return codes

PHYSLEN EQU 5ð\RTAAPH_LEN Room for 5ð physical sets' info
LOGLEN EQU 2ð\RTAALO_LEN Room for 2ð Logical sets' info
INITRTAA EQU RTAAHDR_LEN+PHYSLEN+LOGLEN
DYNAREA DSECT
RTAAADDR DS A Address of answer area
SIZERTAA DS F Size of answer area
TEMPSIZE DS F Temporary
LRETCODE DS F Return code
LRSNCODE DS F Reason code
 CSVRTLS MF=(L,RTLS)

 CSVRTLS — Define the RTLS Configuration 343

 CSVRTLS Macro

344 OS/390 V2R8.0 MVS Assembler Services Reference

 DELETE Macro

DELETE — Relinquish Control of a Load Module

 Description
The DELETE macro cancels the effect of a previous LOAD macro. If DELETE cancels the
only outstanding LOAD request for the module, and no other requirements exist for the
module, the virtual storage occupied by the load module is released and is available for
reassignment by the control program.

In the case of nonreentrant and nonreusable modules loaded multiple times, the order of
processing occurs in last-loaded first-deleted order. For example, if Program A loads module
LOADMODA, then calls Program B, which also loads LOADMODA, then issues a DELETE
against LOADMODA, the copy of the load module to be deleted is the one associated with
Program B. At this point, a copy of LOADMODA will still exist. The next DELETE request
against LOADMODA will delete that copy, regardless of whether Program A or Program B
issues the request.

The entry name specified in the DELETE macro must be the same as that specified in the
LOAD macro that brought the load module into storage. Also, the DELETE macro must be
issued by the same task that issued the LOAD macro.

Any module loaded by a task will not be removed from virtual storage until the DELETE
macro is issued or end of task is reached. In addition, any module loaded by a system task
will not be removed from virtual storage until a DELETE macro is issued by a system task or
end of task is reached.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

 Programming Requirements
� The entry name specified in the DELETE macro must be the same as that specified in

the LOAD macro that brought the load module into storage.

� The DELETE macro must be issued by the same task that issued the LOAD macro.

 Restrictions
None.

Input Register Information
None.

 Copyright IBM Corp. 1988, 1999 345

 DELETE Macro

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Address of the name or list entry that was supplied through the EP or DE

keyword.
1-14 Unchanged.
15 Return code.

 Syntax
The DELETE macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede DELETE.

DELETE

␣ One or more blanks must follow DELETE.

EP=entry name entry name: symbol.
EPLOC=entry name addr entry name addr: RX-type address, or register (0) or (2) - (12).
DE=list entry addr list entry addr: RX-type address, or register (0) or (2) - (12).

 ,RELATED=value value: any valid macro keyword specification.

 Parameters
The parameters are explained as follows:

EP=entry name
EPLOC=entry name addr
DE=list entry addr

Specifies the entry name, the address of the entry name, or the address of a 62-byte list
entry for the entry name that was constructed using the BLDL macro. If you code
EPLOC, pad the name to eight bytes, if necessary.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macros that provide opposite services (for
example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and on
macros that relate to previous occurrences of the same macros (for example, CHAP and
ESTAE).

 ABEND Codes
None.

346 OS/390 V2R8.0 MVS Assembler Services Reference

 DELETE Macro

Return and Reason Codes
When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Return Code

Meaning

00 Successful completion of requested function

04 Requested module was not in storage, or an attempt was made to delete a system module
by a caller not authorized to do so

 Example
Remove a module (PGMTOVLY) from virtual storage.

DELETE EP=PGMTOVLY

 DELETE — Relinquish Control of a Load Module 347

 DELETE Macro

348 OS/390 V2R8.0 MVS Assembler Services Reference

 DEQ Macro

DEQ — Release a Serially Reusable Resource

 Description
The DEQ macro releases control of one or more serially reusable resources from the active
task. A task ends abnormally if it either requests an unconditional release of a resource it
does not control, or issues a request that contains incorrect parameters.

When you use DEQ to release control of a resource obtained through the ENQ macro,
certain parameters on DEQ must match the parameters on the ENQ that assigned control to
that resource. Similarly, when you use DEQ to release control of a resource obtained
through the RESERVE macro, certain parameters on DEQ must match the parameters on
the RESERVE that assigned control to that resource. In the cases where the parameters
must match, the parameter descriptions note that fact.

An explanation of how to use the DEQ macro to serialize access to resources appears in
OS/390 MVS Programming: Assembler Services Guide.

 Environment
The requirements for callers of DEQ are:

Minimum authorization : Problem state with any PSW key.
Dispatchable unit mode : Task
Cross memory mode : PASN = HASN = SASN
AMODE: 24- or 31-bit
ASC mode : Primary
Interrupt status : Enabled for I/O and external interrupts
Locks : No locks held
Control parameters : Control parameters must be in the primary address space.

 Programming Requirements
None.

 Restrictions
� The caller cannot have an EUT FRR established.

Input Register Information
Before issuing the DEQ macro, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter, or using it as a base
register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 One of the following:

� If you specify RET=HAVE, if all return codes for the resources named in
the DEQ macro are 0, register 15 contains 0. If any of the return codes
are not 0, register 15 contains the address of a storage area containing
the return codes.

� Otherwise: Used as a work register by the system.

 Copyright IBM Corp. 1988, 1999 349

 DEQ Macro

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The standard form of the DEQ macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede DEQ.

DEQ

␣ One or more blanks must follow DEQ.

(

qname addr qname addr: A-type address, or register (2) - (12).

,
,rname addr rname addr: A-type address, or register (2) - (12).

, rname length: symbol, decimal digit, or register (2) - (12).

Note: rname length must be coded if a register is specified for
rname addr.

,rname length

, Default: STEP
,STEP
,SYSTEM
,SYSTEMS

)

 ,RET=NONE Default: RET=NONE
 ,RET=HAVE

 ,UCB=ucb addr ucb addr: A-type address, or register (2) - (12).

Note: Specify UCB only with SYSTEMS.

 ,LOC=BELOW Default: LOC=BELOW
 ,LOC=ANY

 ,RNL=YES Default: RNL=YES
 ,RNL=NO

 ,RELATED=value value: any valid macro keyword specification.

350 OS/390 V2R8.0 MVS Assembler Services Reference

 DEQ Macro

 Parameters
The parameters are explained as follows.

(
Specifies the beginning of the resource description.

qname addr
Specifies the address of an 8-character name. The name can contain any valid
hexadecimal characters. The qname must be the same name specified for the resource
in an ENQ or RESERVE macro.

,
,rname addr

Specifies the address of the name used together with qname and scope to represent the
resource acquired by a previous ENQ or RESERVE macro. The name must be from 1
to 255 bytes long, can be qualified, and can contain any valid hexadecimal characters.
The rname must be the same name specified for the resource in an ENQ or RESERVE
macro.

,
,rname length

Specifies the length of the rname. The length must have the same value as specified in
the previous ENQ or RESERVE macro. If you omit this parameter, the system uses the
assembled length of the rname. You can specify a value between 1 and 255 to override
the assembled length, or you may specify a value of 0. If you specify 0, the length of
the rname must be contained in the first byte at the rname addr.

,
,STEP
,SYSTEM
,SYSTEMS

Specifies the scope of the resource. If you used the ENQ macro to obtain control of the
resource, the scope you specify on DEQ must match the scope specified on that ENQ.
If you used the RESERVE macro to obtain control of the resource, you must specify
SYSTEMS as the scope on DEQ.

)
Specifies the end of the resource description.

Notes on specifying multiple resources on one DEQ request :

� Within a single set of parentheses, you can repeat the qname addr, rname addr, type of
control, rname length, and the scope until there is a maximum of 255 characters,
including the parentheses.

� The following parameters apply to all the resources you specify on the request: RET
and RNL.

,RET=NONE
,RET=HAVE

HAVE specifies that the request for releasing the resources named in DEQ is to be
honored only if the active task has been assigned control of the resources. A return
code is set if the resource is not held. NONE specifies an unconditional request to
release all the resources. RET=NONE is the default. The active task ends abnormally
if it has not been assigned control of the resources.

In either case, if the resources requested for release were originally queued with the
ECB parameter specified, they are released with return code 0.

,UCB=ucb addr
Specifies the address of a fullword that contains the address of a UCB for a reserved
device that is now being released. This parameter is used to release a device reserved
with the RESERVE macro and is valid only with a scope of SYSTEMS. The UCB
parameter is optional.

 DEQ — Release a Serially Reusable Resource 351

 DEQ Macro

Note: The UCB keyword might contain a UCB address for a UCB that resides in
storage above or below 16 megabytes. If the UCB address might point to a UCB above
16 megabytes, you must also specify LOC=ANY.

,LOC=BELOW
,LOC=ANY

Specifies the location of the input UCB address. ANY specifies that the input UCB
address is to be treated as a 31-bit address. BELOW specifies that the input UCB
address is to be treated as a 24-bit address. The default is LOC=BELOW.

,RNL=YES
,RNL=NO

Specifies whether the system is to perform RNL processing, which might change the
scope value of a resource. You must specify the same RNL option as you used in the
ENQ macro that requested the resource. The default is RNL=YES.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and can be any valid coding values.

 ABEND Codes
For only unconditional requests, the caller might encounter abend code X'130' or X'530'.
For unconditional and conditional requests, the caller might encounter one of the following
abend codes:

 � X'230'
 � X'330'
 � X'430'
 � X'730'
 � X'830'
 � X'930'

See OS/390 MVS System Codes for explanations and responses for these codes.

Return and Reason Codes
Return codes are provided by the system only if RET=HAVE is designated. If all of the
return codes for the resources named in DEQ are 0, register 15 contains 0. If any of the
return codes are not 0, register 15 contains the address of a virtual storage area containing
the return codes as shown in Figure 19.

352 OS/390 V2R8.0 MVS Assembler Services Reference

 DEQ Macro

Address
Returned in
Register 15

Return
Codes

1
0

2 3 4

12

12

24

36

Return codes are
12 bytes apart,
starting 3 bytes
from the address
in register 15.

RC1

RC2

RC3

RCN

Figure 19. Return Code Area Used by DEQ

The return codes are placed in the parameter list resulting from the macro expansion in the
same sequence as the resource names in the DEQ macro.

The return codes for the DEQ macro with the RET=HAVE parameter are described in
Figure 20.

Figure 20. Return Codes for the DEQ Macro with the RET=HAVE Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning : The system has released the resource.

Action : None.

4 Meaning : The resource has been requested for the task, but the task has not been
assigned control of it. The task continues waiting. (This return code might result if an exit
routine, which received control because of an interruption, issued the DEQ macro on behalf
of the task.)

Action : None.

8 Meaning : Control of the resource has not been requested by the active task, or the
resource has already been released.

Action : None required. However, you might take some action based on your application.

 Example 1
Release control of the resource in Example 1 of ENQ (see “ENQ — Request Control of a
Serially Reusable Resource” on page 437), if it has been assigned to the current task.

DEQ (MAJOR1,MINOR1,,STEP),RET=HAVE

 DEQ — Release a Serially Reusable Resource 353

 DEQ Macro

 Example 2
Unconditionally release control of the resources in Example 2 of ENQ. The length of the
rname for the first resource is 3 characters and the length of the rname for the third resource
is 8 characters. Allow the length of the second resource to default to its assembled length.

DEQ (MAJOR4,MINOR4,3,STEP,MAJOR2,MINOR2,,SYSTEM, X
 MAJOR3,MINOR3,8,SYSTEMS)

354 OS/390 V2R8.0 MVS Assembler Services Reference

 DEQ Macro

 DEQ—List Form
Use the list form of the DEQ macro to construct a control program parameter list. The
number of qname, rname, and scope combinations in the list form of DEQ must be equal to
the maximum number of qname, rname, and scope combinations in any execute form of
DEQ that refers to that list form.

The list form of the DEQ macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede DEQ.

DEQ

␣ One or more blanks must follow DEQ.

(

 qname addr qname addr: A-type address.

 , rname addr: A-type address.
 ,rname addr

 , rname length: symbol or decimal digit.
 ,rname length

 , Default: STEP
 ,STEP
 ,SYSTEM
 ,SYSTEMS

)

 ,RET=NONE Default: RET=NONE
 ,RET=HAVE

 ,UCB=ucb addr ucb addr: A-type address.

 ,LOC=BELOW Default: LOC=BELOW
 ,LOC=ANY

 ,RNL=YES Default: RNL=YES
 ,RNL=NO

 ,RELATED=value value: any valid macro keyword specification.

,MF=L

 Parameters
The parameters are explained under the standard form of the DEQ macro, with the following
exception:

,MF=L
Specifies the list form of the DEQ macro.

 DEQ — Release a Serially Reusable Resource 355

 DEQ Macro

 DEQ—Execute Form
A remote control program parameter list is used in, and can be modified by, the execute
form of the DEQ macro. The parameter list can be generated by the list form of either the
DEQ or the ENQ macro.

The execute form of the DEQ macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede DEQ.

DEQ

␣ One or more blanks must follow DEQ.

 (Note: (and) are the beginning and end of a parameter list. The

entire list is optional. If nothing in the list is desired, then (,), and
all parameters between (and) should not be specified. If
something in the list is desired, then (,), and all parameters in the
list should be specified as indicated at the left.

 qname addr qname addr: RX-type address, or register (2) - (12).

 , rname addr: RX-type address, or register (2) - (12).
 ,rname addr
 , rname length: symbol, decimal digit, or register (2) - (12).
 ,rname length

 ,
 ,STEP
 ,SYSTEM
 ,SYSTEMS

) Note: See note opposite (above.

 ,RET=NONE
 ,RET=HAVE

 ,UCB=ucb addr ucb addr: RX-type address, or register (2) - (12).

Note: Specify UCB only with SYSTEMS.

 ,LOC=BELOW Default: LOC=BELOW
 ,LOC=ANY

 ,RNL=YES
 ,RNL=NO

 ,RELATED=value value: any valid macro keyword specification.

,MF=(E,list addr) list addr: RX-type address, or register (1) - (12).

 Parameters
The parameters are explained under the standard form of the DEQ macro, with the following
exception:

,MF=(E,list addr)
Specifies the execute form of the DEQ macro.

list addr specifies the area that the system uses to contain the parameters.

356 OS/390 V2R8.0 MVS Assembler Services Reference

 DETACH Macro

DETACH — Detach a Subtask

 Description
The DETACH macro removes from the system a subtask created using the ATTACH (or
ATTACHX) macro with the ECB or ETXR parameters. Subtasks created using the ATTACH
macro without specifying the ECB or ETXR parameters are automatically removed by the
system when they terminate. If a task attaches a subtask with the ECB or ETXR
parameters, the originating task must detach the subtask before terminating.

You can issue a DETACH macro only for subtasks created by the active task.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state, and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=SASN=HASN
AMODE: 24- or 31-bit
ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller may hold the local lock, but is not required to hold any

locks.
Control parameters: Must be in the primary address space

 Programming Requirements
If your program is in AR mode, issue the SYSSTATE ASCENV=AR macro before you issue
DETACH.

 Restrictions
� Failure to remove subtasks created using the ATTACH macro with the ECB or ETXR

parameters causes the originating task and all of its subtasks to terminate abnormally.

� Detaching a terminated subtask that was created without the ECB or ETXR parameters
will cause the originating task and all its subtasks to terminate abnormally.

� Detaching a task that has not yet terminated will cause that task and all its subtasks (but
not the originating task) to terminate abnormally.

� The caller cannot have an EUT FRR established.

Input Register Information
Before issuing the DETACH macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-14 Unchanged
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system

 Copyright IBM Corp. 1988, 1999 357

 DETACH Macro

2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The DETACH macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede DETACH.

DETACH

␣ One or more blanks must follow DETACH.

tcb addr tcb addr: Symbol, RX-type address, or register (1) or (2) - (12).

 ,STAE=NO Default: STAE=NO
 ,STAE=YES

 ,RELATED=value

 Parameters
The parameters are explained as follows:

tcb addr
Specifies the address of a fullword on a fullword boundary containing the address of the
task control block for the subtask to be removed from the system.

,STAE=NO
,STAE=YES

Specifies whether the ESTAE-type routine (STAI, ESTAI, STAE, ESTAE) established by
the subtask is to receive control or whether previously established ESTAE-type routines
existing for the subtasks are to receive control.

If you specify STAE=YES, any ESTAE-type routines associated with the detached task
will receive control if the task is detached while active.

If you specify STAE=NO, only the ESTAE-type routines that were established through
the ATTACH, ESTAE, or ESTAEX macros, with TERM=YES, will receive control in this
event.

When an ESTAE-type routine gains control as a result of a DETACH, no retry is allowed
even if one is requested in the routine. For more information about recovery processing,
refer to OS/390 MVS Programming: Assembler Services Guide.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

358 OS/390 V2R8.0 MVS Assembler Services Reference

 DETACH Macro

 ABEND Codes
The caller of DETACH might receive one of the following ABEND codes:

See OS/390 MVS System Codes for explanations and responses to these codes.

ABEND Code Associated Reason Code
X'13E' None
X'23E' 0, 4, 8
X'33E' None
X'43E' None
X'53E' None

Return and Reason Codes
When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Return Code

Meaning and Action

00 Meaning : Successful completion.

Action : None.

04 Meaning : Environmental error. An incomplete subtask was detached with
STAE=YES specified; DETACH processing successfully completed.

Action : None required. However, you might take some action based upon your
application.

 Example 1
Remove the subtask from the address space. The address of the TCB is in the fullword
labeled SAVEWORD.

DETACH SAVEWORD

 Example 2
In addition to removing the subtask from the address space, give control to the most recent
STAE exit established by the subtask if the subtask has not yet been terminated.

DETACH (1),STAE=YES

 DETACH — Detach a Subtask 359

 DETACH Macro

360 OS/390 V2R8.0 MVS Assembler Services Reference

 DIV Macro

DIV — Data-in-Virtual

 Description
The DIV macro establishes a window in an address space, data space, or hiperspace to
reference and update data from a data-in-virtual object without actually issuing I/O
instructions. The data-in-virtual object can be a VSAM linear data set or a nonshared
standard hiperspace.

The DIV macro accesses a data object on permanent storage through paging I/O.
Data-in-virtual maps the object onto a single virtual address range so your program can view
it as beginning at a virtual location and occupying a consecutive virtual address range.

If the window is in an address space or a data space, use assembler instructions to access
data. If the window is in a hiperspace, use the HSPSERV macro to access data in 4K-byte
blocks.

The DIV macro performs the following services:

Service Function

IDENTIFY Identifies you as a user of a data-in-virtual object.

ACCESS Provides access to the data-in-virtual object.

MAP Makes the data-in-virtual object addressable through your virtual window.

RESET Releases changes made in your window since the last SAVE operation.

SAVE Saves changed data that is in your window.

SAVELIST Returns the addresses of the first and last changed pages in each range of
changed pages within the window.

UNMAP Eliminates the correspondence between the data-in-virtual object and your
virtual window.

UNACCESS Eliminates your access to the data-in-virtual object.

UNIDENTIFY Ends your use of the data-in-virtual object.

The services of data-in-virtual execute synchronously, that is, control does not return from
the DIV macro until the service is completed. Thus, before you can successfully invoke a
service, the previous service must be complete.

For guidance information on the use of data-in-virtual, see OS/390 MVS Programming:
Assembler Services Guide.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Copyright IBM Corp. 1988, 1999 361

 DIV Macro

 Programming Requirements
Before using the DIV macro, the caller must first create either a linear data set object or a
hiperspace object. The user must also supply a standard 72-byte save area.

 Restrictions
� When you attach a new task, you cannot pass ownership of a mapped virtual storage

window to the new task. That is, you cannot use the ATTACH or ATTACHX keywords
GSPV and GSPL to pass the mapped virtual storage.

� While your program is in cross-memory mode, your program cannot invoke
data-in-virtual services; however, your program can reference and update data in a
mapped virtual storage window.

� The task that obtains the ID (through DIV IDENTIFY) is the only one that can issue
other DIV services for that ID.

� When you identify a data-in-virtual object using the IDENTIFY service, you cannot
request a checkpoint until you invoke the corresponding UNIDENTIFY service.

� When you use DIV with the IARVSERV macro to share data in virtual storage, you must
follow several requirements; see the chapter about sharing data through IARVSERV in
OS/390 MVS Programming: Assembler Services Guide.

Input Register Information
Before issuing the DIV macro, the caller must ensure that the following general purpose
registers (GPRs) contain the specified information:

Register Contents
1 Address of the parameter list
13 Address of the caller's save area

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code if GPR 15 contains a nonzero return code; otherwise, used as a

work register by the system
1 Used as a work register by the system
2-14 Unchanged
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0 and 1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
� By using the DIV macro, you might reduce the amount of I/O. The SAVELIST service

additionally improves performance of the application when it is necessary to inspect and
verify data only in pages that have changed.

� Using LOCVIEW=MAP on a DIV ACCESS request degrades performance. Use
LOCVIEW=NONE request whenever possible. You can use LOCVIEW=MAP request
for small data objects without significant performance loss.

362 OS/390 V2R8.0 MVS Assembler Services Reference

 DIV Macro

� Using RETAIN=YES on a DIV UNMAP request can degrade performance. Using
RETAIN=YES causes the system to read more pages from the object.

 Syntax
The standard form of the DIV macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede DIV.

DIV

␣ One or more blanks must follow DIV.

Valid parameters:
(Underlined parameters are those that you must specify.)

IDENTIFY ID, TYPE, DDNAME or STOKEN
ACCESS ID, MODE, SIZE, LOCVIEW
MAP ID, AREA, OFFSET, SPAN, STOKEN, RETAIN, PFCOUNT
RESET ID, OFFSET, SPAN, RELEASE
SAVE ID, OFFSET, SPAN, SIZE, STOKEN, LISTADDR, LISTSIZE, MF
SAVELIST ID, LISTADDR, LISTSIZE, MF
UNMAP ID, AREA, RETAIN, STOKEN
UNACCESS ID
UNIDENTIFY ID

,ID=addr addr: RX-type address, or register (2) - (12).

 ,AREA=addr addr: RX-type address, or register (2) - (12).

 ,DDNAME=addr addr: RX-type address, or register (2) - (12).

 ,LISTADDR=listaddr addr: RX-type address, or register (2) - (12).

 ,LISTSIZE=listsize addr: RX-type address, or register (2) - (12).

 ,LOCVIEW=MAP Default: LOCVIEW=NONE
 ,LOCVIEW=NONE

 ,MODE=READ Default: None
 ,MODE=UPDATE

 ,OFFSET=addr addr: RX-type address, or register (2) - (12).
 ,OFFSET=* Default: OFFSET=0

 ,RETAIN=YES Default: RETAIN=NO
 ,RETAIN=NO

 ,SIZE=addr addr: RX-type address, or register (2) - (12).
 ,SIZE=*

 ,SPAN=addr addr: RX-type address, or register (2) - (12).
 ,SPAN=*

 ,STOKEN=addr addr: RX-type address.

 ,TYPE=DA Default: None
 ,TYPE=HS

 ,PFCOUNT=nnn Default: 0

 ,RELEASE=YES Default: RELEASE=NO
 ,RELEASE=NO

 DIV — Data-in-Virtual 363

 DIV Macro

 Parameters
The IDENTIFY, ACCESS, MAP, SAVE, SAVELIST, RESET, UNMAP, UNACCESS, and
UNIDENTIFY parameters, which designate the services of the DIV macro, are mutually
exclusive. You can select only one. The parameters are explained as follows:

IDENTIFY
Selects the data-in-virtual object (linear data set or hiperspace) that you want to
process. When you specify IDENTIFY, you must also specify ID and TYPE. ID
specifies the address of an eight-byte field into which the IDENTIFY service returns a
unique eight-byte name. When you invoke other data-in-virtual services, you use this
identifier, or token, as input. The use of the ID is associated only with your task; that is,
all services for this ID must be requested by the same task that obtained the ID.

When the object is a data set, you must also specify TYPE=DA and DDNAME. When
the object is a nonshared standard hiperspace, you must specify TYPE=HS and
STOKEN.

ACCESS
Requests permission to access a data-in-virtual object. When you specify ACCESS,
you must also specify ID and MODE, and you may optionally specify SIZE or LOCVIEW.
ID specifies the token which identifies the object you want to access. If your object is a
hiperspace, ACCESS allows either multiple readers or one updater. Therefore, the
system does not accept a read request if there is already an updater, and it does not
accept an update request if there is any other user currently accessing the same object.
You cannot access a hiperspace as a data object if it is, or has been on an access list.

MAP
Establishes addressability to the object in a specified range of virtual storage, called the
virtual window. When you specify MAP, you must also specify ID and AREA, and you
may optionally specify OFFSET, SPAN, STOKEN, RETAIN, and PFCOUNT. Specify
STOKEN when your window is in a data space or a standard hiperspace. If your
window is in an address space, your object can be either a linear data set or a
nonshared standard hiperspace. If your window is in a data space or a hiperspace, your
object can be only a linear data set.

If you specified TYPE=DA, you can issue more than one MAP with different STOKENs.
You cannot mix data space and hiperspace maps with address space maps under the
same ID at any one time.

RESET
Releases changes made in the window since the last SAVE operation. When you
specify RESET, you must also specify ID, and you may optionally specify OFFSET,
SPAN, and RELEASE. If the window corresponds to blocks on the object, the current
contents of the object will replace the data that has changed in the window when the
program next references the window. RESET does not change the object.

Do not specify RESET for a storage range that contains DREF storage.

SAVE
Writes changed pages from the window to the corresponding blocks in the object.
When you specify SAVE, you must also specify ID, and you may optionally specify
OFFSET, SPAN, SIZE, and STOKEN. The system writes changed pages from the
window into the blocks specified by OFFSET and SPAN. SAVE cannot change the size
of a hiperspace object.

Do not specify SAVE for a storage range that contains DREF storage.

Optionally, SAVE accepts a user list that the application specifies through the
LISTADDR and LISTSIZE parameters. The user list contains information returned by
the SAVELIST service. If you specify a user list as input for SAVE, you cannot specify
OFFSET and SPAN, and the system saves only those pages specified in the user list.

364 OS/390 V2R8.0 MVS Assembler Services Reference

 DIV Macro

SAVELIST
Returns the addresses of the first and last changed pages in each range of changed
pages within the window. The mapped ranges may be either address spaces, data
spaces, or hiperspaces. If more than one data space or hiperspace is mapped onto a
DIV object, the selected range must be contained within a single data space or
hiperspace.

UNMAP
Terminates a virtual window by removing the correspondence between virtual pages in
the window and blocks in the object. After the UNMAP is complete, the contents of the
pages depend on the value you specify for RETAIN; the virtual pages in the former
window either retain the current view of the object or appear as if they had just been
obtained.

When you specify UNMAP, you must also specify ID and AREA, and you may specify
RETAIN and STOKEN if the object is a data set and the window is in a data space or a
hiperspace. UNMAP has no effect on the object itself and does not save data from the
virtual window. If you want to save the data in the window, invoke SAVE before you
invoke UNMAP.

If you issued multiple MAPs with different STOKENs, use STOKEN on UNMAP. If you
do not specify STOKEN, the system scans the mapped ranges and unmaps the first
range that matches the virtual area regardless of the data space it is in. Issuing
UNACCESS or UNIDENTIFY automatically unmaps all mapped ranges.

UNACCESS
Relinquishes your permission to read from or write to a data-in-virtual object. When you
specify UNACCESS, you must also specify ID, which provides the address of the unique
name that was returned by the IDENTIFY service. When you invoke UNACCESS, any
outstanding windows for the specified ID are automatically unmapped with an implied
RETAIN=NO.

UNIDENTIFY
Ends the use of a data-in-virtual object under a previously assigned ID. When you
specify UNIDENTIFY, you must also specify ID, which provides the address of the
unique name that was returned by the IDENTIFY service. If the object is still accessed
or mapped under the specified ID, the system will automatically unaccess and unmap it
with an implied RETAIN=NO.

,ID=addr
Specifies the address of a field in storage where the IDENTIFY service stores a unique
eight-byte name that it associates with the object. This name acts as a token and is the
output value from the IDENTIFY service. It is a required input value for all the other
services.

,AREA=addr
Specifies the address of a four-byte field in storage containing a pointer to the start of
the virtual window. You must specify the AREA parameter when you invoke the MAP
and the UNMAP services. The starting address for an UNMAP request must be
identical to the starting address of its corresponding MAP request. Address space
virtual storage that is occupied by a window must meet the following requirements:

� The window must begin on a 4096-byte (page) boundary and must be a multiple of
4096 bytes long.

� Virtual storage within the window must have been obtained from a single, pageable,
private area subpool owned by the task that issued the IDENTIFY.

� The window cannot contain VIO storage.

� Pages within the window cannot be page fixed.

 DIV — Data-in-Virtual 365

 DIV Macro

Data space and hiperspace virtual storage that is occupied by a window must meet the
following requirements.

� The window must be on a 4096-byte boundary and must be a multiple of 4096
bytes long.

� The data space or hiperspace must be owned or created by the task specifying the
MAP service.

� The data space or hiperspace must exist until you specify the UNMAP service for
all mapped ranges.

� The specified mapped range must lie within the current bounds of the data space or
hiperspace.

,DDNAME=addr
Specifies the address of a field containing the ddname for the data set object when you
specify TYPE=DA on IDENTIFY. The first byte of the field must be the number of
characters in the ddname. The bytes following the first byte must contain the EBCDIC
characters of the ddname itself. The ddname must conform to the standard syntax for
ddnames (one through eight alphameric or national characters). DDNAME is required
when you invoke IDENTIFY with TYPE=DA for a data set object but is not allowed when
you specify TYPE=HS for a hiperspace object.

,LISTADDR= listaddr
Specifies the address of a 4-byte field that contains a pointer to the user list that the
caller provides for the SAVELIST service.

,LISTSIZE=listsize
Specifies the address of a 4-byte field that contains the number of entries in the user list
for the SAVELIST service. The size of the list must be a minimum of three entries and
a maximum of 255 entries, where each entry contains two words.

,LOCVIEW=MAP
,LOCVIEW=NONE

Specifies whether the system is to create a local copy of the data-in-virtual object. For
hiperspace objects, you must specify LOCVIEW=NONE or use the default.

LOCVIEW=MAP specifies that the system is to establish a local copy of the data set
object for the specified range. Use MAP to maintain a consistent view in the virtual
storage window of data on permanent storage in environments where there are multiple
writers or at least one reader and writer at the same time to the object.

LOCVIEW=NONE specifies that the system is not to create a local copy of the object.
NONE is the default. Use NONE in environments where there is either a single writer,
OR one or more readers, but not both at the same time.

,MODE=READ
,MODE=UPDATE

Specifies whether the object is being accessed for the purpose of reading or updating.
If you are using the SAVE service to update an object, specify MODE=UPDATE.
Otherwise, specify MODE=READ to signify read-only access to the object. You must
specify MODE whenever you specify ACCESS.

,OFFSET=addr
,OFFSET=*

Specifies the beginning of a continuous range of blocks in a data-in-virtual object.
OFFSET is used with SPAN to define a continuous range of blocks in an object.
OFFSET designates the location of the first block in the range, and SPAN designates
how many blocks are in the range. An OFFSET value of zero designates the first block

366 OS/390 V2R8.0 MVS Assembler Services Reference

 DIV Macro

(the beginning) of an object. The system permits an OFFSET beyond the current end of
the object as long as it remains within the maximum number of blocks allowed for the
object and also within the absolute limit of (2**20)-1 blocks. If you omit OFFSET or
specify OFFSET=*, the system uses a default OFFSET of zero. You can specify the
OFFSET parameter with MAP, RESET, and SAVE.

,RETAIN=YES
,RETAIN=NO

Determines what data appears in the window when you invoke the MAP service, and
what data is left in virtual storage when you invoke UNMAP.

When you specify RETAIN=YES with MAP, the data in the virtual range stays the same.
The system considers all pages in the range changed. When you specify RETAIN=NO
(or use the default) with MAP, data in the object replaces the data in virtual range.

When you specify RETAIN=NO with UNMAP, the data in the virtual range becomes
freshly obtained. When you specify RETAIN=YES with UNMAP, the virtual range
retains its current view.

,SIZE=addr
,SIZE=*

Specifies the address of a field where the system stores the size of the object. The
system returns the size in this field whenever you specify SAVE or ACCESS and also
specify SIZE. When the system returns control after executing a SAVE, the value that it
returns is the minimum number of blocks that must be mapped to ensure that the entire
object is mapped. If you omit SIZE or specify SIZE=*, the system does not return the
size.

If you specified TYPE=DA for a linear data set object, and you specify SIZE, the macro
returns the current size of the object in the four-byte location that SIZE designates.

If you specified TYPE=HS for a hiperspace object, and you specify SIZE, ACCESS
returns two sizes in the eight-byte location. The first is the current size of the
hiperspace (in 4K byte units), and the second is the maximum size of the hiperspace
(also in 4K byte units).

Specify SIZE only when you specify ACCESS or SAVE.

,SPAN=addr
,SPAN=*

Specifies the address of a four-byte field containing the number of blocks that are to be
processed. Use SPAN only with the MAP, RESET, or SAVE services, which operate
only on a range of contiguous blocks. SPAN indicates how many blocks are in the
range. It is used with OFFSET, which indicates the first block of the range.

For the RESET and SAVE services, the block range can include noncontiguous
mappings of an object. This lets you reset or save several maps in a single DIV macro
invocation.

For the MAP service, the block range can extend beyond the end of the object, but it
cannot extend beyond the maximum size allowed for the object. You can create a
window that exceeds the size of the object. The maximum span allowed is (2**20)-1
blocks.

If you omit SPAN or specify SPAN=*, or if the four-byte field contains zero, the system
uses the SPAN default value. For the SAVE and RESET services, the default value is
the number of blocks in the object from the specified or defaulted block to the end of the
last mapped range. For the MAP service, the default is the current size of the object in
blocks, minus the value specified by OFFSET. If the offset value is beyond the end of
the object, the span defaults to one when you omit SPAN.

 DIV — Data-in-Virtual 367

 DIV Macro

,STOKEN=addr
Specifies the address of an eight-byte field that identifies a hiperspace or data space.
STOKEN is valid only with the IDENTIFY, MAP, SAVE, and UNMAP parameters.
Specify STOKEN with MAP to map a linear data set object onto data space or
hiperspace virtual storage, or to unmap data space or hiperspace storage.

With MAP, the system maps the permanent object into the data space or hiperspace
that the STOKEN represents. If you do not specify STOKEN, the mapping applies to
the primary address space. With UNMAP, STOKEN identifies which data space or
hiperspace contains the window to be unmapped.

If you specified TYPE=HS for a hiperspace object, specify STOKEN with IDENTIFY.
The system does not verify the STOKEN until you use the associated ID with ACCESS.

,TYPE=DA
,TYPE=HS

TYPE=DA specifies that your program is using a data definition statement to identify a
VSAM linear data set as the data object. TYPE=HS specifies that your program is using
STOKEN to identify a hiperspace as the data object. The hiperspace must be a
nonshared standard type and must be owned by the task issuing the IDENTIFY. Only
the owner of the hiperspace can issue any subsequent ACCESS, MAP, and SAVE. You
can use a nonshared standard hiperspace if no program has ever issued ALESERV
ADD for that hiperspace. You cannot issue ALESERV ADD for a nonshared standard
hiperspace while it is a data object.

,PFCOUNT=nnn
Specifies the additional pages the system is to read into central storage on a page fault.
nnn is an unsigned decimal number from 0 to 255. If you specify an integer greater
than 255, the system uses 255. Zero is the default. If you omit PFCOUNT or specify
PFCOUNT=0, the system reads blocks from the data object one at a time. In any case,
the system reads in successive pages only to the end of the virtual range of the mapped
area containing the originally referenced page.

Use PFCOUNT if your program accesses the mapped object in a sequential manner.
Because you get a page fault the first time you reference each page, reading into
central storage multiple consecutive pages on each page fault might decrease the
number of page faults and improve your program's performance.

PFCOUNT applies to movement of pages from the object to central storage. PFCOUNT
does not apply to movement of changed or unchanged data that the system has moved
to expanded storage as a direct result of system management of central storage.

,RELEASE=YES
,RELEASE=NO

Specify RELEASE=YES to release all virtual pages in the reset range. Specify
RELEASE=NO or use the default to release only changed pages in the reset range.
RELEASE=NO does not replace unchanged pages in the window with a new copy of
pages from the object. It replaces only changed pages. If another ID might have
changed the object itself while you viewed data in the window, specify RELEASE=YES
to reset all pages. Any subsequent reference to these pages will cause the system to
load a new copy of the data page from the object.

 ABEND Codes
DIV might abnormally terminate with abend code X'08B'. See OS/390 MVS System Codes
for an explanation and programmer response.

368 OS/390 V2R8.0 MVS Assembler Services Reference

 DIV Macro

Return and Reason Codes
When the system returns control to the caller after the DIV macro executes, it supplies a
return code in the low-order (rightmost) byte of general register 15 and a reason code in the
two low-order bytes of register 0. After an unsuccessful completion, the system abnormally
terminates the caller and supplies an abend code of X'08B' and a reason code in the two
low-order bytes of general register 15. See OS/390 MVS System Codes for a detailed
explanation of the reason codes for abend code X'08B'.

The hexadecimal values of the reason and return codes are:

Reason
Code

Return
Code

Abend
Code

Meaning and Action

none 00 — Meaning : Successful completion.

Action : None.

0001 none 08B Meaning : Unknown service was requested.

Action : None.

0002 none 08B Meaning : Unknown parameter list format.

Action : None.

0003 none 08B Meaning : Input parameter list cannot be addressed.

Action : None.

0004 none 08B Meaning : Storage specified in the parameter list cannot be
addressed.

Action : None.

0005 none 08B Meaning : The parameter list contains a reserved field that
does not contain binary zeros.

Action : None.

0006 none 08B Meaning : The caller is not running in task mode.

Action : None.

0007 none 08B Meaning : The caller is in cross memory mode.

Action : None.

0008 none 08B Meaning : The specified TYPE is not valid.

Action : None.

0009 none 08B Meaning : The supplied ID is not valid or is an ID that the
caller cannot use.

Action : None.

000A 08 — Meaning : Environmental error. Another service is currently
executing with the specified ID.

Action : Retry the request one or more times until the other
service currently executing for this ID completes.

000B none 08B Meaning : The object is already accessed with the specified
ID.

Action : None.

000C none 08B Meaning : The caller does not have proper RACF authorization
to the requested object.

Action : None.

000D none 08B Meaning : The requested window exceeds the maximum
allowable size for the object.

Action : None.

000E none 08B Meaning : The object is not currently accessed for the
specified ID.

Action : None.

 DIV — Data-in-Virtual 369

 DIV Macro

Reason
Code

Return
Code

Abend
Code

Meaning and Action

000F none 08B Meaning : The specified range overlaps a range that is already
mapped for the specified ID.

Action : None.

0010 none 08B Meaning : The specified range overlaps another mapped range
in the current address space or in the specified data space.

Action : None.

0011 none 08B Meaning : Undetermined user error.

Action : None.

0012 none 08B Meaning : The virtual storage specified does not begin on a 4K
boundary.

Action : None.

0013 none 08B Meaning : The virtual storage specified is not in a pageable
private area subpool.

Action : None.

0014 none 08B Meaning : The virtual range specified cannot be used to map
an object.

Action : None.

0015 none 08B Meaning : The caller did not issue GETMAIN for at least one
page in the specified range.

Action : None.

0016 none 08B Meaning : The virtual range specified contains at least one
fixed page and you did not specify RETAIN=YES.

Action : None.

0017 0C — Meaning : System error. Portions of virtual storage mapping
the object were not addressable, and therefore, could not be
saved. (There was either a paging I/O error or data occupying
a bad real frame.)

Action : Retry the request. If the problem persists, record the
return and reason code and supply it to the appropriate IBM
support personnel.

0018 none 08B Meaning : The caller does not have UPDATE access to the
object.

Action : None.

0019 none 08B Meaning : A page to be saved or reset was in the page fixed
state.

Action : None.

001A 04 — Meaning : Program error. The specified range does not
encompass any mapped area of the object.

Action : None required. However, you might want to check
that the specified range for this operation was correct.

001B none 08B Meaning : The virtual storage area specified to be unmapped
is not currently mapped.

Action : None.

001C 08 — Meaning : Environmental error. The object cannot be
accessed at the current time.

Action : Retry the request one or more times until the
operation succeeds.

001D none 08B Meaning : The accessed object is not at the correct control
interval size.

Action : None.

370 OS/390 V2R8.0 MVS Assembler Services Reference

 DIV Macro

Reason
Code

Return
Code

Abend
Code

Meaning and Action

001E none 08B Meaning : The length of the ddname exceeds the maximum
size allowed.

Action : None.

001F none 08B Meaning : The caller's storage protect key is not the same as
when IDENTIFY was invoked.

Action : None.

0020 none 08B Meaning : An ACCESS was attempted by a task that does not
own the specified ID.

Action : None.

0021 0C — Meaning : System error. Portions of the object could not be
retained in virtual storage as requested.

Action : Retry the request. If the problem persists, record the
return and reason code and supply it to the appropriate IBM
support personnel.

0022 none 08B Meaning : The task that issued IDENTIFY (or the task for
which it is a subtask) does not own the virtual storage it is
attempting to map.

Action : None.

0023 none 08B Meaning : Part or all of the specified storage to be mapped is
not in the user's key.

Action : None.

0024 none 08B Meaning : The caller requested a DIV service holding the local
lock.

Action : None.

0025 none 08B Meaning : The caller requested a DIV service while not in a
correct calling environment.

Action : None.

0026 none 08B Meaning : The caller requested a DIV service, but was not in a
31-bit addressing mode.

Action : None.

0027 none 08B Meaning : The specified offset and span describe a range that
goes beyond the maximum supported object size.

Action : None.

0028 08 — Meaning : Program error. The caller tried to access an empty
data set with MODE=READ specified.

Action : None required. If the data set was not expected to be
empty, check return codes from previous DIV operations to
ensure that the data was saved as expected.

0029 none 08B Meaning : The caller tried to map into a disabled reference
(DREF) data space.

Action : None.

002A none 08B Meaning : The caller tried to map the object into a data space.
However, the caller has specified LOCVIEW=MAP to access
the object.

Action : None.

002B none 08B Meaning : The data space is not big enough to contain the
window.

Action : None.

 DIV — Data-in-Virtual 371

 DIV Macro

Reason
Code

Return
Code

Abend
Code

Meaning and Action

002C none 08B Meaning : The caller requested a data space or hiperspace
MAP with address space MAPs outstanding, or an address
space MAP with data space or hiperspace MAPs outstanding
under the given ID.

Action : None.

002D 04 — Meaning : The data space has been deleted. However, the
requested UNMAP has been successful.

Action : None.

002E none 08B Meaning : The data space has been deleted. The requested
UNMAP cannot be performed. At least one page in the
SAVELIST range was in a deleted data space.

Action : None.

0036 none 08B Meaning : STOKEN does not represent a valid data space that
the caller can use.

Action : None.

0037 04 — Meaning : Program error. The caller invoked ACCESS. The
ACCESS is successful, but the system is issuing a warning
that the data set was not allocated with a
SHAREOPTIONS(1,3) and that LOCVIEW=MAP was not
specified with ACCESS.

Action : None required. However, to eliminate the possibility
of potential errors, you should allocate the data set to be used
as a DIV object with SHAREOPTIONS(1,3), or you should
specify LOCVIEW=MAP when the DIV ACCESS is done.

0038 none 08B Meaning : The caller invoked ACCESS, but ACCESS failed
because the data set was not allocated as a linear data set.

Action : None.

0039 none 08B Meaning : The caller specified SAVE or RESET for a storage
range that contains DREF storage. The SAVE or RESET was
unsuccessful.

Action : None.

003A none 08B Meaning : The program attempted to map an ESO hiperspace.
You can map only to a standard type hiperspace.

Action : None.

003B none 08B Meaning : The caller requested UNMAP with RETAIN=YES for
a hiperspace window. You must specify RETAIN=NO or use
the default.

Action : None.

003C none 08B Meaning : The caller requested UNMAP with RETAIN=YES for
a mapped standard hiperspace object. You must specify
RETAIN=NO or use the default.

Action : None.

003D none 08B Meaning : The STOKEN for the object associated with the
specified ID does not represent a valid hiperspace that this
request can use.

Action : None.

372 OS/390 V2R8.0 MVS Assembler Services Reference

 DIV Macro

Reason
Code

Return
Code

Abend
Code

Meaning and Action

003E 08 — Meaning : Environmental error. The hiperspace object cannot
be accessed at this time. The number of current READs
might exceed the maximum allowed. (If MODE=READ, the
object is already accessed under a different ID for UPDATE.
If MODE=UPDATE, the object is already accessed under at
least one other ID.)

Action : Retry the request one or more times until the
operation succeeds.

003F none 08B Meaning : The caller specified LOCVIEW=MAP for an ID
associated with a hiperspace object.

Action : None.

0040 08 — Meaning : Environmental error. The specified MAP range
would extend the data object beyond the installation data
space limits.

Action : Retry the MAP operation with a smaller range
specified, or map this range onto a different DIV object.

0041 none 08B Meaning : The caller specified a STOKEN with an ID
representing a hiperspace object. Mapping data space virtual
storage onto a hiperspace object is not allowed.

Action : None.

0042 none 08B Meaning : The hiperspace you are specifying as a data object
has been the object of an ALESERV ADD macro, and is
therefore ineligible to be used as a DIV object.

Action : None.

0043 04 — Meaning : Program error. The specified range has no pages
that have been altered.

Action : None required. However, you might want to check
that the specified range for this operation was correct.

0044 04 — Meaning : Successful completion. The table is full and there
are more ranges to check.

Action : None required. However, to obtain all of the
information regarding changed pages, you can either retry the
SAVELIST operation with a larger list, or you can obtain a new
OFFSET and SPAN from the last entry in the returned list, and
invoke SAVELIST another time to fill in the list with additional
changed page information.

0045 08 — Meaning : Environmental error. Storage for the SAVELIST
operation could not be obtained. The DIV request is rejected.

Action : Retry the request one or more times. If the problem
persists, check with the operator to see if another user in the
installation is causing the problem, or if the entire installation is
experiencing storage constraint problems.

0046 none 08B Meaning : The LISTSIZE specified is not valid.

Action : None.

0047 none 08B Meaning : SAVE and either LISTADDR or LISTSIZE is
specified.

Action : None.

0048 none 08B Meaning : All or a portion of a range specified in the user's
SAVELIST does not intersect with a mapped region.

Action : None.

0049 none 08B Meaning : While using a user list with SAVE, the caller
specified either OFFSET or SPAN.

Action : None.

 DIV — Data-in-Virtual 373

 DIV Macro

Reason
Code

Return
Code

Abend
Code

Meaning and Action

004A none 08B Meaning : Addresses in the user list are not valid, not on a
page boundary, or the start address is higher than the end
address.

Action : None.

004B none 08B Meaning : Selected range spans across multiple data spaces
or hiperspaces.

Action : None.

004C none 08B Meaning : The caller specified SAVE for a data space or
hiperspace, but did not supply a value for STOKEN.

Action : None.

004D none 08B Meaning : The caller is not authorized to access the requested
data.

Action : None.

0052 none 08B Meaning : The specified virtual range contains at least one
protected page.

Action : Remove the protection status from the protected
pages in the specified virtual range. Then issue the DIV
macro again. If you want to invoke MAP or UNMAP and want
to preserve the protection status, specify RETAIN=YES when
you issue the macro.

0801 08 — Meaning : Environmental error. Storage to build the necessary
data-in-virtual control block structure could not be obtained.

Action : Retry the request one or more times. If the problem
persists, check with the operator to see if another user in the
installation is causing the problem, or if the entire installation is
experiencing storage constraint problems.

0802 08 — Meaning : System error. I/O driver failure.

Action : Retry the request. If the problem persists, record the
return and reason code and supply it to the appropriate IBM
support personnel.

0803 0C — Meaning : System error. A necessary page table could not be
read into central (also called real) storage.

Action : Retry the request. If the problem persists, record the
return and reason code and supply it to the appropriate IBM
support personnel.

0804 0C — Meaning : System error. Catalog update failed.

Action : Retry the request. If the problem persists, record the
return and reason code and supply it to the appropriate IBM
support personnel.

0805 none 08B Meaning : System error. Indeterminate origin.

Action : None.

0806 0C — Meaning : System error. I/O error.

Action : Retry the request. If the problem persists, record the
return and reason code and supply it to the appropriate IBM
support personnel.

0807 04 — Meaning : Environmental error. Media damage might be
present in allocated DASD space. The damage is beyond the
currently saved portion of the object. The SAVE completed
successfully.

Action : None required. However, do not attempt to increase
the size of this DIV object.

374 OS/390 V2R8.0 MVS Assembler Services Reference

 DIV Macro

Reason
Code

Return
Code

Abend
Code

Meaning and Action

0808 08 — Meaning : System error. I/O from a previous request has not
completed.

Action : Retry the request. If the problem persists, record the
return and reason code and supply it to the appropriate IBM
support personnel.

 Example 1
Identify a hiperspace as a data object. The hiperspace's STOKEN is at HSSTOK.
IDENTIFY is to return the ID at DIVOBJID.

DIV IDENTIFY,TYPE=HS,STOKEN=HSSTOK,ID=DIVOBJID

 Example 2
Whenever a page fault on a page in the mapped range requires that the system read the
page from the data set object, the system, if possible, preloads up to seven additional pages,
virtually successive to the fault page.

DIV MAP,ID=DIVOBJID,AREA=MAPPTR1,SPAN=SPANVAL,OFFSET=\,STOKEN=DSSTOK,PFCOUNT=7

 DIV — Data-in-Virtual 375

 DIV Macro

 DIV—List Form

 Syntax
The list form of the DIV macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede DIV.

DIV

␣ One or more blanks must follow DIV.

Valid parameters:
(Underlined parameters are those that you must specify.)

IDENTIFY ID, TYPE, DDNAME or STOKEN
ACCESS ID, MODE, SIZE, LOCVIEW
MAP ID, AREA, OFFSET, SPAN, STOKEN, RETAIN, PFCOUNT
RESET ID, OFFSET, SPAN, RELEASE
SAVE ID, OFFSET, SPAN, SIZE, STOKEN, LISTADDR, LISTSIZE, MF
SAVELIST ID, LISTADDR, LISTADDR, MF
UNMAP ID, AREA, RETAIN, STOKEN
UNACCESS ID
UNIDENTIFY ID

,ID=addr addr: A-type address

 ,AREA=addr addr: A-type address

 ,DDNAME=addr addr: A-type address

 ,LISTADDR=addr addr: RX-type address, or register (2) - (12).

 ,LISTSIZE=addr addr: RX-type address, or register (2) - (12).

 ,LOCVIEW=MAP Default: LOCVIEW=NONE
 ,LOCVIEW=NONE

 ,MODE=READ Default: None
 ,MODE=UPDATE

 ,OFFSET=addr addr: A-type address
 ,OFFSET=*

 ,RETAIN=YES Default: RETAIN=NO
 ,RETAIN=NO

 ,SIZE=addr addr: A-type address
 ,SIZE=*

 ,SPAN=addr addr: A-type address
 ,SPAN=*

 ,STOKEN=addr addr: A-type address

 ,TYPE=DA Default: None
 ,TYPE=HS

376 OS/390 V2R8.0 MVS Assembler Services Reference

 DIV Macro

 ,PFCOUNT=nnn Default: 0

 ,RELEASE=YES Default: RELEASE=NO
 ,RELEASE=NO

,MF=L See explanation of parameters if omitted.

 Parameters
,MF=L

Specifies the list form of the DIV macro. The list form generates the DIV parameter list
in line without any executable code or register usage.

 DIV — Data-in-Virtual 377

 DIV Macro

 DIV—Execute Form

 Syntax
The execute form of the DIV macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede DIV.

DIV

␣ One or more blanks must follow DIV.

Valid parameters:
(Underlined parameters are those that you must specify.)

IDENTIFY ID, TYPE, DDNAME or STOKEN
ACCESS ID, MODE, SIZE, LOCVIEW
MAP ID, AREA, OFFSET, SPAN, STOKEN, RETAIN, PFCOUNT
RESET ID, OFFSET, SPAN, RELEASE
SAVE ID, OFFSET, SPAN, SIZE, STOKEN, LISTADDR, LISTSIZE, MF
SAVELIST ID, LISTADDR, LISTSIZE, MF
UNMAP ID, AREA, RETAIN, STOKEN
UNACCESS ID
UNIDENTIFY ID

,ID=addr addr: RX-type address, or register (2) - (12).

 ,AREA=addr addr: RX-type address, or register (2) - (12).

 ,DDNAME=addr addr: RX-type address, or register (2) - (12).

 ,LISTADDR=addr addr: RX-type address, or register (2) - (12).

 ,LISTSIZE=addr addr: RX-type address, or register (2) - (12).

 ,LOCVIEW=MAP Default: LOCVIEW=NONE
 ,LOCVIEW=NONE

 ,MODE=READ Default: None
 ,MODE=UPDATE

 ,OFFSET=addr addr: RX-type address, or register (2) - (12).
 ,OFFSET=*

 ,RETAIN=YES Default: RETAIN=NO.
 ,RETAIN=NO

 ,SIZE=addr addr: RX-type address, or register (2) - (12).
 ,SIZE=*

 ,SPAN=addr addr: RX-type address, or register (2) - (12).
 ,SPAN=*

 ,STOKEN=addr addr: RX-type address.

 ,TYPE=DA Default: None
 ,TYPE=HS

378 OS/390 V2R8.0 MVS Assembler Services Reference

 DIV Macro

 ,PFCOUNT=nnn Default: 0

 ,RELEASE=YES Default: RELEASE=NO
 ,RELEASE=NO

,MF=(E,addr)

 Parameters
,MF=(E,addr)

Specifies the execute form. In the execute form, DIV will be called using the parameter
list specified by “addr”. “addr” indicates the address of the parameter list and may be
(a) any address that is valid in an RX-type assembler language instruction or (b) one of
the general registers 2 through 12 specified within parentheses. The register may be
expressed either symbolically or as a decimal integer. The specified parameter list will
be updated for any parameters that are specified. Other parameter fields will be
unaffected.

 DIV — Data-in-Virtual 379

 DIV Macro

 DIV—Modify Form

 Syntax
The modify form of the DIV macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede DIV.

DIV

␣ One or more blanks must follow DIV.

Valid parameters:
(Underlined parameters are those that you must specify.)

IDENTIFY ID, TYPE, DDNAME or STOKEN
ACCESS ID, MODE, SIZE, LOCVIEW
MAP ID, AREA, OFFSET, SPAN, STOKEN, RETAIN, PFCOUNT
RESET ID, OFFSET, SPAN, RELEASE
SAVE ID, OFFSET, SPAN, SIZE, STOKEN, LISTADDR, LISTSIZE, MF
SAVELIST ID, LISTADDR, LISTSIZE, MF
UNMAP ID, AREA, RETAIN, STOKEN
UNACCESS ID
UNIDENTIFY ID

,ID=addr addr: RX-type address, or register (2) - (12).

 ,AREA=addr addr: RX-type address, or register (2) - (12).

 ,DDNAME=addr addr: RX-type address, or register (2) - (12).

 ,LISTADDR=addr addr: RX-type address, or register (2) - (12).

 ,LISTSIZE=addr addr: RX-type address, or register (2) - (12).

 ,LOCVIEW=MAP Default: LOCVIEW=NONE
 ,LOCVIEW=NONE

 ,MODE=READ Default: None
 ,MODE=UPDATE

 ,OFFSET=addr addr: RX-type address, or register (2) - (12).
 ,OFFSET=*

 ,RETAIN=YES Default: RETAIN=NO
 ,RETAIN=NO

 ,SIZE=addr addr: RX-type address, or register (2) - (12).
 ,SIZE=*

 ,SPAN=addr addr: RX-type address, or register (2) - (12).
 ,SPAN=*

 ,STOKEN=addr addr: RX-type address

 ,TYPE=DA Default: None
 ,TYPE=HS

380 OS/390 V2R8.0 MVS Assembler Services Reference

 DIV Macro

 ,PFCOUNT=nnn Default: 0

 ,RELEASE=YES Default: RELEASE=NO
 ,RELEASE=NO

,MF=(M,addr) See explanation of parameters if omitted.

 Parameters
,MF=(M,addr)

Specifies the MODIFY form. The modify form of the macro is used to modify an already
defined DIV parameter list. It is exactly the same as the EXECUTE form except that
DIV is not called. The contents of registers 1 and 15 are destroyed.

 DIV — Data-in-Virtual 381

 DIV Macro

382 OS/390 V2R8.0 MVS Assembler Services Reference

 DOM Macro

DOM — Delete Operator Message

 Description
The DOM macro deletes an operator message or group of messages from the display
screen of the operator's console. It can also prevent messages from ever appearing on any
operator's console. When a program no longer requires that a message be displayed, it can
issue the DOM macro to delete the message.

Depending on the timing of the DOM relative to the WTO(R), the message may or may not
be displayed. If the message is being displayed, it is removed when space is required for
other messages.

When a WTO or WTOR macro is issued, the system assigns an identification number to the
message and returns this number (24 bits right-justified) to the issuing program in general
register 1. When you no longer need this message displayed, issue the DOM macro using
the identification number that was returned in general register 1.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Programming Requirements
None.

 Restrictions
If you are deleting messages by lists of DOM IDs, you cannot delete more than 60 at a time.

 Register Information

Input Register Information
Before issuing the DOM macro, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter, or using it as a base
register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the

 Copyright IBM Corp. 1988, 1999 383

 DOM Macro

caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The DOM macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede DOM.

DOM

␣ One or more blanks must follow DOM.

MSG=addr addr: Register (1) - (12), or an address.
MSGLIST=list addr list addr: Symbol, RX-type address, or register (1) - (12).
TOKEN=addr addr: Register (1) - (12), or an address.

 ,COUNT=addr addr: Register (2) - (12), or an address.

 Parameters
The parameters are explained as follows:

MSG=addr
MSGLIST=list addr

Specifies the message numbers of messages to be deleted.

For MSG, the address or register contains the 32-bit, right-justified identification number
of the message to be deleted. Use this parameter to delete a single message.

For MSGLIST, the address is of a list of one or more fullwords, each word containing a
32-bit, right-justified identification number of a message to be deleted. A maximum of 60
identification numbers may be in the message list. If more than 60 identification numbers
are in the list, only the first 60 are processed. Begin the list on a fullword boundary.
When you are not using the COUNT parameter, indicate the end of the list by setting
the high-order bit of the last fullword entry to 1.

Attention: DOM ids should not be altered from the 32-bit value returned in register 1 by
the WTO or WTOR macro, except to turn on the high-order bit (x'80000000') in the last
entry in a list.

,TOKEN=addr
Specifies a field or register containing a 4-byte token that is associated with messages
to be deleted. Using the TOKEN parameter is an alternate method for identifying
messages, which is independent of the register 1 message ID. When you issue WTO or
WTOR to write a message, you can specify a token value. To delete that WTO or
WTOR message, specify the same token value by issuing DOM with the TOKEN
parameter. You cannot use the token value on the DOM macro unless you specified
that token value on the WTO or WTOR macro that wrote the message. Issuing DOM
with the TOKEN parameter deletes all messages issued through WTO or WTOR with
the same token value. Unauthorized users may delete only those messages which were
originally issued under the same jobstep TCB, ASID and system ID. The value of the
token may not be the same as the ID that was returned in register 1 after a WTO or

384 OS/390 V2R8.0 MVS Assembler Services Reference

 DOM Macro

WTOR. This keyword is mutually exclusive with the MSG, MSGLIST, and COUNT
keywords.

,COUNT=addr
The count field or register contains the one-byte count of messages to be deleted
(specified on the MSG or MSGLIST parameters) associated with this request. The count
value must be from 1 to 60. If this keyword is used, the issuer must not set the high
order bit on in the last entry of the DOM parameter list. If this keyword is not specified,
the DOM ids are treated as 32-bit ids. If an address is used instead of a register, the
address points to a 1-byte field which contains the count. The COUNT keyword is invalid
with the TOKEN keyword.

Note: For any DOM keywords that allow a register specification, the value must be
right-justified in the register and the remaining bytes within the register must be zero.

 Example 1
Delete an operator message whose message id is in register 1.

DOM MSG=(1)

 Example 2
Delete a number of operator messages. The COUNT parameter indicates how many
messages are to be deleted.

DOM MSGLIST=ID3,COUNT=COUNT4

 Example 3
Delete all messages issued with a particular token.

DOM TOKEN=TOKEN1

 DOM — Delete Operator Message 385

 DOM Macro

386 OS/390 V2R8.0 MVS Assembler Services Reference

 DSPSERV Macro for Data Spaces

DSPSERV — Create, Delete, and Control Data Spaces

 Description
DSPSERV for hiperspaces

To control the use of hiperspaces, use the variation of the DSPSERV macro described
under “DSPSERV — Create, Delete, and Control Hiperspaces” on page 401.

The DSPSERV macro creates, deletes, and controls data spaces. A data space is a range
of up to two gigabytes of contiguous virtual storage addresses that a program can directly
manipulate through assembler instructions. A data space can hold only user data and user
programs stored as data; code does not execute in a data space.

There are three kinds of data spaces: SCOPE=SINGLE, SCOPE=ALL, and
SCOPE=COMMON. A SCOPE=SINGLE data space is used in ways similar to the use of
the private area of an address space. A SCOPE=ALL or SCOPE=COMMON data space is
used in ways similar to the use of the common area of an address space. A problem state
program with PSW key 8 - F cannot create or delete a SCOPE=ALL or SCOPE=COMMON
data space. However, it can use these spaces, providing a supervisor state program or a
program with PSW key 0 - 7 created the space and established addressability to the space
on its behalf. For more information on data spaces and how to use them, see OS/390 MVS
Programming: Assembler Services Guide.

Use the DSPSERV macro to:

� Create a data space (CREATE parameter and TYPE=BASIC parameter)
� Delete a data space (DELETE parameter)
� Release an area of a data space (RELEASE parameter)
� Increase the current size of a data space (EXTEND parameter)
� Load an area of a data space into central storage (LOAD parameter)
� Take (that is, page out) from real storage an area of a data space (OUT parameter)

On the DSPSERV macro, data spaces are identified through STOKENs. A STOKEN is a
unique identifier of address spaces, data spaces, and hiperspaces.

 Environment
The requirements for the caller are:

Minimum authorization: A problem state program with PSW key 8-F can use DSPSERV to
create a SCOPE=SINGLE data space. For all other DSPSERV
services, that program must own the data space.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Programming Requirements
If your program is in AR mode, issue the SYSSTATE ASCENV=AR macro before you issue
DSPSERV. SYSSTATE ASCENV=AR tells the system to generate code appropriate for AR
mode.

If you use the RELEASE parameter to specify a range of storage using INLIST=YES, you
must use the RANGLIST parameter to specify a range list that is mapped by the IARDRL

 Copyright IBM Corp. 1988, 1999 387

 DSPSERV Macro for Data Spaces

macro. For information on the IARDRL macro, see OS/390 MVS Data Areas, Vol 2
(DCCB-ITTCTE).

 Restrictions
None.

Input Register Information
Before issuing the DSPSERV macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Reason code
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The standard form of the DSPSERV macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede DSPSERV.

DSPSERV

␣ One or more blanks must follow DSPSERV.

Valid parameters (Required parameters are underlined.)

CREATE STOKEN, NAME, TYPE, GENNAME, OUTNAME,
BLOCKS, TTOKEN, ORIGIN, NUMBLKS

RELEASE STOKEN, START, BLOCKS, INLIST, RANGLIST, NUMRANGE
DELETE STOKEN
EXTEND STOKEN, BLOCKS, VAR, NUMBLKS
LOAD STOKEN, BLOCKS, START
OUT STOKEN, BLOCKS, START

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

388 OS/390 V2R8.0 MVS Assembler Services Reference

 DSPSERV Macro for Data Spaces

 ,TYPE=BASIC Default: TYPE=BASIC

 ,NAME=name-addr name-addr: RX-type address or register (2) - (12).

 ,GENNAME=NO Default: GENNAME=NO
 ,GENNAME=COND
 ,GENNAME=YES

 ,OUTNAME=outname-addr outname-addr: RX-type address or register (2) - (12).

 ,START=start-addr start-addr: RX-type address or register (2) - (12).

 ,BLOCKS=(max-addr,init-addr) max-addr: RX-type address or register (2) - (12).
 ,BLOCKS=(max,init) init-addr: RX-type address or register (2) - (12).
 ,BLOCKS=max max: Number up to 524288.
 ,BLOCKS=(0,init) init: Number up to 524288.
 ,BLOCKS=0 0 specifies the installation default size.
 ,BLOCKS=(0,init-addr) Default for CREATE: BLOCKS=0
 ,BLOCKS=(size-addr) size-addr: RX-type address or register (2) - (12).
 ,BLOCKS=(size) size: Number up to 524288.

 ,TTOKEN=ttoken-addr ttoken-addr: RX-type address or register (2) - (12).

 ,ORIGIN=origin-addr origin-addr: RX-type address or register (2) - (12).

 ,NUMBLKS=numblks-addr numblks-addr: RX-type address or register (2) - (12).

 ,INLIST=NO Default: INLIST=NO
 ,INLIST=YES

 ,RANGLIST=rangelist_addr rangelist_addr: RS-type address or register (2) - (12). Required

with INLIST=YES.
 ,NUMRANGE=numrange_addr numrange_addr: RS-type address or register (2) - (12).
 ,NUMRANGE=1 Default: NUMRANGE=1

 ,VAR=NO Default: VAR=NO
 ,VAR=YES

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 0

 ,MF=S

 DSPSERV — Create, Delete, and Control Data Spaces 389

 DSPSERV Macro for Data Spaces

 Parameters
The CREATE, RELEASE, DELETE, EXTEND, LOAD, and OUT parameters, which designate
the services of the DSPSERV macro, are mutually exclusive. You can select only one.

The parameters are explained as follows:

CREATE
Requests that the system create a data space. Creating a data space is somewhat like
issuing a GETMAIN for storage. The entire data space is in the same storage key.
When you specify CREATE, you must specify the NAME and STOKEN parameters.

Optional parameters when you create a data space are: TYPE, GENNAME,
OUTNAME, BLOCKS, TTOKEN, ORIGIN, and NUMBLKS.

RELEASE
Requests that the system resources used to contain the user's data be returned to the
system. Although the data contained in the virtual storage is discarded, the user's
virtual storage itself remains and is available for further use. When you specify
RELEASE, you must also specify STOKEN to identify the data space, and the START
and BLOCKS parameters to identify the beginning and the length of the area to be
returned to the system.

A problem state program with PSW key 8 - F can release any data space it owns or
created, providing its PSW key matches the storage key of the data space. However, if
the program is using the IARVSERV macro to share the data space, the program cannot
release the data space if it is a shared group and is fixed through another view.

Use DSPSERV RELEASE instead of using the MVCL instruction for these reasons:

� The DSPSERV RELEASE is faster than MVCL for very large areas.

� Pages that are released through DSPSERV RELEASE do not occupy space in
central, expanded, or auxiliary storage.

DELETE
Requests that the system delete a data space. STOKEN is the only required parameter
on the DELETE request.

A problem state program with PSW key 8 - F can delete any data space it owns or
created, providing its PSW key matches the storage key of the data space.

EXTEND
Requests that the system increase the current size of a data space. Use EXTEND only
for a data space that was created with an initial size smaller than a maximum size.
Before a caller can reference storage beyond the current size, the caller must use
EXTEND to increase the storage that is available. If a caller references hiperspace
storage beyond the current size, the system rejects the request; it terminates the caller
with an 0C4 abend code.

STOKEN (identifying the data space) and BLOCKS (specifying the size of the increase)
are required on the EXTEND request. VAR (requesting a variable extension) and
NUMBLKS (requesting the size of the extension) are optional parameters.

For a problem state and PSW key 8 - F caller, any TCB can extend a data space that
was created by any other TCB in the address space.

The system rejects the EXTEND request if you specified VAR=NO (or took the default)
and the extended size would:

� Exceed the maximum size specified when the data space was created.

� For a data space with a storage key greater than 7, extend the cumulative data
space and hiperspace space totals beyond the installation limits for the owning
address space.

390 OS/390 V2R8.0 MVS Assembler Services Reference

 DSPSERV Macro for Data Spaces

LOAD
Requests that the system load some areas of a data space into central storage. The
system fills the request depending on how many central storage frames are available.
When you specify LOAD, you must also specify the STOKEN, START, and BLOCKS
parameters.

For a problem state and PSW key 8 - F caller, the TCB that represents it owns the data
space.

OUT
Tells the system that it can take some areas of a data space from central storage.
When you specify OUT, you must also specify the STOKEN, START, and BLOCKS
parameters.

For a problem state and PSW key 8 - F caller, the TCB that represents it owns the data
space.

,STOKEN=stoken-addr
Specifies the address of the eight-byte STOKEN for the data space. DSPSERV
CREATE returns the STOKEN as output; STOKEN is required input for all other
DSPSERV requests.

,TYPE=BASIC
Specifies that the system should create a data space rather than a hiperspace.
TYPE=BASIC is the default.

,NAME=name-addr
Specifies the address of the eight-byte variable or constant that contains the name of
the data space. NAME is required for DSPSERV CREATE.

Data space names are from one to eight bytes long. They can contain letters, numbers,
and @, #, and $, but they cannot contain embedded blanks. Names that contain fewer
than eight bytes must be left-justified and padded on the right with blanks.

Data space and hiperspace names must be unique within the home address space of
the owner. No other data space or hiperspace in the home address may have the same
name. Therefore, in choosing names for your data spaces, you must avoid using the
same names that IBM uses for data spaces. Do not use the following names:

� Names that begin with A through I.
� Names that begin with numerals or with SYS.

How to choose names for your data spaces:

Use data space names that begin with @, #, $, or the letters J through Z, with the
exception of SYS. The system abends problem state programs that begin names with
SYS.

To ensure that the names for your data spaces are unique, use the GENNAME
parameter to generate a unique name.

,GENNAME=NO
,GENNAME=COND
,GENNAME=YES

Specifies whether or not you want the system to generate a name for the data space to
ensure that all names are unique within the address space. The system generates a
name by adding a 5-character prefix (consisting of a numeral followed by four
characters) to the first three characters of the name you supply on the NAME
parameter. For example, if you supply ‘XYZDATA’ on the NAME parameter, the name

 DSPSERV — Create, Delete, and Control Data Spaces 391

 DSPSERV Macro for Data Spaces

becomes ‘nCCCCXYZ’ where ‘n’ is the numeral, ‘CCCC’ is the 4-character string
generated by the system, and XYZ comes from the name you supplied on NAME. See
the NAME parameter for the data space and hiperspace naming conventions.

GENNAME=NO The system does not generate a name. You must supply a name
unique within the address space. GENNAME=NO is the default.

GENNAME=COND The system generates a unique name only if you supply a name
that is already being used. Otherwise, the system uses the name
you supply.

GENNAME=YES The system takes the name you supply on the NAME parameter
and makes it unique.

If you want the system to return the unique name it generates, use the OUTNAME
parameter.

,OUTNAME=outname-addr
Specifies the address of the eight-byte variable where the system returns the name it
generated if you specify GENNAME=YES or GENNAME=COND on DSPSERV
CREATE. The OUTNAME parameter is optional.

,START=start-addr
Specifies the address of a four-byte variable containing the beginning address of a block
of storage in a data space. The address must be on a four-kilobyte boundary. START
is required on RELEASE requests.

,BLOCKS=(max-addr,init-addr)
,BLOCKS=(max,init)
,BLOCKS= max
,BLOCKS=(0, init)
,BLOCKS=0
,BLOCKS=(0, init-addr)
,BLOCKS= size-addr
,BLOCKS= size

Specifies the size of the data space the system is to create, or the size of an area within
a data space. BLOCKS is required for all DSPSERV requests except DSPSERV
DELETE.

For a CREATE request, specifies the maximum size (in blocks) to which the data
space can expand (max-addr or max) and the initial size of the data space (init-addr or
init.). A block is a unit of 4K bytes. You cannot extend the data space beyond its
maximum size.

max-addr specifies the address of a field that contains the maximum size of the data
space to be created. max is the number of blocks (up to 524,288) to be used for the
data space.

init-addr specifies the address of the initial size of the data space. init is the number of
blocks to be used as the initial size. If the initial size you specify exceeds or equals the
maximum size, then the initial size becomes the maximum size.

0 specifies the default size, either the installation default or the IBM-defined default. The
IBM-defined default maximum is 239 blocks. Your installation can use the installation
exit IEFUSI to change the IBM default. The system returns the maximum size at the
location identified by NUMBLKS.

If you do not code the BLOCKS parameter on the CREATE request, the system uses
BLOCKS=0, setting the initial size and the maximum size equal to the installation (or
IBM) default.

392 OS/390 V2R8.0 MVS Assembler Services Reference

 DSPSERV Macro for Data Spaces

For a RELEASE request , BLOCKS and START are required parameters that define
contiguous storage (in 4K blocks) that the system is to release. BLOCKS specifies the
size of an area to be released (size-addr or size). The minimum size is 1 block and the
maximum is 524,288 blocks (2 gigabytes).

For an EXTEND request, BLOCKS is a required parameter that defines the amount of
increase of the current size of the data space.

For LOAD and OUT requests, BLOCKS is a required parameter that defines the
amount of data space storage that the system is to load into central storage or page out
from central storage.

BLOCKS=size-addr in MVS/SP3.1.0 is incompatible with BLOCKS=(size-addr) in
MVS/SP3.1.0e and later releases in the case where size-addr is a register. If you coded
BLOCKS=(register) in MVS/SP3.1.0, and plan to recompile the program to run on later
releases of MVS, you must change the specification to BLOCKS=((register)) before you
recompile.

,TTOKEN=ttoken-addr
Specifies the address of the TTOKEN, the 16-byte variable or constant that identifies the
task that is to become the owner of the data space. The TTOKEN must represent either
the caller's task or the caller's job step task. TTOKEN is valid only on the CREATE
request.

,ORIGIN=origin-addr
Specifies the address of the four-byte variable that contains the lowest address (either
zero or 4096) of the new data space. The system returns the beginning address of the
data space at origin-addr. The system tries to start all data spaces at origin zero; on
some processors, however, the origin is 4096. ORIGIN is an optional parameter for
DSPSERV CREATE.

,NUMBLKS= numblks-addr
Specifies the address of the four-byte area where the system returns one of the
following:

� For DSPSERV CREATE, the maximum size (in blocks) of the newly-created data
space.

� For DSPSERV EXTEND, the size by which the system extended the data space.

The NUMBLKS parameter is an optional parameter on DSPSERV CREATE and
DSPSERV EXTEND.

If, when you create a data space, you specify BLOCKS=0 or do not specify the
BLOCKS parameter, the system uses the default that your installation established in the
installation exit IEFUSI. The system returns this default value at numblks-addr.

,INLIST=NO
,INLIST=YES

Specifies whether a range is included (YES). The default is INLIST=NO. If you specify
YES, you must also specify the RANGLIST parameter.

,RANGLIST= rangelist-addr
Specifies the name (RS-type) or address (in register 2-12) of a required input fullword
that contains the address of the range list. The range list consists of a number of
entries (specified by NUMRANGE); each entry is 8 bytes long. A mapping of each entry
is provided through the mapping macro IARDRL.

,NUMRANGE=numrange_addr
Specifies the name (RS-type) or address (in register 2-12) of an optional parameter that
provides the number of entries in the supplied RANGLIST. The maximum value may
not exceed 16. The default is 1.

 DSPSERV — Create, Delete, and Control Data Spaces 393

 DSPSERV Macro for Data Spaces

,VAR=NO
,VAR=YES

Specifies whether or not your request for the system to extend the amount of storage
available in a data space is a variable request. When you use DSPSERV EXTEND for
a data space, the system might not be able to extend the data space the amount you
request because that amount might cause the system to exceed one of the following:

� The maximum size of the data space, as specified on the BLOCKS parameter when
the data space was created.

� For a data space with storage key 8 - F, the limit of combined data space and
hiperspace storage with storage key 8 - F for an address space. (The installation
established this limit on the IEFUSI installation exit, or took the IBM default.)

If you specify VAR=YES (the variable request) and the system cannot satisfy your
request, the system extends the data space to one of the following sizes, depending on
which is smaller:

� The maximum size specified on the BLOCKS parameter when the data space was
created.

� The largest size that would still keep the combined data space and hiperspace
storage within the limits established by the installation for an address space.

If you specify VAR=NO (the default), the system:

� Abends the caller if the extended size would exceed the maximum size specified
when the data space was created.

� Rejects the request if the data space has storage key 8 - F and the request would
extend the combined data space and hiperspace beyond the installation limit for an
address space.

If you use the NUMBLKS parameter, the system returns the size by which the system
extends the data space.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list the
system generates. PLISTVER is an optional input parameter on all forms of the macro,
including the list form. When using PLISTVER, specify it on all macro forms used for a
request and with the same value on all of the macro forms. The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form; in this way, MAX ensures that the parameter list does
not overwrite nearby storage.

� 0, if you use the currently available parameters.

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 0

394 OS/390 V2R8.0 MVS Assembler Services Reference

 DSPSERV Macro for Data Spaces

,MF=S
Specifies the standard form of DSPSERV. The standard form places the parameters
into an in-line parameter list.

 ABEND Codes
DSPSERV might abnormally terminate with abend code X'01D'. See OS/390 MVS System
Codes for an explanation and programmer response.

Return and Reason Codes
Hexadecimal return and reason codes from DSPSERV CREATE:

Hexadecimal return and reason codes from DSPSERV EXTEND:

Return
Code

Reason
Code

Meaning and Action

00 — Meaning : DSPSERV CREATE completed successfully.

Action : None.

04 xx000Cxx Meaning : Program error. DSPSERV CREATE completed successfully.
You specified a size of 2 gigabytes (524,288 blocks). However,
because the processor did not support a data space with zero origin, a
data space of one less block (524,287 blocks) was created.

Action : None required. However, you should verify that your program
correctly accounts for the nonzero origin of the data space.

08 xx0005xx Meaning : Program error. Creation of the data space would violate
installation criteria. See the IEFUSI installation exit in OS/390 MVS
Installation Exits.

Action : Check with your system programmer for local restrictions on the
creation and use of data spaces.

08 xx0009xx Meaning : Program error. The specified data space name is not unique
within the address space.

Action : Check that the data space name is not already in use by
another active data space. Change the data space name or specify the
GENNAME parameter on the DSPSERV macro to get the system to
generate a unique name.

08 xx0012xx Meaning : Environmental error. The system's set of generated names
for data spaces and hiperspaces has been temporarily depleted.

Action : Retry the job one or more times during a period of lower
system usage. If the problem persists, consult your system
programmer, who might be able to tune the system so that more names
are available for use.

0C xx0006xx Meaning : Environmental error. The system cannot create any
additional data spaces at this time because of a shortage of resources.

Action : Retry the job one or more times during a period of lower
system usage. If the problem persists, consult your system
programmer, who might be able to tune the system so that resources
will not become depleted.

0C xx0007xx Meaning : System error. The system cannot obtain addressability to its
data structures.

Action : Record the return and reason code and supply it to the
appropriate IBM support personnel.

Return
Code

Reason
Code

Meaning

00 — Meaning : DSPSERV EXTEND completed successfully.

Action : None.

 DSPSERV — Create, Delete, and Control Data Spaces 395

 DSPSERV Macro for Data Spaces

The caller of DSPSERV does not receive any return codes for the RELEASE, DELETE,
LOAD, and OUT services.

Return
Code

Reason
Code

Meaning

08 xx0502xx Meaning : Environmental error. Extending the data space would cause
the data space and hiperspace limits for the address space to be
exceeded.

Action : Check with your system programmer, who might be able to
tune the system so that the function is made available to your program.

08 xx0503xx Meaning : Program error. You are using VAR=YES to extend the
current size of the data space; however, the data space is already the
maximum size.

Action : None required. However, if your program requires more
storage, you should consider creating an additional data space.

 Example 1
Create a data space named TEMP with a size of 10 million bytes.

DSP1 DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN,
 BLOCKS=DSPBLCKS,ORIGIN=DSPCORG
\ .
DSPCNAME DC CL8'TEMP ' DATA SPACE NAME
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU 1ððððððð
DSPBLCKS DC A((DSPCSIZE+4ð95)/4ð96) NUMBER OF BLOCKS NEEDED FOR
\ A 1ð MILLION BYTE DATA SPACE

 Example 2
Release a range of storage.

 LA 5,RANGELST
 ST 5,RNGLSTPT
 LA 5,RNGLSTPT
DSP2 DSPSERV RELEASE,STOKEN=DSPCSTKN,DISABLED=NO,INLIST=YES,
 NUMRANGE=NUMRANGS,RANGLIST=(5)
\
RNGLSTPT DS F RANGE LIST ADDRESS
DSPCSTKN DS CL8 DATA SPACE STOKEN
NUMRANGS DC F'9' NUMBER OF RANGES TO PROCESS
RANGELST DS CL256 STORAGE FOR MAX NUMBER OF RANGES
DRLMAP DS ðF THIS CREATES A DSECT
 IARDRL MAPPING MACRO

396 OS/390 V2R8.0 MVS Assembler Services Reference

 DSPSERV Macro for Data Spaces

 DSPSERV—List Form
Use the list form of the DSPSERV macro to construct a nonexecutable control program
parameter list.

 Syntax
The list form of the DSPSERV macro is written as follows:

The parameters are explained as follows:

,MF=(L,list addr)
,MF=(L,list addr,attr)

Specifies the list form of the DSPSERV macro. list addr defines the area that the
system is to use for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
0D, which forces the parameter list to a doubleword boundary.

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede DSPSERV.

DSPSERV

␣ One or more blanks must follow DSPSERV.

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 0

,MF=(L,list addr) list addr: Symbol.
,MF=(L,list addr,attr) attr: 1- to 60-character input string.

Default : 0D

 DSPSERV — Create, Delete, and Control Data Spaces 397

 DSPSERV Macro for Data Spaces

 DSPSERV—Execute Form
The execute form of the DSPSERV macro can refer to and modify the parameter list
constructed by the list form of the macro.

 Syntax
The execute form of the DSPSERV macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede DSPSERV.

DSPSERV

␣ One or more blanks must follow DSPSERV.

Valid parameters (Required parameters are underlined.)

CREATE STOKEN, NAME, TYPE, GENNAME, OUTNAME,
BLOCKS, TTOKEN, ORIGIN, NUMBLKS

RELEASE STOKEN, START, BLOCKS, INLIST, RANGLIST, NUMRANGE
DELETE STOKEN
EXTEND STOKEN, BLOCKS, VAR, NUMBLKS
LOAD STOKEN, BLOCKS, START
OUT STOKEN, BLOCKS, START

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

 ,TYPE=BASIC Default: TYPE=BASIC

 ,NAME=name-addr name-addr: RX-type address or register (2) - (12).

 ,GENNAME=NO Default: GENNAME=NO
 ,GENNAME=COND
 ,GENNAME=YES

 ,OUTNAME=outname-addr outname-addr: RX-type address or register (2) - (12).

 ,START=start-addr start-addr: RX-type address or register (2) - (12).

 ,BLOCKS=(max-addr,init-addr) max-addr: RX-type address or register (2) - (12).
 ,BLOCKS=(max,init) init-addr: RX-type address or register (2) - (12).
 ,BLOCKS=max max: Number up to 524288.
 ,BLOCKS=(0,init) init: Number up to 524288.
 ,BLOCKS=0 0 specifies the installation default size.
 ,BLOCKS=(0,init-addr) Default for CREATE: BLOCKS=0
 ,BLOCKS=(size-addr) size-addr: RX-type address or register (2) - (12)
 ,BLOCKS=(size) size: Number up to 524288.

 ,TTOKEN=ttoken-addr ttoken-addr: RX-type address or register (2) - (12).

 ,ORIGIN=origin-addr origin-addr: RX-type address or register (2) - (12).

 ,NUMBLKS=numblks-addr numblks-addr: RX-type address or register (2) - (12).

 ,INLIST=NO Default: INLIST=NO
 ,INLIST=YES

 ,RANGLIST=rangelist-addr rangelist-addr: RS-type address or register (2) - (12). Required

with INLIST=YES
 ,NUMRANGE=numrange-addr numrange-addr: RS-type address or register (2) - (12).
 ,NUMRANGE=1 Default: NUMRANGE=1

 ,VAR=NO Default: VAR=NO

398 OS/390 V2R8.0 MVS Assembler Services Reference

 DSPSERV Macro for Data Spaces

The parameters are explained under the standard form of the DSPSERV macro with the
following exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the DSPSERV macro. list addr defines the area that the
system uses for the parameter list. The system checks for required parameters and
supplies optional parameters that are not specified.

COMPLETE specifies that the system is to check for required parameters and supply
optional parameters that are not specified.

 ,VAR=YES

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 0

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

 DSPSERV — Create, Delete, and Control Data Spaces 399

 DSPSERV Macro for Data Spaces

400 OS/390 V2R8.0 MVS Assembler Services Reference

 DSPSERV Macro for Hiperspaces

DSPSERV — Create, Delete, and Control Hiperspaces

 Description
DSPSERV for data spaces

To control the use of data spaces, use the variation of the DSPSERV macro described
under “DSPSERV — Create, Delete, and Control Data Spaces” on page 387.

The DSPSERV macro creates, deletes, and controls hiperspaces. A hiperspace is a range
of up to two gigabytes of contiguous virtual storage addresses that a program can use as a
buffer. Like a data space, a hiperspace can hold user data and programs stored as data; it
does not contain common areas or system data. Instructions do not execute in a
hiperspace. Unlike a data space, data is not directly addressable. To manipulate data in a
hiperspace, you bring the data into the address space in 4K-byte blocks.

A nonshared standard hiperspace, available to all programs, is backed with expanded
storage and auxiliary storage, if necessary. Through the buffer area in the address space,
your program can view or “scroll” through the standard hiperspace. A shared standard
hiperspace is available to problem state programs with PSW keys of 8 through F, but only
under the control of programs in supervisor state or with PSW keys of 0 through 7. An ESO
(expanded storage only) hiperspace is available only for supervisor state or PSW key 0
through 7 programs. For more information on hiperspaces and how to use them, see
OS/390 MVS Programming: Assembler Services Guide.

Use the DSPSERV macro to:

� Create a standard hiperspace (CREATE parameter and TYPE=HIPERSPACE
parameter)

� Delete a hiperspace (DELETE parameter)

� Release an area of a hiperspace (RELEASE parameter)

� Increase the current size of a hiperspace (EXTEND parameter)

On the DSPSERV macro, hiperspaces are identified through STOKENs. The STOKEN is a
unique identifier of address spaces, data spaces, and hiperspaces.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state programs with PSW key 8-F can request these
DSPSERV services:

� Create a nonshared standard hiperspace
� Delete any hiperspace they own
� Release an area of a hiperspace
� Increase the current size of a hiperspace

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Copyright IBM Corp. 1988, 1999 401

 DSPSERV Macro for Hiperspaces

 Programming Requirements
If your program is in AR mode, issue the SYSSTATE ASCENV=AR macro before you issue
DSPSERV. SYSSTATE ASCENV=AR tells the system to generate code appropriate for AR
mode.

If you use the RELEASE parameter to specify a range of storage using INLIST=YES, you
must use RANGLIST to specify a range list that is mapped by the IARDRL macro. For
information on the IARDRL macro, see OS/390 MVS Data Areas, Vol 2 (DCCB-ITTCTE).

 Restrictions
None.

Input Register Information
Before issuing the DSPSERV macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Reason code
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

402 OS/390 V2R8.0 MVS Assembler Services Reference

 DSPSERV Macro for Hiperspaces

 Syntax
The standard form of the DSPSERV macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede DSPSERV.

DSPSERV

␣ One or more blanks must follow DSPSERV.

Valid parameters (Required parameters are underlined.)
CREATE STOKEN, NAME, TYPE, GENNAME, OUTNAME,

BLOCKS, ORIGIN, and NUMBLKS
RELEASE STOKEN, START, BLOCKS, INLIST, RANGLIST, NUMRANGE
DELETE STOKEN
EXTEND STOKEN, BLOCKS, VAR, NUMBLKS

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

,TYPE=HIPERSPACE

 ,NAME=name-addr name-addr: RX-type address or register (2) - (12).

 ,GENNAME=NO Default: GENNAME=NO
 ,GENNAME=COND
 ,GENNAME=YES

 ,OUTNAME=outname-addr outname-addr: RX-type address or register (2) - (12).

 ,START=start-addr start-addr: RX-type address or register (2) - (12).

 ,BLOCKS=(max-addr,init-addr) max-addr: RX-type address or register (2) - (12).
 ,BLOCKS=(max,init) init-addr: RX-type address or register (2) - (12).
 ,BLOCKS=max max: Number up to 524288.
 ,BLOCKS=(0,init) init: Number up to 524288.
 ,BLOCKS=0 0 specifies the installation default size.
 ,BLOCKS=(0,init-addr) Default for CREATE: BLOCKS=0
 ,BLOCKS=(size-addr) size-addr: RX-type address or register (2) - (12).
 ,BLOCKS=(size) size: Number up to 524288.

 ,ORIGIN=origin-addr origin-addr: RX-type address or register (2) - (12).

 ,NUMBLKS=numblks-addr numblks-addr: RX-type address or register (2) - (12).
 ,INLIST=NO Default : INLIST=NO
 ,INLIST=YES
 ,RANGLIST=rangelist_addr rangelist_addr: RS-type address or register (2) - (12). Required

with INLIST=YES.
 ,NUMRANGE=numrange_addr numrange_addr: RS-type address or register (2) - (12).
 ,NUMRANGE=1 Default : NUMRANGE=1

 ,VAR=NO Default : VAR=NO
 ,VAR=YES

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default : IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 0

 ,MF=S

 DSPSERV — Create, Delete, and Control Hiperspaces 403

 DSPSERV Macro for Hiperspaces

 Parameters
The CREATE, RELEASE, DELETE, and EXTEND parameters, which designate the services
of the DSPSERV macro, are mutually exclusive. You can select only one.

The parameters are explained as follows:

CREATE
Requests that the system create a nonshared standard hiperspace. Creating a
hiperspace is somewhat like issuing a GETMAIN for storage. The entire hiperspace is
in the same storage key. When you specify CREATE, you must also specify NAME,
STOKEN, and TYPE=HIPERSPACE.

Optional parameters when you create a hiperspace are: OUTNAME, GENNAME,
BLOCKS, ORIGIN, and NUMBLKS.

RELEASE
Requests that the system resources used to contain the user's data be returned to the
system. Although the data contained in the virtual storage is discarded, the user's
virtual storage itself remains and is available for further use. When you specify
RELEASE, you must also specify STOKEN to identify the hiperspace, and the START
and BLOCKS parameters to identify the beginning and the length of the area to be
returned to the system.

The caller must own the hiperspace, and the caller's PSW key must be zero or equal to
the key of the storage the system is to release. Otherwise, the system abends the
caller.

Pages that are released through DSPSERV RELEASE do not occupy space in central,
expanded, or auxiliary storage. These pages are available for further use and contain
hexadecimal zeros.

DELETE
Requests that the system delete a hiperspace. STOKEN is the only required parameter
on the DELETE request.

A problem state or PSW key 8 - F caller must own the hiperspace, and its PSW key
must be zero or equal to the storage key of the hiperspace the system is to release.

EXTEND
Requests that the system increase the current size of a hiperspace. Use EXTEND only
for a hiperspace that was created with an initial size smaller than a maximum size.
Before a caller can reference storage beyond the current size, the caller must use
EXTEND to increase the storage that is available. If a caller references hiperspace
storage beyond the current size, the system rejects the request; it terminates the caller
with an 0C4 abend code.

STOKEN (identifying the hiperspace) and BLOCKS (specifying the size of the increase)
are required on the EXTEND request. VAR (requesting a variable extension) and
NUMBLKS (requesting the size of the extension) are optional parameters.

For the problem state and PSW key 8 through F caller, the TCB that represents it must
own the hiperspace.

The system rejects the EXTEND request if you specified VAR=NO (or took the default)
and the extended size would:

� Exceed the maximum size specified when the hiperspace was created.

� For a hiperspace with a storage key greater than 7, extend the cumulative data
space and hiperspace totals beyond the installation limits for the owning address
space.

404 OS/390 V2R8.0 MVS Assembler Services Reference

 DSPSERV Macro for Hiperspaces

,STOKEN=stoken-addr
Specifies the address of the eight-byte STOKEN for the hiperspace being created,
deleted, or released.

DSPSERV CREATE returns the STOKEN; STOKEN is required input for all other
requests.

,TYPE=HIPERSPACE
Specifies that the system is to create a standard hiperspace rather than a data space.

,NAME=name-addr
Specifies the address of the eight-byte variable or constant that contains the name of
the hiperspace. NAME is required for DSPSERV CREATE.

Hiperspace names are from one to eight bytes long. They can contain letters, numbers,
and @, #, and $, but they cannot contain embedded blanks. Names that contain fewer
than eight bytes must be left-justified and padded on the right with blanks.

Hiperspace and data space names must be unique within the home address space of
the owner. No other hiperspace or data space in the home address space can have the
same name. Therefore, in choosing names for your hiperspaces, you must avoid using
the same names that IBM might use for hiperspaces. Do not use the following names:

� Names that begin with A through I.
� Names that begin with a numeral or with SYS.

How to choose names for your hiperspaces:

Use hiperspace names that begin with @, #, $, or the letters J through Z, with the
exception of SYS. The system abends problem state programs that begin names with
SYS.

To ensure that the names for your hiperspaces are unique, ask the system to generate
a unique name. See the GENNAME parameter.

,GENNAME=NO
,GENNAME=COND
,GENNAME=YES

Specifies whether or not you want the system to generate a name for the hiperspace to
ensure that all names are unique within the address space. The system generates a
name by adding a 5-character prefix (consisting of a numeral followed by four
characters) to the first three characters of the name you supply on the NAME
parameter. For example, if you supply ‘XYZDATA’ on the NAME parameter, the name
becomes ‘nCCCCXYZ’ where ‘n’ is the numeral, ‘CCCC’ is the 4-character string
generated by the system, and XYZ comes from the name you supplied on NAME. See
NAME for more information about naming conventions.

GENNAME=NO The system does not generate a name. You must supply a name
unique within the address space. GENNAME=NO is the default.

GENNAME=COND The system generates a unique name only if you supply a name
that is already being used. Otherwise, the system uses the name
you supply.

GENNAME=YES The system takes the name you supply on the NAME parameter
and makes it unique.

If you want the system to return the unique name it generates, use the OUTNAME
parameter.

,OUTNAME=outname-addr
Specifies the address of the eight-byte variable where the system returns the name it
generated for the hiperspace. the generated name of the hiperspace if you specify
GENNAME=YES or GENNAME=COND. The OUTNAME parameter is optional on
DSPSERV CREATE.

 DSPSERV — Create, Delete, and Control Hiperspaces 405

 DSPSERV Macro for Hiperspaces

,START=start-addr
Specifies the address of a four-byte variable containing the beginning address of a block
of storage in a hiperspace. The address must be on a four-kilobyte boundary. A block
is a unit of 4K bytes. START is required on a RELEASE request.

,BLOCKS=(max-addr,init-addr)
,BLOCKS=(max,init)
,BLOCKS= max
,BLOCKS=(0, init)
,BLOCKS=0
,BLOCKS=(0, init-addr)
,BLOCKS= size-addr
,BLOCKS= size

Specifies the size of a hiperspace or the size of an area within a hiperspace. BLOCKS
is required for all requests except for DSPSERV DELETE.

For a CREATE request, specifies the maximum size (in blocks) to which the hiperspace
can expand (max-addr or max) and the initial size of the hiperspace (init-addr or init.). A
block is a unit of 4K bytes. You cannot extend the hiperspace beyond its maximum
size.

max-addr specifies the address of a field that contains the maximum size of the
hiperspace to be created. max is the number of blocks (up to 524,288) to be used for
the hiperspace.

init-addr specifies the address of the initial size of the hiperspace. init is the number of
blocks to be used as the initial size. If the initial size you specify exceeds or equals the
maximum size, then the initial size becomes the maximum size.

0 specifies the default size, either the installation default or the IBM-defined default. The
IBM-defined default maximum is 239 blocks. Your installation can use the installation
exit IEFUSI to change the IBM default. The system returns the maximum size at the
location identified by NUMBLKS.

If you do not code the BLOCKS parameter on the CREATE request, the system uses
BLOCKS=0, setting the initial size and the maximum size equal to the installation (or
IBM) default.

For a RELEASE request , BLOCKS and START are required parameters that define
contiguous storage (in 4K blocks) that the system is to release. BLOCKS specifies the
size of an area to be released (size-addr or size). The minimum size is 1 block and the
maximum is 524,288 blocks (2 gigabytes).

For an EXTEND request, BLOCKS is a required parameter that defines the amount of
increase of the current size of the hiperspace.

,ORIGIN=origin-addr
Specifies the address of the four-byte variable that contains the lowest address (either
zero or 4096) of the new hiperspace. The system returns the beginning address of the
hiperspace at origin-addr. The system tries to start all hiperspaces at origin zero; on
some processors, however, the origin is 4096. ORIGIN is an optional parameter for
DSPSERV CREATE.

,NUMBLKS= numblks-addr
Specifies the address of the four-byte area where the system returns one of the
following:

� For DSPSERV CREATE, the maximum size (in blocks) of the newly created
hiperspace.

� For DSPSERV EXTEND, the size by which the system extended the hiperspace.

The NUMBLKS parameter is an optional parameter on DSPSERV CREATE and
DSPSERV EXTEND.

406 OS/390 V2R8.0 MVS Assembler Services Reference

 DSPSERV Macro for Hiperspaces

If, when you create a hiperspace, you specify BLOCKS=0 or do not specify the BLOCKS
parameter, the system uses the default that your installation established in the
installation exit IEFUSI. The system returns this default value at numblks-addr.

,INLIST=NO
,INLIST=YES

Specifies whether a range is included (YES). The default is INLIST=NO. If you specify
YES, you must also specify the RANGLIST parameter.

,RANGLIST= rangelist-addr
Specifies the name (RS-type) or address (in register 2-12) of a required input fullword
that contains the address of the range list. The range list consists of a number of
entries (specified by NUMRANGE); each entry is 8 bytes long. A mapping of each entry
is provided through the mapping macro IARDRL.

,NUMRANGE=numrange_addr
Specifies the name (RS-type) or address (in register 2-12) of an optional parameter that
provides the number of entries in the supplied RANGLIST. The maximum value may
not exceed 16. The default is 1.

,VAR=NO
,VAR=YES

Specifies whether your request for the system to extend the amount of storage available
in a hiperspace is a variable request. When you use DSPSERV EXTEND for a
hiperspace, the system might not be able to extend the hiperspace by the amount you
request, because that amount might cause the system to exceed one of the following:

� The maximum size of the hiperspace, as specified on the BLOCKS parameter when
the hiperspace was created.

� For a hiperspace with storage key 8 - F, the limit of combined data space and
hiperspace storage with storage key 8 - F for an address space. (The installation
established this limit on the IEFUSI installation exit, or took the IBM default.)

If you specify VAR=YES (the variable request) and the system cannot satisfy your
request, the system extends the hiperspace to one of the following sizes, depending on
which is smaller:

� The maximum size specified on the BLOCKS parameter when the hiperspace was
created.

� The largest size that would still keep the combined total of data space and
hiperspace storage within the limits established by the installation for an address
space.

If you specify VAR=NO (the default), the system:

� Abends the caller if the extended size would exceed the maximum size specified
when the hiperspace was created.

� Rejects the request if the hiperspace has storage key 8 - F and the request would
extend the cumulative data space and hiperspace totals beyond the installation
limits for an address space.

If you use the NUMBLKS parameter, the system returns the size by which the system
extends the hiperspace.

 DSPSERV — Create, Delete, and Control Hiperspaces 407

 DSPSERV Macro for Hiperspaces

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list the
system generates. PLISTVER is an optional input parameter on all forms of the macro,
including the list form. When using PLISTVER, specify it on all macro forms used for a
request and with the same value on all of the macro forms. The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form; in this way, MAX ensures that the parameter list does
not overwrite nearby storage.

� 0, if you use the currently available parameters.

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 0

,MF=S
Specifies the standard form of DSPSERV. The standard form places the parameters
into an in-line parameter list.

 ABEND Codes
DSPSERV might abnormally terminate with abend code X'01D'. See OS/390 MVS System
Codes for an explanation and programmer response.

408 OS/390 V2R8.0 MVS Assembler Services Reference

 DSPSERV Macro for Hiperspaces

Return and Reason Codes
Hexadecimal return and reason codes from DSPSERV CREATE:

Hexadecimal return and reason codes from DSPSERV EXTEND:

Return
Code

Reason
Code

Meaning and Action

00 — Meaning : DSPSERV CREATE completed successfully.

Action : None.

04 xx000Cxx Meaning : Program error. DSPSERV CREATE completed successfully.
You specified a size of 2 gigabytes (524,288 blocks). However,
because the processor did not support a hiperspace with zero origin, a
hiperspace of one less block (524,287 blocks) was created.

Action : None required. However, you should verify that your program
correctly accounts for the nonzero origin of the hiperspace.

08 xx0005xx Meaning : Program error. Creation of the hiperspace would violate
installation criteria. See the IEFUSI installation exit in OS/390 MVS
Installation Exits.

Action : Check with your system programmer for local restrictions on the
creation and use of hiperspaces.

08 xx0009xx Meaning : Program error. The specified hiperspace name is not unique
within the address space.

Action : Check that the hiperspace name is not already in use by
another active hiperspace. Change the hiperspace name or specify the
GENNAME parameter on the DSPSERV macro to get the system to
generate a unique name.

08 xx0012xx Meaning : Environmental error. The system's set of generated names
for data spaces and hiperspaces has been temporarily depleted.

Action : Retry the job one or more times during a period of lower
system usage. If the problem persists, consult your system
programmer, who might be able to tune the system so that more names
are available for use.

0C xx0006xx Meaning : Environmental error. The system cannot create any
additional hiperspaces at this time because of a shortage of resources.

Action : Retry the job one or more times during a period of lower
system usage. If the problem persists, consult your system
programmer, who might be able to tune the system so that resources
will not become depleted.

0C xx0007xx Meaning : System error. The system cannot obtain addressability to its
own hiperspaces.

Action : Record the return and reason code and supply it to the
appropriate IBM support personnel.

Return
Code

Reason
Code

Meaning and Action

00 — Meaning : DSPSERV EXTEND completed successfully.

Action : None.

08 xx0502xx Meaning : Environmental error. Extending the hiperspace size would
cause the data space and hiperspace limits for the address space to
be exceeded.

Action : Check with your system programmer, who might be able to
tune the system so that the function is made available to your
program.

 DSPSERV — Create, Delete, and Control Hiperspaces 409

 DSPSERV Macro for Hiperspaces

The caller of DSPSERV does not receive any return codes for the RELEASE and DELETE
services.

Return
Code

Reason
Code

Meaning and Action

08 xx0503xx Meaning : Program error. You are using VAR=YES to extend the
current size of the hiperspace; however, the hiperspace is already the
maximum size.

Action : None required. However, if your program requires more
storage, you should consider creating an additional hiperspace.

 Example
Create a hiperspace named TEMP with a size of 10 million bytes.

 DSPSERV CREATE,NAME=HSPCNAME,STOKEN=HSPCSTKN, X
 TYPE=HIPERSPACE,BLOCKS=HSPBLCKS,ORIGIN=HSPCORG
\ .
HSPCNAME DC CL8'TEMP ' HIPERSPACE NAME
HSPCSTKN DS CL8 HIPERSPACE STOKEN
HSPCORG DS F HIPERSPACE ORIGIN RETURNED
HSPCSIZE EQU 1ððððððð
HSPBLCKS DC A((HSPCSIZE+4ð95)/4ð96) NUMBER OF BLOCKS NEEDED FOR
\ A 1ð MILLION BYTE HIPERSPACE

410 OS/390 V2R8.0 MVS Assembler Services Reference

 DSPSERV Macro for Hiperspaces

 DSPSERV—List Form
Use the list form of the DSPSERV macro to construct a nonexecutable control program
parameter list.

 Syntax
The list form of the DSPSERV macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede DSPSERV.

DSPSERV

␣ One or more blanks must follow DSPSERV.

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 0

,MF=(L,list addr) list addr: Symbol.
,MF=(L,list addr,attr) attr: 1- to 60-character input string. Default : 0D

 Parameters
The parameters are explained as follows:

,MF=(L,list addr)
,MF=(L,list addr,attr)

Specifies the list form of the DSPSERV macro. list addr defines the area that the
system is to use for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
0D, which forces the parameter list to a doubleword boundary.

 DSPSERV — Create, Delete, and Control Hiperspaces 411

 DSPSERV Macro for Hiperspaces

 DSPSERV—Execute Form
The execute form of the DSPSERV macro can refer to and modify the parameter list
constructed by the list form of the macro.

 Syntax
The execute form of the DSPSERV macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede DSPSERV.

DSPSERV

␣ One or more blanks must follow DSPSERV.

Valid parameters (Required parameters are underlined.)

CREATE STOKEN, NAME, TYPE, GENNAME, OUTNAME,
BLOCKS, ORIGIN, and NUMBLKS

RELEASE STOKEN, START, BLOCKS, INLIST, RANGLIST, NUMRANGE
DELETE STOKEN,
EXTEND STOKEN, BLOCKS, VAR, NUMBLKS

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

,TYPE=HIPERSPACE

 ,NAME=name-addr name-addr: RX-type address or register (2) - (12).

 ,GENNAME=NO Default: GENNAME=NO
 ,GENNAME=COND
 ,GENNAME=YES

 ,OUTNAME=outname-addr outname-addr: RX-type address or register (2) - (12).

 ,START=start-addr start-addr: RX-type address or register (2) - (12).

 ,BLOCKS=(max-addr,init-addr) max-addr: RX-type address or register (2) - (12).
 ,BLOCKS=(max,init) init-addr: RX-type address or register (2) - (12).
 ,BLOCKS=max max: Number up to 524288.
 ,BLOCKS=(0,init) init: Number up to 524288.
 ,BLOCKS=0 0 specifies the installation default size.
 ,BLOCKS=(0,init-addr) Default for CREATE: BLOCKS=0
 ,BLOCKS=(size-addr) size-addr: RX-type address or register (2) - (12).
 ,BLOCKS=(size) size: Number up to 524288.

 ,ORIGIN=origin-addr origin-addr: RX-type address or register (2) - (12).

 ,NUMBLKS=numblks-addr numblks-addr: RX-type address or register (2) - (12).

 ,INLIST=NO Default: INLIST=NO
 ,INLIST=YES

 ,RANGLIST=rangelist-addr rangelist-addr: RX-type address or register (2) - (12). Required

with INLIST=YES

 ,NUMRANGE=numrange-addr numrange-addr: RX-type address or register (2) - (12).
 ,NUMRANGE=1 Default: NUMRANGE=1

 ,VAR=NO Default: VAR=NO
 ,VAR=YES

 ,PLISTVER=IMPLIED_VERSION

412 OS/390 V2R8.0 MVS Assembler Services Reference

 DSPSERV Macro for Hiperspaces

 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 0

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

 Parameters
The parameters are explained under the standard form of the DSPSERV macro with the
following exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the DSPSERV macro. list addr defines the area that the
system uses for the parameter list.

COMPLETE specifies that the system is to check for required parameters and supply
optional parameters that are not specified.

 DSPSERV — Create, Delete, and Control Hiperspaces 413

 DSPSERV Macro for Hiperspaces

414 OS/390 V2R8.0 MVS Assembler Services Reference

 EDTINFO Macro

EDTINFO — Obtain Eligible Device Table Information

 Description
The EDTINFO macro enables you to obtain information from the eligible device table (EDT)
and to check your device specification against the information in the EDT. See OS/390 HCD
Planning and OS/390 MVS Programming: Assembler Services Guide for further information
on the EDT.

The EDTINFO macro performs the following functions:

� Check groups (CHKGRPS)
� Check units (CHKUNIT)
� Return unit name (RTNUNIT)
� Return unit control block (UCB) addresses for static and installation-static devices

defined below 16 megabytes with 3-digit device numbers (RTNUCBA)
� Return group ID (RTNGRID)
� Return attributes (RTNATTR)
� Return unit names for a device class (RTNNAMD)
� Return UCB device number list (RTNDEVN)
� Return maximum eligible device type (MAXELIG)
� Return default unit-affinity-ignored unit name (RTNUNAFF)

Any one of these functions, or any combination of them, may be specified on each
invocation of the EDTINFO macro.

Notes:

1. If you specify both RTNUNIT and MAXELIG, the variable specified by OUTUNIT will
contain the results of the MAXELIG function.

2. If you specify both RTNUNIT and RTNUNAFF, the variable specified by OUTUNIT will
contain the results of the RTNUNIT function.

3. If you specify both MAXELIG and RTNUNAFF, the variable specified by OUTUNIT or
OUTDEV will contain the results of the MAXELIG function.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 24- or 31- bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space. This includes data areas

whose address is passed to EDTINFO.

 Programming Requirements
None.

 Copyright IBM Corp. 1988, 1999 415

 EDTINFO Macro

 Restrictions
None.

Input Register Information
Before issuing the EDTINFO macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Reason code if GPR 15 contains a return code of 04 or 08; otherwise, used as

a work register by the system
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

416 OS/390 V2R8.0 MVS Assembler Services Reference

 EDTINFO Macro

 Syntax
The standard form of the EDTINFO macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede EDTINFO.

EDTINFO

␣ One or more blanks must follow EDTINFO.

 CHKGRPS Note: At least one of these functions is required: CHKGRPS,
 CHKUNIT, RTNUNIT, RTNUCBA, RTNGRID, RTNATTR,
 CHKUNIT RTNNAMD, RTNDEVN, MAXELIG, RTNUNAFF. If more than one

of
 these is specified, a comma must be coded between
 RTNUNIT each of the keywords.

 RTNUCBA Note: See the tables following this diagram for information on
 parameter usage with these functions.
 RTNGRID

 RTNATTR

 RTNNAMD

 RTNDEVN

 MAXELIG

 RTNUNAFF

 ,DEVCOUNT=devcount addr devcount addr: RS-type address or register (2) - (12).

 ,DEVLIST=devlist addr devlist addr: RS-type address or register (2) - (12).
 ,DEVSTAT=devstat addr devstat addr: RS-type address or register (2) - (12).

 ,UNITNAME=unitname addr unitname addr: RS-type address or register (2) - (12).
 ,DEVTYPE=devtype addr devtype addr: RS-type address or register (2) - (12).

 ,SUBPOOL=subpool addr subpool addr: RS-type address or register (2) - (12).

 ,UCBALIST=ucbalist addr ucbalist addr: RS-type address or register (2) - (12).

 ,UCBLIST=ucblist addr ucblist addr: RS-type address or register (2) - (12).

 ,GRIDLIST=gridlist addr gridlist addr: RS-type address or register (2) - (12).

 ,ATTRAREA=attrarea addr attrarea addr: RX-type address or register (2) - (12).

 ,DEVCLASS=devclass addr devclass addr: RS-type address or register (2) - (12).

 ,NAMELIST=namelist addr namelist addr: RS-type address or register (2) - (12).

 ,DYNAMIC=YES Default: DYNAMIC=NO
 ,DYNAMIC=NO

 ,LOC=BELOW Default : LOC=BELOW
 ,LOC=ANY

 ,RANGE=ALL Default: RANGE=3DIGIT
 ,RANGE=3DIGIT

 EDTINFO — Obtain Eligible Device Table Information 417

 EDTINFO Macro

The following tables show how the parameters may be specified with the CHKGRPS,
CHKUNIT, RTNUNIT, RTNUCBA, RTNGRID, RTNATTR, RTNNAMD, RTNDEVN, MAXELIG,
and RTNUNAFF functions.

The IOCTOKEN, RETCODE, and RSNCODE parameters are optional with any of the
functions.

 ,DEVNLIST=devnlist addr devnlist addr: RS-type address or register (2) - (12).

 ,RECMODE=recmode addr recmode addr: RS-type address or register (2) - (12).

 ,DENSITY=density addr density addr: RS-type address or register (2) - (12).

 ,OUTUNIT=outunit addr outunit addr: RS-type address or register (2) - (12).
 ,OUTDEV=outdev addr outdev addr: RS-type address or register (2) - (12).

 ,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

 ,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

 ,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

Parameters CHKGRPS CHKUNIT RTNUNIT RTNUCBA RTNGRID

DEVCOUNT required required not valid not valid not valid

DEVLIST required required not valid not valid not valid

DEVSTAT optional optional not valid not valid not valid

UNITNAME not valid UNITNAME
or
DEVTYPE
required

not valid UNITNAME
or
DEVTYPE
required

not valid

DEVTYPE not valid DEVTYPE
or
UNITNAME
required

required DEVTYPE
or
UNITNAME
required

not valid

SUBPOOL not valid not valid not valid optional not valid

UCBALIST not valid not valid not valid required not valid

UCBLIST not valid not valid not valid not valid required

GRIDLIST not valid not valid not valid not valid required

ATTRAREA not valid not valid not valid not valid not valid

DEVCLASS not valid not valid not valid not valid not valid

NAMELIST not valid not valid not valid not valid not valid

DYNAMIC not valid not valid not valid not valid not valid

LOC not valid not valid not valid not valid not valid

RANGE not valid not valid not valid not valid not valid

DEVNLIST not valid not valid not valid not valid not valid

RECMODE not valid not valid not valid not valid not valid

DENSITY not valid not valid not valid not valid not valid

OUTUNIT not valid not valid required not valid not valid

OUTDEV not valid not valid not valid not valid not valid

418 OS/390 V2R8.0 MVS Assembler Services Reference

 EDTINFO Macro

Note: Code the parameters as indicated for each of the function keywords when you
specify multiple functions. For example, assume that you specify the CHKGRPS and
RTNATTR functions. The CHKGRPS function requires DEVCOUNT and DEVLIST to be
specified, and the RTNATTR function requires UNITNAME or DEVTYPE to be specified.
Because DEVCOUNT and DEVLIST are required with CHKGRPS, you must code them if
you specify CHKGRPS, even though DEVCOUNT and DEVLIST are not valid with
RTNATTR. Similarly, UNITNAME or DEVTYPE is required with RTNATTR and must be
coded, even though neither one is valid with CHKGRPS.

Parameters RTNATTR RTNNAMD RTNDEVN MAXELIG RTNUNAFF

DEVCOUNT not valid not valid not valid not valid not valid

DEVLIST not valid not valid not valid not valid not valid

DEVSTAT not valid not valid not valid not valid not valid

UNITNAME UNITNAME
or
DEVTYPE
required

not valid UNITNAME
or
DEVTYPE
required

UNITNAME
or
DEVTYPE
required

not valid

DEVTYPE DEVTYPE
or
UNITNAME
required

not valid DEVTYPE
or
UNITNAME
required

DEVTYPE
or
UNITNAME
required

not valid

SUBPOOL not valid optional not valid not valid not valid

UCBALIST not valid not valid not valid not valid not valid

UCBLIST not valid not valid not valid not valid not valid

GRIDLIST not valid not valid not valid not valid not valid

ATTRAREA required not valid not valid not valid not valid

DEVCLASS not valid required not valid not valid not valid

NAMELIST not valid required not valid not valid not valid

DYNAMIC not valid not valid optional not valid not valid

LOC not valid not valid optional not valid not valid

RANGE not valid not valid optional not valid not valid

DEVNLIST not valid not valid required not valid not valid

RECMODE not valid not valid not valid required not valid

DENSITY not valid not valid not valid required not valid

OUTUNIT not valid not valid not valid OUTUNIT or
OUTDEV
required

OUTUNIT or
OUTDEV
required

OUTDEV not valid not valid not valid OUTDEV or
OUTUNIT
required

OUTDEV or
OUTUNIT
required

 Parameters
The parameters are explained as follows:

CHKGRPS
Specifies that the EDTINFO service should determine whether the specified device
numbers constitute a valid allocation group. The device numbers are specified by the
DEVCOUNT, DEVLIST, and, optionally, DEVSTAT parameters, and are a valid
allocation group if either of the following is true:

� For any allocation group in the EDT that contains at least one of the device
numbers specified in the input device number list, all of the device numbers in that
group in the EDT are contained in the input device number list.

 EDTINFO — Obtain Eligible Device Table Information 419

 EDTINFO Macro

� None of the allocation groups in the EDT contain any of the device numbers
specified in the input device number list.

If neither of these is the case, the device numbers are not a valid allocation group.

Note: In addition to generating a return code and reason code, EDTINFO sets bit 0 in
the flag byte of any entry in the device number list or the device status list, if present, if
the entry corresponds to a device number that is not valid.

CHKUNIT
Specifies that the EDTINFO service should determine whether the input device numbers
correspond to the specified unit name. The input device numbers are specified by the
UNITNAME or DEVTYPE, DEVCOUNT, DEVLIST, and, optionally, DEVSTAT
parameters. The unit name is the EBCDIC representation of the IBM generic device
type (for example, 3380) or the esoteric group name (for example, TAPE) from the EDT.

Notes:

1. In addition to generating a return code and reason code, EDTINFO sets bit 0 in the
flag byte of any entry in the device number list or the device status list, if present, if
the entry corresponds to a device number that is not valid.

2. If all of the device numbers are valid but not all of them match the unit name or the
device type specified as input, EDTINFO in addition to generating a return and
reason code, sets bit 1 in the flag byte of any entry in the device number list or the
device status list, if present, if the entry does not correspond to the input unit name
or device type.

RTNUNIT
Specifies that the EDTINFO service should return the unit name associated with the
UCB device type that is provided as input in the DEVTYPE parameter. The unit name
is returned in the storage specified by the OUTUNIT parameter.

Note: Do not use the RTNUNIT parameter to determine whether a returned unit name
is a generic CTC device or an esoteric group name that contains CTC devices. Instead,
use the RTNATTR parameter for this purpose.

RTNUCBA
Specifies that the EDTINFO service should return a list of pointers to UCBs associated
with the unit name or device type provided as input in the UNITNAME or DEVTYPE
parameter. EDTINFO returns UCB addresses only for static and installation-static below
16 megabyte UCBs with 3-digit device numbers. The address of the UCB pointer list is
returned in the storage specified by the UCBALIST parameter. You can specify the
subpool in which to obtain storage by using the SUBPOOL list.

Note: You can use the RTNDEVN parameter instead to obtain a list of device numbers
belonging to a specified unit name or UCB device type, including dynamic
devices, 4-digit devices and devices described by UCBs residing above the
16-megabyte line. Then the UCBINFO macro can be used to obtain selected
UCB device information for a given device number

If your program is authorized, running in supervisor state or with a program key
mask of 0-7, you can use the UCBLOOK macro to the obtain the actual UCB
address from a given device number. See, OS/390 MVS Programming:
Authorized Assembler Services Reference SET-WTO, and OS/390 MVS
Programming: Authorized Assembler Services Guide for the UCBLOOK macro.

RTNGRID
Specifies that the EDTINFO service should return the allocation group ID corresponding
to each UCB address specified by the UCBLIST parameter. The address of the group
ID list is returned in the storage specified by the GRIDLIST parameter.

RTNATTR
Specifies that the EDTINFO service should return general information about the unit
name or device type specified in the UNITNAME or DEVTYPE parameter. The
information is returned in the storage specified by the ATTRAREA parameter.

420 OS/390 V2R8.0 MVS Assembler Services Reference

 EDTINFO Macro

RTNNAMD
Specifies that the EDTINFO service should return a list of IBM generic device types (for
example, 3380) or esoteric group names (for example, TAPE) associated with the input
device class specified in the DEVCLASS parameter. The address of the unit name list
is returned in the storage specified by the NAMELIST parameter. You can specify the
subpool in which to obtain storage by using the SUBPOOL parameter.

RTNDEVN
Specifies that the EDTINFO service should return the UCB device number list
associated with the unit name or UCB device type specified by the UNITNAME or
DEVTYPE parameter. The address of the device number list is returned at the address
specified by the DEVNLIST parameter. By using the DYNAMIC parameter, you can
specify that devices defined to the system as dynamic are to be included in the list. By
using the RANGE parameter, you can include 4-digit device numbers in the returned
UCB device number list. By using the LOC parameter, you can include devices with
actual above 16 megabyte UCBs in the returned UCB device number list.

MAXELIG
Specifies that the EDTINFO service should determine the maximum eligible device type
(for the allocation and cataloging of a data set on a tape device) associated with the unit
name or device type, recording mode, and density provided as input. The maximum
eligible device type is the tape device type that contains the greatest number of eligible
devices compatible with the specified recording mode and density. You specify the unit
name or device type in the UNITNAME or DEVTYPE parameters. The recording mode
and density are specified in the RECMODE and DENSITY parameters. EDTINFO
returns the maximum eligible device type in the OUTUNIT or OUTDEV parameter,
depending on which one you specify.

RTNUNAFF
Specifies that the EDTINFO service should return the default unit-affinity-ignored unit
name that was provided on the UNITAFF subparameter of the UNIT parameter in the
ALLOCxx parmlib member, or defaulted by the system. The unit name is returned in the
storage specified by the OUTUNIT parameter, or the device type is returned in the
storage specified by the OUTDEV parameter, depending on which one you specify.

,DEVCOUNT=devcount addr
Specifies the fullword input field that contains the number of entries in the input device
number list and the optional output device status list.

,DEVLIST=devlist addr
Specifies the address of an input pointer that contains the address of the device number
list. This list can be in two different formats:

� The first format is used for 3-digit device numbers. The format consists of an array
of 4-byte entries. The first 3 bytes contain the EBCDIC device number and the last
byte is a flag byte containing output flags. Bit 0 in the flag byte indicates the validity
of the device number: If the bit is set to 1, the device number is not valid. Bit 1 in
the flag byte indicates whether the device number is associated with the unit name
or the device type specified as input: If the bit is set to 1, the device number is not
associated with the unit name or device type.

� The second format is used for 4-digit device numbers; DEVSTAT must also be
specified. Each entry in the format contains a 4-byte EBCDIC device number. The
status byte is in the device status array provided by the DEVSTAT parameter.

,DEVSTAT=devstat addr
Specifies the address of an input pointer that contains the address of the output device
status list. This optional list consists of an array of 2-byte entries that are parallel to the
input device number list. In each entry, the first byte contains output flags and the
second byte is reserved for IBM use. Bit 0 in the flag byte indicates the validity of the
device number contained in the device number list. If the bit is set to 1, the device
number is not valid. Bit 1 in the flag byte indicates whether the device number
contained in the device number list is associated with the unit name or the device type

 EDTINFO — Obtain Eligible Device Table Information 421

 EDTINFO Macro

specified as input. If that bit is set to 1, the device number is not associated with the
input unit name or device type.

,UNITNAME=unitname addr
,DEVTYPE=devtype addr

Specifies either the 8-character input field that contains the unit name
(UNITNAME=unitname addr) or specifies the 4-character input field that contains the
4-byte UCB device type (DEVTYPE=devtype addr).

,SUBPOOL=subpool addr
Specifies a 1-byte input field that indicates in which subpool the storage should be
obtained. If you do not specify SUBPOOL, the default is subpool 230 if the caller is
authorized, and subpool 0 if the caller is not authorized. The caller is responsible for
freeing the storage once it is no longer required.

,UCBALIST= ucbalist addr
Specifies the address of an output pointer that is to contain the address of the UCB
pointer list. The pointer list format is as follows:

� an 8 byte header containing

– a 1-byte field indicating the subpool in which the storage resides
– a 3-byte field containing the size of the pointer list (including the header)
– a 4-byte field containing the number of entries in the list.

� an array of 4-byte entries containing the actual UCB addresses (for below 16
megabyte static and installation-static UCBs with 3-digit device numbers only).

,UCBLIST=ucblist addr
Specifies the address of an input pointer that contains the address of the UCB pointer
list. This list consists of a 4-byte header containing the number of entries in the list
followed by an array of 4-byte entries containing the actual or captured UCB addresses.

,GRIDLIST=gridlist addr
Specifies the address of an input pointer that contains the address of the group ID list.
This list is an array of 4-byte entries that parallel the input UCB pointer list entries and
contain the group ID associated with each UCB.

422 OS/390 V2R8.0 MVS Assembler Services Reference

 EDTINFO Macro

,ATTRAREA= attrarea addr
Specifies the address of a 10-character output field in which general information about
the unit name or device type (specified by the UNITNAME or DEVTYPE parameter) is
returned. The contents of ATTRAREA are:

Byte Contents

0 Length of the attribute area (X'0A'). You must fill in this byte prior to issuing
EDTINFO.

1-2 Flags describing the unit name:

Bit Meaning

0 If bit is on, the unit name is an esoteric group name.

1 If bit is on, the unit name is VIO-eligible.

2 Not part of the programming interface.

3 If bit is on, the unit name contains TP class devices.

4-15 Not part of the programming interface.

3 Number of device classes in the unit name.

4-7 Number of generic device types in the unit name.

8-9 Not part of the programming interface.

,DEVCLASS=devclass addr
Specifies the address of a 1-character input field that contains the device class in
hexadecimal.

,NAMELIST=namelist addr
Specifies the address of an output pointer that is to contain the address of the unit name
list. The format of the unit name list is as follows:

� an 8-byte header containing

– a 1-byte field indicating the subpool in which the storage resides
– a 3-byte field containing the size of the unit name list (including the header)
– a 4-byte field containing the number of entries in the list

� an array of 8-byte entries containing the actual unit names.

,DYNAMIC=YES
,DYNAMIC=NO

Specifies whether dynamic devices should (DYNAMIC=YES) or should not
(DYNAMIC=NO) be included in the device number list. If you specify DYNAMIC=NO,
only static and installation-static devices are included in the list.

,LOC=ANY
,LOC=BELOW

Specifies whether the output device number list should be restricted to devices with
below 16 megabyte UCBs (LOC=BELOW) or should also include devices with above 16
megabyte UCBs (LOC=ANY) when you specify the RTNDEVN parameter.

,RANGE=ALL
,RANGE=3DIGIT

Specifies whether all devices (RANGE=ALL) or only those devices with device numbers
of 3 digits or less (RANGE=3DIGIT) should be included in the output device number list.

,DEVNLIST=devnlist addr
Specifies the address of an output pointer that is to contain the address of the output
device number list. The format of the device number list is as follows:

� a 4-byte field containing the size of the list (including the header)
� a 4-byte field containing the number of entries in the list
� an array of 4-byte entries containing the actual EBCDIC device numbers.

 EDTINFO — Obtain Eligible Device Table Information 423

 EDTINFO Macro

This storage must be obtained by the caller prior to invoking the EDTINFO macro and
must reside in the caller's key. The caller must store the length of the list into the
header before invoking the macro. If there is not enough storage to contain all of the
entries, the following occurs:

� a return code of 8 and a reason code of 4 are returned
� the number of entries is filled in
� no EBCDIC device numbers are returned.

,IOCTOKEN=ioctoken addr
Specifies a 48-character area for the MVS I/O configuration token. If the current EDT
definition is not consistent with the token specified as input by ioctoken addr, the caller
is notified through a return code.

If the input specified by ioctoken addr is set to binary zeros, EDTINFO sets IOCTOKEN
to the current MVS I/O configuration token.

,RECMODE=recmode addr
Specifies the address of an 8-bit input that indicates the recording mode.

,DENSITY=density addr
Specifies the address of an 8-bit input that indicates the density.

,OUTUNIT=outunit addr
,OUTDEV=outdev addr

Specifies the address of an 8-character field where EDTINFO returns the unit name
(OUTUNIT=outunit addr) or specifies the address of a 4-character field where EDTINFO
returns the 4-byte device type (OUTDEV=outdev addr).

,RETCODE=retcode addr
Specifies the fullword location where the system is to store the return code. The return
code is also in GPR 15.

,RSNCODE=rsncode addr
Specifies the fullword location where the system is to store the reason code. The
reason code is also in GPR 0.

Return and Reason Codes
When control returns from EDTINFO, GPR 15 (and retcode addr, if you coded RETCODE)
contains one of the following hexadecimal return codes:

Return
Code

Meaning

00 The requested function or functions were performed and no reason code information
has been returned.

04 The requested function or functions were performed and information has been
returned, as explained by the hexadecimal reason code that accompanies this return
code. The reason code is in GPR 0 (and in rsncode addr, if you coded RSNCODE).

Reason
Code Meaning

01 The input device numbers do not belong to the same group.

02 One or more of the input device numbers does not belong to the input
unit name or device type.

03 The input unit name was valid but no units matching the specified or
defaulted selection criteria were found. No UCB addresses or device
numbers have been returned.

424 OS/390 V2R8.0 MVS Assembler Services Reference

 EDTINFO Macro

Note: When you specify multiple functions, the system returns the return code with the
highest numerical value, and its associated reason code.

Return
Code

Meaning

08 There is data in the input parameter list that is not valid, as explained by the
hexadecimal reason code that accompanies this return code. The reason code is in
GPR 0 (and in rsncode addr, if you coded RSNCODE).

Reason
Code Meaning

01 The input unit name could not be found in the EDT.

02 The input device type could not be found in the EDT.

03 One or more of the input device numbers is invalid.

04 The caller did not provide sufficient storage for the returned information.

05 The MAXELIG function requires a generic device type as input, but the
input specified does not represent a generic device type.

06 The caller did not request any functions

07 The caller requested functions that are not valid

08 For a required input, the caller specified a value that is not valid.

0C A configuration change has occurred and the input I/O configuration token does not
match the current token.

10 Storage could not be obtained for the request.

18 An unexpected system error occurred.

 Example 1
Obtain the attributes for the device whose unit name is contained in UNIT_NAME. Return
the information in ATTRIBUTE_AREA.

EDTINFO RTNATTR,UNITNAME=UNIT_NAME,ATTRAREA=ATTRIBUTE_AREA

 Example 2
Obtain the list of device numbers for the device type specified in DEVICE_TYPE. Include
dynamic devices in the list. Return the list in the area pointed to by DEVICE_LIST_PTR.

EDTINFO RTNDEVN,DYNAMIC=YES,DEVTYPE=DEVICE_TYPE, X
 DEVNLIST=DEVICE_LIST_PTR

 Example 3
Determine whether the list of device numbers specified by DEVICE_LIST_PTR is a valid
allocation group. DEVICE_COUNT specifies a field containing the number of entries in the
list. Use the IOCTOKEN parameter to return the current MVS I/O configuration token in
CONFIG_TOKEN. The status of the devices is returned in the list specified by
STATUS_LIST_PTR.

Following some other processing, return the allocation group ID that corresponds to each
UCB address found in the list specified by UCB_LIST_PTR. Return the list of group IDs in
the area specified by GRID_LIST_PTR. Use the IOCTOKEN parameter, specifying the
previously-obtained MVS I/O configuration token as input in CONFIG_TOKEN, to determine
whether the I/O configuration has changed since EDTINFO was issued.

 EDTINFO — Obtain Eligible Device Table Information 425

 EDTINFO Macro

EDTINFO CHKGRPS,DEVCOUNT=DEVICE_COUNT, X
 DEVLIST=DEVICE_LIST_PTR,IOCTOKEN=CONFIG_TOKEN, X
 DEVSTAT=STATUS_LIST_PTR.
.
.
.
EDTINFO RTNGRID,UCBLIST=UCB_LIST_PTR, X
 GRIDLIST=GRID_LIST_PTR,IOCTOKEN=CONFIG_TOKEN

 Example 4
Determine whether the list of device numbers specified by DEVICE_LIST_PTR is a valid
allocation group, and determine if these device numbers correspond to the unit name in the
EDT. DEVICE_COUNT specifies a field containing the number of entries in the list.
DEVICE_TYPE specifies a field containing the device type. Store the return code from
register 15 in RETURN_CODE, and store the reason code from register 0 in
REASON_CODE. The status of the devices is returned in the list specified by
STATUS_LIST_PTR.

EDTINFO CHKGRPS,CHKUNIT,DEVTYPE=DEVICE_TYPE, X
 DEVCOUNT=DEVICE_COUNT,DEVLIST=DEVICE_LIST_PTR, X
 RETCODE=RETURN_CODE,RSNCODE=REASON_CODE, X
 DEVSTAT=STATUS_LIST_PTR

 Example 5
Return (in the output device number list specified by DEVICE_LIST_PTR) the UCB device
numbers associated with the device type DEVICE_TYPE. All devices should be included in
the output device number list.

EDTINFO RTNDEVN,DEVTYPE=DEVICE_TYPE,DYNAMIC=YES X
 RANGE=ALL,LOC=ANY, X
 DEVNLIST=DEVICE_LIST_PTR

426 OS/390 V2R8.0 MVS Assembler Services Reference

 EDTINFO Macro

 EDTINFO—List Form
Use the list form of the EDTINFO macro together with the execute form for applications that
require reentrant code. The list form of the macro defines an area of storage that the
execute form uses for storing the parameters.

 Syntax
This macro is an alternative list form macro, and requires a different technique for using the
list form as compared to the conventional list form macros. See “Alternative List Form
Macros” on page 13 for further information.

The list form of the EDTINFO macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede EDTINFO.

EDTINFO

␣ One or more blanks must follow EDTINFO.

MF=(L,list addr) list addr: Symbol.
MF=(L,list addr,attr) attr: 1- to 60-character input string
MF=(L,list addr,0D) Default: 0D

 Parameters
The parameters are explained as follows:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the EDTINFO macro.

The list addr parameter specifies the address of the storage area for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
0D, which forces the parameter list to a doubleword boundary.

 EDTINFO — Obtain Eligible Device Table Information 427

 EDTINFO Macro

 EDTINFO—Execute Form
Use the execute form of the EDTINFO macro together with the list form for applications that
require reentrant code. The execute form of the macro stores the parameters into the
storage area defined by the list form.

 Syntax
The execute form of the EDTINFO macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede EDTINFO.

EDTINFO

␣ One or more blanks must follow EDTINFO.

 CHKGRPS Note: At least one of these functions is required: CHKGRPS,
 CHKUNIT, RTNUNIT, RTNUCBA, RTNGRID, RTNATTR,
 CHKUNIT RTNNAMD, RTNDEVN, MAXELIG, RTNUNAFF. If more than one

of
 these is specified, a comma must be coded between
 RTNUNIT each of the keywords.

 RTNUCBA Note: See the tables following this diagram for information on
 parameter usage with these functions.
 RTNGRID

 RTNATTR

 RTNNAMD

 RTNDEVN

 MAXELIG

 RTNUNAFF

 ,DEVCOUNT=devcount addr devcount addr: RS-type address or register (2) - (12).

 ,DEVLIST=devlist addr devlist addr: RS-type address or register (2) - (12).

 ,DEVSTAT=devstat addr devstat addr: RS-type address or register (2) - (12).

 ,UNITNAME=unitname addr unitname addr: RS-type address or register (2) - (12).
 ,DEVTYPE=devtype addr devtype addr: RS-type address or register (2) - (12).

 ,SUBPOOL=subpool addr subpool addr: RS-type address or register (2) - (12).

 ,UCBALIST=ucbalist addr ucbalist addr: RS-type address or register (2) - (12).

 ,UCBLIST=ucblist addr ucblist addr: RS-type address or register (2) - (12).

 ,GRIDLIST=gridlist addr gridlist addr: RS-type address or register (2) - (12).

 ,ATTRAREA=attrarea addr attrarea addr: RX-type address or register (2) - (12).

 ,DEVCLASS=devclass addr devclass addr: RS-type address or register (2) - (12).

 ,NAMELIST=namelist addr namelist addr: RS-type address or register (2) - (12).

 ,DYNAMIC=YES Default: DYNAMIC=NO

428 OS/390 V2R8.0 MVS Assembler Services Reference

 EDTINFO Macro

The following tables show how the parameters may be specified with the CHKGRPS,
CHKUNIT, RTNUNIT, RTNUCBA, RTNGRID, RTNATTR, RTNNAMD, RTNDEVN, MAXELIG,
or RTNUNAFF functions.

The IOCTOKEN, RETCODE, RSNCODE, and MF parameters are optional with any of the
functions.

 ,DYNAMIC=NO

 ,LOC=BELOW Default : BELOW
 ,LOC=ANY

 ,RANGE=ALL Default: RANGE=3DIGIT
 ,RANGE=3DIGIT

 ,DEVNLIST=devnlist addr devnlist addr: RS-type address or register (2) - (12).

 ,RECMODE=recmode addr recmode addr: RS-type address or register (2) - (12).

 ,DENSITY=density addr density addr: RS-type address or register (2) - (12).

 ,OUTUNIT=outunit addr outunit addr: RS-type address or register (2) - (12).
 ,OUTDEV=outdev addr outdev addr: RS-type address or register (2) - (12).

 ,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

 ,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

 ,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).
,MF=(E,list addr,COMPLETE) Default: COMPLETE
,MF=(E,list addr,NOCHECK)

 EDTINFO — Obtain Eligible Device Table Information 429

 EDTINFO Macro

Parameters CHKGRPS CHKUNIT RTNUNIT RTNUCBA RTNGRID

DEVCOUNT required required not valid not valid not valid

DEVLIST required required not valid not valid not valid

DEVSTAT optional optional not valid not valid not valid

UNITNAME not valid UNITNAME
or
DEVTYPE
required

not valid UNITNAME
or
DEVTYPE
required

not valid

DEVTYPE not valid DEVTYPE
or
UNITNAME
required

required DEVTYPE
or
UNITNAME
required

not valid

SUBPOOL not valid not valid not valid optional not valid

UCBALIST not valid not valid not valid required not valid

UCBLIST not valid not valid not valid not valid required

GRIDLIST not valid not valid not valid not valid required

ATTRAREA not valid not valid not valid not valid not valid

DEVCLASS not valid not valid not valid not valid not valid

NAMELIST not valid not valid not valid not valid not valid

DYNAMIC not valid not valid not valid not valid not valid

LOC not valid not valid not valid not valid not valid

RANGE not valid not valid not valid not valid not valid

DEVNLIST not valid not valid not valid not valid not valid

RECMODE not valid not valid not valid not valid not valid

DENSITY not valid not valid not valid not valid not valid

OUTUNIT not valid not valid required not valid not valid

OUTDEV not valid not valid not valid not valid not valid

430 OS/390 V2R8.0 MVS Assembler Services Reference

 EDTINFO Macro

Parameters RTNATTR RTNNAMD RTNDEVN MAXELIG RTNUNAFF

DEVCOUNT not valid not valid not valid not valid not valid

DEVLIST not valid not valid not valid not valid not valid

DEVSTAT not valid not valid not valid not valid not valid

UNITNAME UNITNAME
or
DEVTYPE
required

not valid UNITNAME
or
DEVTYPE
required

UNITNAME
or
DEVTYPE
required

not valid

DEVTYPE DEVTYPE
or
UNITNAME
required

not valid DEVTYPE
or
UNITNAME
required

DEVTYPE
or
UNITNAME
required

not valid

SUBPOOL not valid optional not valid not valid not valid

UCBALIST not valid not valid not valid not valid not valid

UCBLIST not valid not valid not valid not valid not valid

GRIDLIST not valid not valid not valid not valid not valid

ATTRAREA required not valid not valid not valid not valid

DEVCLASS not valid required not valid not valid not valid

NAMELIST not valid required not valid not valid not valid

DYNAMIC not valid not valid optional not valid not valid

LOC not valid not valid optional not valid not valid

RANGE not valid not valid optional not valid not valid

DEVNLIST not valid not valid required not valid not valid

RECMODE not valid not valid not valid required not valid

DENSITY not valid not valid not valid required not valid

OUTUNIT not valid not valid not valid OUTUNIT or
OUTDEV
required

OUTUNIT or
OUTDEV
required

OUTDEV not valid not valid not valid OUTDEV or
OUTUNIT
required

OUTDEV or
OUTUNIT
required

 Parameters
The parameters are explained under the standard form of the EDTINFO macro with the
following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

Specifies the execute form of the EDTINFO macro.

The list addr parameter specifies the address of the storage area for the parameter list.

COMPLETE specifies that the system is to check for required parameters and supply
defaults for optional parameters that were not specified. NOCHECK specifies that the
system does not check for required parameters and does not supply defaults for optional
parameters that were not specified.

Note: When using the NOCHECK option, make sure that it is preceded by an execute
or modify form invocation that specifies or defaults to the COMPLETE option.
Otherwise, the parameter list might not be completely initialized.

 EDTINFO — Obtain Eligible Device Table Information 431

 EDTINFO Macro

 EDTINFO—Modify Form
Use the modify form of the EDTINFO macro to change parameters in the control parameter
list that the system created through the list form of the macro.

 Syntax
The modify form of the EDTINFO macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede EDTINFO.

EDTINFO

␣ One or more blanks must follow EDTINFO.

 CHKGRPS Note: At least one of these functions is required: CHKGRPS,
 CHKUNIT, RTNUNIT, RTNUCBA, RTNGRID, RTNATTR,
 CHKUNIT RTNNAMD, RTNDEVN, MAXELIG, RTNUNAFF. If more than one

of
 these is specified, a comma must be coded between
 RTNUNIT each of the keywords.

 RTNUCBA Note: See the tables following this diagram for information on
 parameter usage with these functions.
 RTNGRID

 RTNATTR

 RTNNAMD

 RTNDEVN

 MAXELIG

 RTNUNAFF

 ,DEVCOUNT=devcount addr devcount addr: RS-type address or register (2) - (12).

 ,DEVLIST=devlist addr devlist addr: RS-type address or register (2) - (12).

 ,DEVSTAT=devstat addr devstat addr: RS-type address or register (2) - (12).

 ,UNITNAME=unitname addr unitname addr: RS-type address or register (2) - (12).
 ,DEVTYPE=devtype addr devtype addr: RS-type address or register (2) - (12).

 ,SUBPOOL=subpool addr subpool addr: RS-type address or register (2) - (12).

 ,UCBALIST=ucbalist addr ucbalist addr: RS-type address or register (2) - (12).

 ,UCBLIST=ucblist addr ucblist addr: RS-type address or register (2) - (12).

 ,GRIDLIST=gridlist addr gridlist addr: RS-type address or register (2) - (12).

 ,ATTRAREA=attrarea addr attrarea addr: RX-type address or register (2) - (12).

 ,DEVCLASS=devclass addr devclass addr: RS-type address or register (2) - (12).

 ,NAMELIST=namelist addr namelist addr: RS-type address or register (2) - (12).

 ,DYNAMIC=YES Default: DYNAMIC=NO
 ,DYNAMIC=NO

432 OS/390 V2R8.0 MVS Assembler Services Reference

 EDTINFO Macro

The following tables show how the parameters may be specified with the CHKGRPS,
CHKUNIT, RTNUNIT, RTNUCBA, RTNGRID, RTNATTR, RTNNAMD, RTNDEVN, MAXELIG,
and RTNUNAFF functions.

The IOCTOKEN, RETCODE, RSNCODE, and MF parameters are optional with any of the
functions.

 ,LOC=BELOW Default : LOC=BELOW
 ,LOC=ANY

 ,RANGE=ALL Default: RANGE=3DIGIT
 ,RANGE=3DIGIT

 ,DEVNLIST=devnlist addr devnlist addr: RS-type address or register (2) - (12).

 ,RECMODE=recmode addr recmode addr: RS-type address or register (2) - (12).

 ,DENSITY=density addr density addr: RS-type address or register (2) - (12).

 ,OUTUNIT=outunit addr outunit addr: RS-type address or register (2) - (12).
 ,OUTDEV=outdev addr outdev addr: RS-type address or register (2) - (12).

 ,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

 ,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

 ,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(M,list addr) list addr: RX-type address or register (2) - (12).
,MF=(M,list addr,COMPLETE) Default: COMPLETE
,MF=(M,list addr,NOCHECK)

 EDTINFO — Obtain Eligible Device Table Information 433

 EDTINFO Macro

Parameters CHKGRPS CHKUNIT RTNUNIT RTNUCBA RTNGRID

DEVCOUNT required required not valid not valid not valid

DEVLIST required required not valid not valid not valid

DEVSTAT optional optional not valid not valid not valid

UNITNAME not valid UNITNAME
or
DEVTYPE
required

not valid UNITNAME
or
DEVTYPE
required

not valid

DEVTYPE not valid DEVTYPE
or
UNITNAME
required

required DEVTYPE
or
UNITNAME
required

not valid

SUBPOOL not valid not valid not valid optional not valid

UCBALIST not valid not valid not valid required not valid

UCBLIST not valid not valid not valid not valid required

GRIDLIST not valid not valid not valid not valid required

ATTRAREA not valid not valid not valid not valid not valid

DEVCLASS not valid not valid not valid not valid not valid

NAMELIST not valid not valid not valid not valid not valid

DYNAMIC not valid not valid not valid not valid not valid

LOC not valid not valid not valid not valid not valid

RANGE not valid not valid not valid not valid not valid

DEVNLIST not valid not valid not valid not valid not valid

RECMODE not valid not valid not valid not valid not valid

DENSITY not valid not valid not valid not valid not valid

OUTUNIT not valid not valid required not valid not valid

OUTDEV not valid not valid not valid not valid not valid

434 OS/390 V2R8.0 MVS Assembler Services Reference

 EDTINFO Macro

Parameters RTNATTR RTNNAMD RTNDEVN MAXELIG RTNUNAFF

DEVCOUNT not valid not valid not valid not valid not valid

DEVLIST not valid not valid not valid not valid not valid

DEVSTAT not valid not valid not valid not valid not valid

UNITNAME UNITNAME
or
DEVTYPE
required

not valid UNITNAME
or
DEVTYPE
required

UNITNAME
or
DEVTYPE
required

not valid

DEVTYPE DEVTYPE
or
UNITNAME
required

not valid DEVTYPE
or
UNITNAME
required

DEVTYPE
or
UNITNAME
required

not valid

SUBPOOL not valid optional not valid not valid not valid

UCBALIST not valid not valid not valid not valid not valid

UCBLIST not valid not valid not valid not valid not valid

GRIDLIST not valid not valid not valid not valid not valid

ATTRAREA required not valid not valid not valid not valid

DEVCLASS not valid required not valid not valid not valid

NAMELIST not valid required not valid not valid not valid

DYNAMIC not valid not valid optional not valid not valid

LOC not valid not valid optional not valid not valid

RANGE not valid not valid optional not valid not valid

DEVNLIST not valid not valid required not valid not valid

RECMODE not valid not valid not valid required not valid

DENSITY not valid not valid not valid required not valid

OUTUNIT not valid not valid not valid OUTUNIT or
OUTDEV
required

OUTUNIT or
OUTDEV
required

OUTDEV not valid not valid not valid OUTDEV or
OUTUNIT
required

OUTDEV or
OUTUNIT
required

 Parameters
The parameters are explained under the standard form of the EDTINFO macro with the
following exceptions:

,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Specifies the modify form of the EDTINFO macro.

The list addr parameter specifies the address of the storage area for the parameter list.

COMPLETE specifies that the system is to check for required parameters and supply
defaults for optional parameters that were not specified. NOCHECK specifies that the
system does not check for required parameters and does not supply defaults for optional
parameters that were not specified.

Note: When using the NOCHECK option, make sure that it is preceded by an execute
or modify form invocation that specifies or defaults to the COMPLETE option.
Otherwise, the parameter list might not be completely initialized.

 EDTINFO — Obtain Eligible Device Table Information 435

 EDTINFO Macro

436 OS/390 V2R8.0 MVS Assembler Services Reference

 ENQ Macro

ENQ — Request Control of a Serially Reusable Resource

 Description
ENQ assigns control of one or more serially reusable resources to a task. If any of the
resources are not available, the task might be placed in a wait condition until all of the
requested resources are available. Once control of a resource has been assigned to a task,
it remains with that task until one of the programs running under that task issues a DEQ
macro to release the resource or the task terminates.

You can request either shared or exclusive use of a resource. ENQ identifies the resource
by a pair of names, the qname and the rname, and a scope value. The scope value
determines what other tasks, address spaces, or systems can use the resource. All
programs that share the resource must use the qname, rname, and scope value consistently.

Use ENQ with RET=TEST to determine the status of the resource. Return codes tell
whether the resource is immediately available or in use, and whether control has been
previously requested by the active task in another ENQ macro.

Global resource serialization counts and limits the number of concurrent resource requests
from an address space. If an unconditional ENQ (an ENQ that uses the RET=NONE option)
causes the count of concurrent resource requests to exceed the limit, the caller ends
abnormally with a system code of X'538'. For more information, see the section on limiting
concurrent requests for resources in OS/390 MVS Programming: Assembler Services Guide.

Unless you specify otherwise, when a global resource serialization complex is initialized,
global resource serialization searches the SYSTEM inclusion resource name list (RNL) and
the SYSTEMS exclusion RNL for every resource specified with a scope of SYSTEM or
SYSTEMS. A resource whose name appears on one of these RNLs might have its scope
changed from the scope that appears on the macro. To prevent RNL processing, use the
RNL=NO parameter. See OS/390 MVS Planning: Global Resource Serialization for
additional information about RNL processing.

 Environment
The requirements for callers of ENQ are:

Minimum authorization : Problem state with any PSW key.
Dispatchable unit mode : Task
Cross memory mode : PASN = HASN = SASN
AMODE: 24- or 31-bit
ASC mode : Primary
Interrupt status : Enabled for I/O and external interrupts
Locks : No locks held
Control parameters : Control parameters must be in the primary address space. Except

for the TCB, all parameters can reside above 16 megabytes.

 Programming Requirements
None.

 Restrictions
Issuing two ENQ macros for the same resource without an intervening DEQ macro causes
the task to end abnormally, unless the second ENQ designates RET=TEST, USE, CHNG, or
HAVE. If the task ends, either normally or abnormally, while the task still has control of any
serially reusable resources, all requests made by this task automatically have DEQ
processing performed for them. If resource input addresses are incorrect, the task
abnormally ends.

 Copyright IBM Corp. 1988, 1999 437

 ENQ Macro

The caller cannot have an EUT FRR established.

There are some considerations to be aware of when using enclaves for tasks that serialize
resources using the ENQ macro. For details, see “Using ENQ/DEQ or Latch Manager
Services With Enclaves” in OS/390 MVS Programming: Workload Management Services.

Input Register Information
Before issuing the ENQ macro, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter, or using it as a base
register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 One of the following:

� If you specify RET=TEST, RET=USE, RET=CHNG, or RET=HAVE: If all
return codes for the resources named in the ENQ macro are 0, register 15
contains 0. If any of the return codes are not 0, register 15 contains the
address of a storage area containing the return codes.

� Otherwise: Used as a work register by the system.

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The standard form of the ENQ macro is described as follows.

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede ENQ.

ENQ

␣ One or more blanks must follow ENQ.

(

qname addr qname addr: A-type address or register (2) - (12).

,
,rname addr rname addr: A-type address or register (2) - (12).

438 OS/390 V2R8.0 MVS Assembler Services Reference

 ENQ Macro

, Default: E
,E
,S

, rname length: symbol, decimal digit, or register (2) - (12).

Default: assembled length of rname
,rname length

Note: Code rname length if rname addr is a register.

, Default: STEP
,STEP
,SYSTEM
,SYSTEMS

)

 ,RET=CHNG Default: RET=NONE
 ,RET=HAVE
 ,RET=TEST
 ,RET=USE
 ,RET=NONE

 ,RNL=YES Default: RNL=YES
 ,RNL=NO

 ,RELATED=value value: any valid macro keyword specification.

 Parameters
The parameters are explained as follows:

(
Specifies the beginning of the resource description.

qname addr
Specifies the address of an 8-character name. The name can contain any valid
hexadecimal character. Every program issuing a request for a serially reusable
resource must use the same qname, rname, and scope to represent the resource.
Some names, such as those beginning with certain letter combinations (SYSZ for
example), are used to protect system resources by requiring that the issuing program be
in supervisor state, or system key, or APF-authorized.

,
,rname addr

Specifies the address of the name used together with qname to represent a single
resource. The name must be from 1 to 255 bytes long, can be qualified, and can
contain any valid hexadecimal character.

,
,E
,S

Specifies whether the request is for exclusive (E) or shared (S) control of the resource.
If the resource is modified while under control of the task, the request must be for
exclusive control; if the resource is not modified, the request should be for shared
control.

,
,rname length

Specifies the length of the rname. If this parameter is omitted, the system uses the
assembled length of the rname. To override the assembled length, specify this
parameter; the value you can code depends on whether or not you also specify MASID
and MTCB:

� If you specify MASID and MTCB, you can code a value between 1 and 128.

 ENQ — Request Control of a Serially Reusable Resource 439

 ENQ Macro

� If you do not specify MASID and MTCB, you can code a value between 1 and 255.

In either case, you can specify 0, which means that the length of the rname must be
contained in the first byte at the rname addr.

,
,STEP
,SYSTEM
,SYSTEMS

Specifies the scope of the resource.

STEP specifies that the resource can be used only within an address space. If STEP is
specified, a request for the same qname and rname from a program in another address
space denotes a different resource.

SYSTEM specifies that the resource can be used by programs in more than one
address space.

SYSTEMS specifies that the resource can be shared between systems.

STEP, SYSTEM, and SYSTEMS are mutually exclusive and do not refer to the same
resource. If two macros specify the same qname and rname, but one specifies STEP
and the other specifies SYSTEM or SYSTEMS, they are treated as requests for different
resources.

)
Specifies the end of the resource description.

Notes on specifying multiple resources on one ENQ request :

� Within a single set of parentheses, you can repeat the qname addr, rname addr, type of
control, rname length, and the scope until there is a maximum of 255 characters,
including the parentheses.

� The following parameters apply to all the resources you specify on the request: RET
and RNL.

,RET=CHNG
,RET=HAVE
,RET=TEST
,RET=USE
,RET=NONE

Specifies the type of request for the resources named on the ENQ request.

CHNG The status of the resource specified is changed from shared to exclusive
control. When RET=CHNG is specified, the exclusive|shared (E|S) parameter
is overidden. This parameter ensures that the request will be exclusive
regardless of the other parameter.

HAVE Control of the resources is requested conditionally; that is, control is
requested only if a request has not been made previously for the same task.

TEST The availability of the resources is to be tested, but control of the resources is
not requested.

USE control of the resources is to be assigned to the active task only if the
resources are immediately available. If any of the resources are not available,
the active task is not placed in a wait condition.

NONE Control of all the resources is unconditionally requested.

See “Return and Reason Codes” on page 441 for an explanation of the return codes for
these requests.

,RNL=YES
,RNL=NO

Controls global resource serialization RNL processing, which can cause the scope value
of a resource to change. IBM recommends that you use the default, RNL=YES, to allow
global resource serialization to perform RNL processing. Use RNL=NO when you are

440 OS/390 V2R8.0 MVS Assembler Services Reference

 ENQ Macro

sure that you want the request to be processed only by global resource serialization
using only the specified scope. When RNL=NO is specified the ENQ request will be
ignored by alternative serialization products. Refer to OS/390 MVS Planning: Global
Resource Serialization, RNL Processing, for more information about the use of
RNL=NO.

,RELATED=value
Specifies information used to self-document macros by ‘relating’ functions or services to
corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

 ABEND Codes
For only unconditional requests, the caller might encounter abend code X'138' or X'538'.
For unconditional or conditional requests, the caller might encounter one of the following
abend codes:

 � X'238'
 � X'338'
 � X'438'
 � X'738'
 � X'838'
 � X'938'

See OS/390 MVS System Codes for explanations and responses for these codes.

Return and Reason Codes
The system provides a return code only if you specify RET=TEST, RET=USE, RET=CHNG,
or RET=HAVE; otherwise, return of the task to the active condition indicates that control of
the resource has been assigned or was previously assigned to the task. If all return codes
for the resources named in the ENQ macro are 0, register 15 contains 0. For nonzero return
codes, register 15 contains the address of a storage area containing the return codes, as
shown in Figure 21.

 ENQ — Request Control of a Serially Reusable Resource 441

 ENQ Macro

Address
Returned in
Register 15

Return
Codes

1
0

2 3 4

12

12

24

36

Return codes are
12 bytes apart,
starting 3 bytes
from the address
in register 15.

RC1

RC2

RC3

RCN

Figure 21. Return Code Area Used by ENQ

The return codes are placed in the parameter list resulting from the macro expansion in the
same sequence as the resource names in the ENQ macro.

The return codes for the ENQ macro with the RET=TEST parameter are described in
Figure 22.

The return codes for the ENQ macro with the RET=USE parameter are described in
Figure 23.

Figure 22. Return Codes for the ENQ Macro with the RET=TEST Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning : The resource is immediately available.

Action : None required. However, you might take some action based on your application.

4 Meaning : The resource is not immediately available.

Action : None required. However, you might take some action based on your application.

8 Meaning : A previous request for control of the same resource has been made for the same
task. The task has control of the resource.

Action : None required. However, you might take some action based on your application.

To determine whether the task has exclusive control or shared control of the resource,
check bit 3 of flag byte 1 in the parameter list that identifies the owned resource. If bit 3 is
off, the task has exclusive control; If bit 3 is on, the task has shared control.

14 Meaning : A previous request for control of the same resource has been made for the same
task. The task does not have control of the resource.

Action : None required. However, you might take some action based on your application.

442 OS/390 V2R8.0 MVS Assembler Services Reference

 ENQ Macro

The return codes for the ENQ macro with the RET=CHNG parameter are described in
Figure 24.

The return codes for the ENQ macro with the RET=HAVE parameter are described in
Figure 25.

Figure 23. Return Codes for the ENQ Macro with the RET=USE Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning : The active task now has control of the resource.

Action : None.

4 Meaning : The resource is not immediately available.

Action : None required. However, you might take some action based on your application.

8 Meaning : A previous request for control of the same resource has been made for the same
task. The task has control of the resource.

Action : None required. However, you might take some action based on your application.

To determine whether the task has exclusive control or shared control of the resource,
check bit 3 of flag byte 1 in the parameter list that identifies the owned resource. If bit 3 is
off, the task has exclusive control; If bit 3 is on, the task has shared control.

14 Meaning : A previous request for control of the same resource has been made for the same
task. The task does not have control of the resource.

Action : None required. However, you might take some action based on your application.

18 Meaning : Environmental error. The limit for the number of concurrent resource requests
has been reached. The task does not have control of the resource unless some previous
ENQ or RESERVE request caused the task to obtain control of the resource.

Action : Retry the request one or more times. If the problem persists, consult your system
programmer, who might be able to tune the system so that the limit is no longer exceeded.

Figure 24. Return Codes for the ENQ Macro with the RET=CHNG Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning : The status of the resource has been changed to exclusive.

Action : None.

4 Meaning : The status of the resource cannot be changed to exclusive. Other tasks share
the resource.

Action : None required. However, you might take some action based on your application.

8 Meaning : The status of the resource cannot be changed to exclusive. No tasks have
issued an ENQ request for the resource.

Action : None required. However, you might take some action based on your application.

14 Meaning : The status of the resource cannot be changed to exclusive. A previous request
for control of the same resource has been made for the same task. The task does not have
control of the resource.

Action : None required. However, you might take some action based on your application.

Figure 25 (Page 1 of 2). Return Codes for the ENQ Macro with the RET=HAVE Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning : The active task now has control of the resource.

Action : None.

8 Meaning : A previous request for control of the same resource has been made for the same
task. The task has control of the resource.

Action : None required. However, you might take some action based on your application.

To determine whether the task has exclusive control or shared control of the resource,
check bit 3 of flag byte 1 in the parameter list that identifies the owned resource. If bit 3 is
off, the task has exclusive control; If bit 3 is on, the task has shared control.

14 Meaning : A previous request for control of the same resource has been made for the same
task. The task does not have control of the resource.

Action : None required. However, you might take some action based on your application.

 ENQ — Request Control of a Serially Reusable Resource 443

 ENQ Macro

Figure 25 (Page 2 of 2). Return Codes for the ENQ Macro with the RET=HAVE Parameter

Hexadecimal
Return Code

Meaning and Action

18 Meaning : Environmental error. The limit for the number of concurrent resource requests
has been reached. The task does not have control of the resource unless some previous
ENQ or RESERVE request caused the task to obtain control of the resource.

Action : Retry the request one or more times. If the problem persists, consult your system
programmer, who might be able to tune the system so that the limit is no longer exceeded.

 Example 1
Unconditionally request exclusive control of one resource and shared control of another.
The system will return control to the requesting program only when both resources are
available.

ENQ (MAJOR3,MINOR3,E,8,SYSTEM,MAJOR4,MINOR4,S,6,SYSTEM)

 Example 2
Conditionally request shared control of a serially reusable resource that is known only within
the address space (STEP). The resource is only to be obtained if immediately available.
The resource will be used for read-only purposes. The length of rname is allowed to default.

ENQ (MAJOR1,MINOR1,S,,STEP),RET=USE

 Example 3
Unconditionally request exclusive control of three resources. The scope of each resource
differs (STEP, SYSTEM, and SYSTEMS, respectively). The rname length of the first
resource is 3 characters and the rname length of the third resource is 8 characters. Allow
the rname length of the second resource to default to its assembled length.

ENQ (MAJOR4,MINOR4,E,3,,MAJOR2,MINOR2,,,SYSTEM, X
 MAJOR3,MINOR3,E,8,SYSTEMS)

444 OS/390 V2R8.0 MVS Assembler Services Reference

 ENQ Macro

 ENQ—List Form
Use the list form of ENQ to construct a control program parameter list. You can specify any
number of resources on ENQ, therefore, the number of qname, rname, and scope
combinations in the list form of the ENQ macro must be equal to the maximum number of
qname, rname, and scope combinations in any execute form of the macro that refers to that
list form.

The list form of the ENQ macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede ENQ.

ENQ

␣ One or more blanks must follow ENQ.

(

 qname addr qname addr: A-type address or register (2) - (12).

 ,
 ,rname addr rname addr: A-type address or register (2) - (12).

 , Default: E
 ,E
 ,S
 ,
 ,rname length rname length: symbol or decimal digit.

Default: assembled length of rname

 , Default: STEP
 ,STEP
 ,SYSTEM
 ,SYSTEMS

)

 ,RET=CHNG Default: RET=NONE
 ,RET=HAVE
 ,RET=TEST
 ,RET=USE
 ,RET=NONE

 ,RNL=YES Default: RNL=YES
 ,RNL=NO

 ,RELATED=value value: any valid macro keyword specification.

,MF=L

 Parameters
The parameters are explained under the standard form of the ENQ macro, with the following
exception:

,MF=L
Specifies the list form of the ENQ macro.

 ENQ — Request Control of a Serially Reusable Resource 445

 ENQ Macro

 ENQ—Execute Form
A remote control program parameter list is used in and can be modified by the execute form
of the ENQ macro. The parameter list must be generated by the list form of ENQ.

The execute form of the ENQ macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede ENQ.

ENQ

␣ One or more blanks must follow ENQ.

 (Note: (and) are the beginning and end of a parameter list. The

entire list is optional. If nothing in the list is desired then (,), and all
parameters between (and) should not be specified. If something
in the list is desired, the (,), and all parameters in the list should
be specified as indicated at the left.

 qname addr qname addr: RX-type address or register (2) - (12).

 ,
 ,rname addr rname addr: RX-type address or register (2) - (12).
 ,
 ,E
 ,S
 ,
 ,rname length rname length: symbol, decimal digit, or register (2) - (12).
 ,
 ,STEP
 ,SYSTEM
 ,SYSTEMS

) Note: See note opposite (above.

 ,RET=CHNG
 ,RET=HAVE
 ,RET=TEST
 ,RET=USE
 ,RET=NONE

 ,RNL=YES
 ,RNL=NO

 ,RELATED=value value: any valid macro keyword specification.

,MF=(E,list addr) list addr: RX-type address or register (1) - (12).

 Parameters
The parameters are explained under the standard form of the ENQ macro, with the following
exceptions:

,MF=(E,list addr)
Specifies the execute form of the ENQ macro.

list addr specifies the area that the system uses to contain the parameters.

446 OS/390 V2R8.0 MVS Assembler Services Reference

 ESPIE Macro

ESPIE — Extended SPIE

 Description
The ESPIE macro extends the function of the SPIE (specify program interruption exits)
macro to callers in 31-bit addressing mode. For additional information concerning the
relationship between the SPIE and the ESPIE macros, see the section on program
interruptions in OS/390 MVS Programming: Assembler Services Guide.

The ESPIE macro performs the following functions using the options specified:

� Establishes an ESPIE environment (that is, identifies the interruption types that are to
cause entry to the ESPIE exit routine) by executing the SET option of the ESPIE macro

� Deletes an ESPIE environment (that is, cancels the current SPIE/ESPIE environment)
by executing the RESET option of the ESPIE macro

� Determines the current SPIE/ESPIE environment by executing the TEST option of the
ESPIE macro.

The information documented under the following headings applies to all three options of the
ESPIE macro (SET, RESET, and TEST):

 � “Environment”
 � “Programming Requirements”
 � “Restrictions”
 � “Performance Implications”
 � “ABEND Codes”

 Environment
The requirements for the caller are:

Minimum authorization: To issue ESPIE without encountering an abnormal end, callers
must be in problem state, with a PSW key value that is equal to
the TCB assigned key.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Programming Requirements
None.

 Restrictions
None.

 Performance Implications
Programs that need to intercept only specific hardware program check interruptions (such as
arithmetic exceptions or data conversion exceptions) will find ESPIE to be more efficient than
establishing an ESTAE environment to screen all abends for specific OCx abends. This is
because the operating system must do significantly more processing to enter and retry from
an ESTAE routine as compared to an ESPIE routine.

 Copyright IBM Corp. 1988, 1999 447

 ESPIE Macro

 ABEND Codes
ESPIE might return abend code X'46D'. See OS/390 MVS System Codes for an
explanation and programmer responses.

The information documented under the following headings is provided separately for each of
the three options (SET, RESET, and TEST):

� “Input Register Information”
� “Output Register Information”

 � “Syntax”
 � “Parameters”
� “Return and Reason Codes”

 � “Examples”

 SET Option

Input Register Information
Before issuing the SET option of the ESPIE macro, the caller does not have to place any
information into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain the
following information:

Register Contents
0 Used as a work register by the system
1 Token representing the previously active SPIE/ESPIE environment
2-13 Unchanged
14 Used as a work register by the system
15 Return code of 0

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Syntax
The standard form of the ESPIE macro with the SET option is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede ESPIE.

ESPIE

␣ One or more blanks must follow ESPIE.

SET

448 OS/390 V2R8.0 MVS Assembler Services Reference

 ESPIE Macro

,exit addr exit addr: A-type address, or register (2) - (12).

,(interruptions) interruptions: Decimal digits 1-15 and expressed as:

single values: (2, 3, 4, 7, 8, 9, 10)
ranges of values: ((2, 4), (7, 10))
combinations: (2, 3, 4, (7, 10))

 ,PARAM=list addr list addr: A-type address or register (2) - (12).

 Parameters
The parameters are explained as follows:

SET
Indicates that an ESPIE environment is to be established.

,exit addr
Specifies the address of the exit routine to be given control when program interruptions
of the type specified by interruptions occur. The exit routine will receive control in the
same addressing mode as the issuer of the ESPIE macro.

,(interruptions)
Indicates the interruption types that are being trapped. The interruption types are:

Number Interruption Type
1 Operation
2 Privileged operation
3 Execute
4 Protection
5 Addressing
6 Specification
7 Data
8 Fixed-point overflow (maskable)
9 Fixed-point divide
10 Decimal overflow (maskable)
11 Decimal divide
12 Exponent overflow
13 Exponent underflow (maskable)
14 Significance (maskable)
15 Floating-point divide

These interruption types can be designated as one or more single numbers, as one or
more pairs of numbers (designating ranges of values), or as any combination of the two
forms. For example, (4,8) indicates interruption types 4 and 8; ((4,8)) indicates
interruption types 4 through 8.

If a program interruption type is maskable, the corresponding program mask bit in the
PSW is set to 1. If a maskable interruption is not specified, the corresponding bit in the
PSW is set to 0. Interruption types not specified above are handled by the system. The
system forces an abnormal end with the program check as the completion code. If an
ESTAE-type recovery routine is also active, the SDWA indicates a system-forced
abnormal end. The registers at the time of the error are those of the system.

Note: For both ESPIE and SPIE – If you are using vector instructions and an exception
of 8, 12, 13, 14, or 15 occurs, your recovery routine can check the exception extension
code (the first byte of the two-byte interruption code in the EPIE or PIE) to determine
whether the exception was a vector or scalar type of exception.

,PARAM= list addr
Specifies the fullword address of a parameter list that is to be passed by the caller to
the exit routine.

 ESPIE — Extended SPIE 449

 ESPIE Macro

Return and Reason Codes
None.

 Example
Give control to an exit routine for interruption types 1 and 4. EXIT is the location of the exit
routine to be given control and PARMLIST is the location of the user parameter list to be
used by the exit routine.

ESPIE SET,EXIT,(1,4),PARAM=PARMLIST

450 OS/390 V2R8.0 MVS Assembler Services Reference

 ESPIE Macro

 ESPIE—List Form
Use the list form of the ESPIE macro together with the execute form of the macro for
applications that require reentrant code. The list form of the macro defines an area of
storage, which the execute form of the macro uses to store the parameters. The list form of
ESPIE is valid only for ESPIE SET.

 Syntax
The list form of the ESPIE macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede ESPIE.

ESPIE

␣ One or more blanks must follow ESPIE.

SET

 ,exit addr exit addr: A-type address.

Note: This parameter must be specified on either the list or the
execute form of the macro.

 ,(interruptions) interruptions: Decimal digit 1-15 and expressed as:

single values: (2, 3, 4, 7, 8, 9, 10)
range of values: ((2, 4), (7, 10))
combinations: (2, 3, 4, (7, 10))

 ,PARAM=list addr list addr: A-type address.

,MF=L

 Parameters
The parameters are explained under the standard form of ESPIE SET with the following
exception:

,MF=L
Specifies the list form of the ESPIE macro.

 Example
Build a nonexecutable problem program parameter list that will transfer control to the exit
routine, EXIT, for the interruption types specified in the execute form of the macro. Provide
the address of the user parameter list, PARMLIST.

LIST1 ESPIE SET,EXIT,,PARAM=PARMLIST,MF=L

 ESPIE — Extended SPIE 451

 ESPIE Macro

 ESPIE—Execute Form
Use the execute form of the ESPIE macro together with the list form of the macro for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form. The execute form of ESPIE is
valid only for ESPIE SET.

 Syntax
The execute form of the ESPIE macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede ESPIE.

ESPIE

␣ One or more blanks must follow ESPIE.

SET

 ,exit addr exit addr: RX-type address or register (2) - (12).

Note: This parameter must be specified on either the list or the
execute form of the macro.

 ,(interruptions) interruptions: Decimal digit 1-15 and expressed as:

single values: (2, 3, 4, 7, 8, 9, 10)
range of values: ((2, 4), (7, 10))
combinations: (2, 3, 4, (7, 10))

 ,PARAM=list addr list addr: RX-type address or register (2) - (12).

,MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1), (2) - (12).

 Parameters
The parameters are explained under the standard form of the ESPIE macro with the
following exception:

,MF=(E,ctrl addr)
Specifies the execute form of the ESPIE macro.

 Example
Give control to an installation exit routine for interruption types 1, 4, 6, 7, and 8. The exit
routine address and the address of a user parameter list for the exit routine are provided in a
remote control program parameter list at LIST1.

ESPIE SET,,(1,4,(6,8)),MF=(E,LIST1)

452 OS/390 V2R8.0 MVS Assembler Services Reference

 ESPIE Macro

 RESET Option
The RESET option of the ESPIE macro cancels the current SPIE/ESPIE environment and
re-establishes the previously active SPIE/ESPIE environment identified by the token
specified.

Input Register Information
Before issuing the RESET option of the ESPIE macro, the caller does not have to place any
information into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Used as a work register by the system
1 Token identifying the new active SPIE/ESPIE environment
2-13 Unchanged
14 Used as a work register by the system
15 Return code of 0

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Syntax
The RESET option of the ESPIE macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede ESPIE.

ESPIE

␣ One or more blanks must follow ESPIE.

RESET

,token token: RX-type address, or register (1), (2) - (12).

 Parameters
The parameters are explained as follows:

RESET
Indicates that the current ESPIE environment is to be deleted and the previously active
SPIE/ESPIE environment specified by token is to be reestablished.

 ESPIE — Extended SPIE 453

 ESPIE Macro

,token
Specifies a fullword that contains a token representing the previously active SPIE/ESPIE
environment. This is the same token that ESPIE processing returned to the caller when
the ESPIE environment was established using the SET option of the ESPIE macro.

If the token is zero, all SPIEs and ESPIEs are deleted.

Return and Reason Codes
None.

 Example
Cancel the current SPIE/ESPIE environment and restore the SPIE/ESPIE environment
represented by the contents of TOKEN.

ESPIE RESET,TOKEN

 TEST Option
The TEST option of the ESPIE macro determines the active SPIE/ESPIE environment and
returns the information in a 4-word parameter list.

Input Register Information
Before issuing the TEST option of the ESPIE macro, the caller does not have to place any
information into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Used as a work register by the system
1-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Syntax
The TEST option of the ESPIE macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede ESPIE.

ESPIE

␣ One or more blanks must follow ESPIE.

454 OS/390 V2R8.0 MVS Assembler Services Reference

 ESPIE Macro

TEST

,parm addr parm addr: RX-type address, or register (1), (2) - (12).

 Parameters
The parameters are explained as follows:

TEST
Indicates a request for information concerning the active or current SPIE/ESPIE
environment. ESPIE processing returns this information to the caller in a 4-word
parameter list located at parm addr.

,parm addr
Specifies the address of a 4-word parameter list aligned on a fullword boundary. The
parameter list has the following form:

Word Content
0 Address of the exit routine (31-bit address with the high-order bit set to 0 for

24-bit routines or 1 for 31-bit routines)
1 Address of the user-defined parameter list
2 Mask of program interruption types
3 Zero

Return and Reason Codes
ESPIE TEST returns status information about the current ESPIE environment in GPR 15.
When control returns from ESPIE TEST, GPR 15 contains one of the following hexadecimal
return codes.

Note: These return codes are informational; no actions are required.

Hexadecimal
Return Code

Meaning

0 Meaning : An ESPIE exit is active and the 4-word parameter list contains the
information specified in the description of the parm addr parameter.

4 Meaning : A SPIE exit is active. Word 1 of the parameter list described under
parm addr contains the address of the current PICA. Words 0, 2, and 3 of the
parameter list contain no relevant information.

8 Meaning : No SPIE or ESPIE is active. The contents of the 4-word parameter
list contain no relevant information.

 Example
Identify the active SPIE/ESPIE environment. Return the information about the exit routine in
the 4-word parameter list, PARMLIST. Also return, in register 15, an indicator of whether a
SPIE, ESPIE, or neither is active.

ESPIE TEST,PARMLIST

 ESPIE — Extended SPIE 455

 ESPIE Macro

456 OS/390 V2R8.0 MVS Assembler Services Reference

 ESTAE and ESTAEX Macros

ESTAE and ESTAEX — Extended Specify Task Abnormal Exit

 Description
The ESTAE macro provides recovery capability facilities. Issuing the ESTAE macro allows
the caller to intercept errors. Control is given to a caller-specified exit routine (called a
recovery routine) in which the caller can perform various tasks, including diagnosing the
cause of the error and specifying a retry address to avoid abnormally ending.

If your program is to execute in 31-bit addressing mode, you must use the SP Version 2 of
the ESTAE macro or a later version. For information about how to select a macro for an
MVS/SP version other than the current version, see “Selecting the Macro Level” on page 7.

For recovery routines defined through the ESTAE macro, at the time of entry to the recovery
routine, the AMODE will be the same as at the time of invocation of the macro. For recovery
routines defined through the ESTAEX macro, the AMODE will always be 31-bit. The
AMODE at the retry point will be the same as the AMODE on entry to the recovery routine.

Callers that are in primary address space control (ASC) mode and not in cross memory
mode (the primary, secondary, and home address spaces are the same) can issue either
ESTAE or ESTAEX. Callers that are in access register (AR) mode or in cross memory
mode (the primary, secondary, and home address spaces are different) must use ESTAEX.
IBM recommends that all callers use the ESTAEX macro, unless your program and your
recovery routine are in 24-bit addressing mode, in which case you should use ESTAE.

Depending on whether you code ESTAE or ESTAEX, the system passes the address of the
user-specified parameter list differently. The SDWAPARM field in the SDWA contains either
the address of the parameter list (ESTAE), or the address of a doubleword that contains the
address and ALET of the parameter list (ESTAEX).

See the section on providing recovery in OS/390 MVS Programming: Assembler Services
Guide for information about writing recovery routines.

The descriptions of ESTAE and ESTAEX in this book are:

� The standard form of the ESTAE macro, which includes general information about the
ESTAE and ESTAEX macros, with some specific information about the ESTAE macro.
The syntax of the ESTAE macro is presented, and all ESTAE parameters are explained.

� The standard form of the ESTAEX macro, which includes information specific to the
ESTAEX macro. The syntax of the ESTAEX macro is presented.

� The list form of the ESTAE and ESTAEX macros.

� The execute form of the ESTAE and ESTAEX macros.

 Note

The ESTAE and ESTAEX macros have the same environment specifications, register
information, programming requirements, restrictions and performance implications
described below, except where noted in the explanation for ESTAEX.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary

 Copyright IBM Corp. 1988, 1999 457

 ESTAE and ESTAEX Macros

Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Programming Requirements
If the program is in AR mode, you must use ESTAEX rather than ESTAE; issue the
SYSSTATE macro with the ASCENV=AR parameter before you issue ESTAEX. SYSSTATE
ASCENV=AR tells the system to generate code appropriate for AR mode.

 Restrictions
� For SVC-entry, you must have no EUT FRRs.
� For branch entry, IBM recommends that you have no EUT FRRs.

Input Register Information
Before issuing the ESTAE macro, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter, or using it as a base
register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Reason code if GPR 15 contains X'4'; otherwise, used as a work register by

the system
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The standard form of the ESTAE macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede ESTAE.

ESTAE

␣ One or more blanks must follow ESTAE.

458 OS/390 V2R8.0 MVS Assembler Services Reference

 ESTAE and ESTAEX Macros

exit addr exit addr: A-type address, or register (2) - (12).
0

 ,CT Default: CT
 ,OV

 ,PARAM=list addr list addr: A-type address, or register (2) - (12).

 ,XCTL=NO Default: XCTL=NO
 ,XCTL=YES

 ,PURGE=NONE Default: PURGE=NONE
 ,PURGE=QUIESCE
 ,PURGE=HALT

 ,ASYNCH=YES Default: ASYNCH=YES
 ,ASYNCH=NO

 ,TERM=NO Default: TERM=NO
 ,TERM=YES

 ,RELATED=value value: Any valid macro keyword specification.

 Parameters
The parameters are explained as follows:

exit addr
0 Specifies the 31-bit address of an ESTAE recovery routine to be entered if the task

issuing this macro ends abnormally. If 0 is specified, the most recent ESTAE recovery
routine is deactivated and no longer defined.

The ESTAEX exit always gets control in 31-bit mode, regardless of the mode in which
the macro was invoked.

,CT
,OV

Specifies that a new ESTAE recovery routine is to be defined and activated (CT); or
indicates that parameters passed in this ESTAE macro are to overlay the data contained
in the previous ESTAE recovery routine (OV).

,PARAM= list addr
Specifies the address of a user-defined parameter list containing data to be used by the
ESTAE recovery routine when it is scheduled for execution.

,XCTL=NO
,XCTL=YES

Specifies that the ESTAE recovery routine will be deactivated and no longer defined
(NO) or will remain activated and defined (YES) if an XCTL macro is issued by this
program.

,PURGE=NONE
,PURGE=QUIESCE
,PURGE=HALT

Specifies that all outstanding requests for I/O operations will not be saved when the
ESTAE recovery routine receives control (HALT), that I/O processing will be allowed to
continue normally when the ESTAE recovery routine receives control (NONE), or that all
outstanding requests for I/O operations will be saved when the ESTAE recovery routine
receives control (QUIESCE). If QUIESCE is specified, the user's retry routine can
restore the outstanding I/O requests.

For PURGE=QUIESCE and PURGE=HALT, RTM requests that all I/O be purged at the
task level for the current task. Be aware that the purge request involves all I/O started
by the task, not just the I/O started by the program that created this recovery routine.

 ESTAE and ESTAEX — Extended Specify Task Abnormal Exit 459

 ESTAE and ESTAEX Macros

PURGE=QUIESCE must thus be used carefully, as it may wait for I/O that was not
started by the program that created this recovery routine. Likewise, PURGE=HALT
must be used carefully as it may terminate I/O that was not started by the program that
created this recovery routine.

If PURGE=NONE is specified, all data areas affected by input/output processing may
continue to change during ESTAE recovery routine processing.

If PURGE=NONE is specified and the error was an error in input/output processing,
recursion will develop when an input/output interruption occurs, even if the recovery
routine is in progress. Thus, it will appear that the recovery routine failed when, in
reality, input/output processing was the cause of the failure.

Do not use PURGE=HALT to stop processing a data set if you expect to continue
reading the data set at a different point.

Notes:

1. You should understand PURGE processing before using this parameter. For information
on PURGE processing, see DFSMS/MVS DFSMSdfp Storage Administration Reference

2. When using PURGE, you should consider any access-method ramifications. See the
appropriate DFP manual for the particular access method you are using to determine
these ramifications.

3. The system performs the requested I/O processing only for the first ESTAE-type
recovery routine that gets control. Subsequent routines that get control receive an
indication of the I/O processing previously done, but no additional processing is
performed.

,ASYNCH=YES
,ASYNCH=NO

Specifies that asynchronous exit processing will be allowed (YES) or prohibited (NO)
while the user's ESTAE recovery routine is running.

ASYNCH=YES must be coded if:

� Any supervisor services that require asynchronous interruptions to complete their
normal processing are going to be requested by the ESTAE recovery routine.

� PURGE=QUIESCE is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

� PURGE=NONE is specified and the CHECK macro is issued in the ESTAE
recovery routine for any access method that requires asynchronous interruptions to
complete normal input/output processing.

Note: If ASYNCH=YES is specified and the error was an error in asynchronous exit
handling, recursion will develop when an asynchronous exit handling was the cause of
the failure.

,TERM=NO
,TERM=YES

Specifies that the recovery routine associated with the ESTAE request will be scheduled
(YES) or will not be scheduled (NO), in addition to normal ESTAE processing, in the
following situations:

 � System-initiated logoff

� Job step timer expiration

� Wait time limit for job step exceeded

� DETACH macro without the STAE=YES parameter issued from a higher-level task
(possibly by the system if the higher-level task encountered an error)

 � Operator cancel

� Error on a higher level task

460 OS/390 V2R8.0 MVS Assembler Services Reference

 ESTAE and ESTAEX Macros

� Error in the job step task when a non-job step task issued the ABEND macro with
the STEP parameter.

� OpenMVS is canceled and the user's task is in a wait in the OpenMVS kernel.

When the recovery routine is entered because of one of the preceding reasons, retry will
not be permitted. If a dump is requested at the time the ABEND macro is issued, it is
taken prior to entry into the recovery routines.

Note: If DETACH was issued with the STAE parameter, the following will occur for the
task to be detached:

� All ESTAE recovery routines will be entered.

� The most recently activated STAE recovery routine will be entered.

� All STAI/ESTAI recovery routines will be entered unless return code 16 is returned
from one of the STAI recovery routines.

In these cases, entry to the recovery routine is prior to dumping and retry will not be
permitted.

,RELATED=value
Specifies information used to self-document macros by ‘relating’ functions or services to
corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

 ABEND Codes
None.

Return and Reason Codes
When control is returned to the instruction following the ESTAE macro, GPR 15 contains one
of the following return codes and GPR 0 contains one of the following reason codes.

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 none Meaning: Successful completion of the ESTAE request.

Action: None.

04 00 Meaning : Program error. ESTAE OV was specified but ESTAE CT
was performed. No valid ESTAE recovery routine existed.

Action : Correct the environment and either reissue the ESTAE macro
or rerun your program, as appropriate.

04 04 Meaning : Program error. ESTAE OV was specified but ESTAE CT
was performed. The last ESTAE recovery routine was not owned by
the user's RB.

Action : Correct the environment and either reissue the ESTAE macro
or rerun your program, as appropriate.

04 08 Meaning : Program error. ESTAE OV was specified but ESTAE CT
was performed. The last ESTAE recovery routine was not created at
the current linkage stack level.

Action : Correct the environment and either reissue the ESTAE macro
or rerun your program, as appropriate.

04 0C Meaning : Program error. ESTAE OV was specified but ESTAE CT
was performed. The last recovery routine was not an ESTAE recovery
routine.

Action : Correct the environment and either reissue the ESTAE macro
or rerun your program, as appropriate.

0C none Meaning : Program error. A recovery routine address equal to zero
was specified and either there are no recovery routines for this task,
the most recent recovery routine is not owned by the caller, or the
most recent recovery routine is not an ESTAE recovery routine.

Action : Correct the environment and either reissue the ESTAE macro
or rerun your program, as appropriate.

 ESTAE and ESTAEX — Extended Specify Task Abnormal Exit 461

 ESTAE and ESTAEX Macros

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

10 none Meaning : System error. An unexpected error was encountered while
this request was being processed.

Action : Rerun your program one or more times. If the problem
persists, record the return and reason code and supply it to the
appropriate IBM support personnel.

14 none Meaning : System error. ESTAE was unable to obtain storage for a
system data area.

Action : Rerun your program one or more times. If the problem
persists, check with the operator to see if the installation is
experiencing a storage constraint problem.

18 none Meaning : Program error. ESTAE OV was specified without the
TOKEN parameter, but the ESTAE recovery routine was created with
the TOKEN parameter. (The TOKEN parameter is available only to
programs in supervisor state with PSW key 0-7 or programs that are
APF-authorized.)

Action : Correct the environment and either reissue the ESTAE macro
or rerun your program, as appropriate.

1C none Meaning : Program error. ESTAE was unable to access the input
parameter list.

Action : Make sure the parameter list is in the primary address space
and reissue the ESTAE macro.

20 none Meaning : Program error. XCTL=YES was rejected because the
linkage stack was not at the same level as it was when the RB was
created.

Action : Correct the environment and either reissue the ESTAE macro
or rerun your program, as appropriate.

24 none Meaning : Program error. A recovery routine address equal to zero
was specified, but it was rejected because no ESTAE recovery
routines were active for the current linkage stack level.

Action : Correct the environment and either reissue the ESTAE macro
or rerun your program, as appropriate.

28 none Meaning : Program error. ESTAE OV was specified, but it was
rejected because no ESTAE recovery routines were active for the
current linkage stack level.

Action : Correct the environment and either reissue the ESTAE macro
or rerun your program, as appropriate.

 Example 1
Request an overlay of the existing ESTAE recovery routine (at ADDR), with the following
options: parameter list is as PLIST, I/O will be halted, no asynchronous exits will be taken,
ownership will be transferred to the new request block resulting from any XCTL macros.

ESTAE ADDR,OV,PARAM=PLIST,XCTL=YES,PURGE=HALT,ASYNCH=NO

 Example 2
Provide the pointer to the recovery code in the register called EXITPTR, and the address of
the ESTAE recovery routine parameter list in register 9. Register 8 points to the area where
the ESTAE parameter list (created with the MF=L option) is to be modified.

ESTAE (EXITPTR),PARAM=(9),MF=(E,(8))

462 OS/390 V2R8.0 MVS Assembler Services Reference

 ESTAE and ESTAEX Macros

ESTAEX —Extended Specify Task Abnormal Exit
 Note

The ESTAEX macro has the same environment, specifications, register information,
programming requirements, restrictions and performance implications as the ESTAE
macro, with the exceptions that follow.

 Environment
The requirements for the caller of ESTAEX that are different from ESTAE are:

Cross memory mode: Any PASN, any HASN, any SASN
ASC mode: Primary or access register (AR)

 Programming Requirements
If the program is in AR mode:

� Issue the SYSSTATE macro with the ASCENV=AR parameter before you issue
ESTAEX. SYSSTATE ASCENV=AR tells the system to generate code appropriate for
AR mode.

� User parameters, specified on the PARAM parameter, can be located in any address
space.

 Restrictions
The caller of ESTAEX cannot have an EUT FRR established.

 Syntax
The parameters on the standard form of the ESTAEX macro are exactly the same as for the
standard form of the ESTAE macro. They are written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede ESTAEX.

ESTAEX

␣ One or more blanks must follow ESTAEX.

exit addr exit addr: A-type address, or register (2) - (12).
0

 ,CT Default: CT
 ,OV

 ,PARAM=list addr list addr: A-type address, or register (2) - (12).

 ,XCTL=NO Default: XCTL=NO
 ,XCTL=YES

 ,PURGE=NONE Default: PURGE=NONE
 ,PURGE=QUIESCE
 ,PURGE=HALT

 ,ASYNCH=YES Default: ASYNCH=YES
 ,ASYNCH=NO

 ,TERM=NO Default: TERM=NO
 ,TERM=YES

 ESTAE and ESTAEX — Extended Specify Task Abnormal Exit 463

 ESTAE and ESTAEX Macros

 ,RELATED=value value: Any valid macro keyword specification.

 Parameters
The parameters are explained under the syntax for the standard form of the ESTAE macro.

Return and Reason Codes
When control is returned to the instruction following the ESTAEX macro, the return code in
GPR 15 and the reason code in GPR 0 might be different from those for the ESTAE macro.
The return and reason codes for ESTAEX are listed below.

Hexadecimal
Return Code

Hexadecimal
Reason
Code

Meaning and Action

00 none Meaning : Successful completion of ESTAEX request.

Action : None.

04 00 Meaning : Program error. ESTAEX OV was specified but
ESTAEX CT was performed. No valid ESTAE recovery
routine existed.

Action : Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

04 04 Meaning : Program error. ESTAEX OV was specified but
ESTAEX CT was performed. The last ESTAE recovery
routine was not owned by the user's RB.

Action : Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

04 08 Meaning : Program error. ESTAEX OV was specified but
ESTAEX CT was performed. The last ESTAE recovery
routine was not owned by the user's linkage stack entry.

Action : Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

04 0C Meaning : Program error. ESTAEX OV was specified but
ESTAEX CT was performed. The last recovery routine was
not an ESTAE recovery routine.

Action : Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

08 none Meaning : Program error. The ESTAEX request was not
valid.

Action : Correct the request and either reissue the ESTAEX
macro or rerun your program, as appropriate.

0C none Meaning : Program error. A recovery routine address equal
to zero was specified and either there are no recovery
routines for this TCB, the most recent recovery routine is not
owned by the caller, or the most recent recovery routine is
not an ESTAE recovery routine.

Action : Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

10 none Meaning : System error. An unexpected error was
encountered while the request was being processed.

Action : Rerun your program one or more times. If the
problem persists, record the return and reason codes and
supply them to the appropriate IBM support personnel.

464 OS/390 V2R8.0 MVS Assembler Services Reference

 ESTAE and ESTAEX Macros

Hexadecimal
Return Code

Hexadecimal
Reason
Code

Meaning and Action

14 none Meaning : System error. ESTAEX was unable to obtain
storage for a system data area.

Action : Rerun your program one or more times. If the
problem persists, check with the operator to see if the
installation is experiencing a storage constraint problem.

18 none Meaning : Program error. ESTAEX OV was specified without
the TOKEN parameter, but the ESTAE recovery routine was
created with the TOKEN parameter. (The TOKEN parameter
is available only to programs in supervisor state with PSW
key 0-7 or programs that are APF-authorized.)

Action : Correct the environment and either reissue the
ESTAEX macro or rerun your program, as appropriate.

1C none Meaning : Program error. ESTAEX was unable to access the
input parameter list.

Action : Make sure the parameter list is contained in the
primary address space and reissue the ESTAEX macro or
rerun your program, as appropriate.

20 none Meaning : Program error. XCTL=YES was rejected because
the linkage stack was not at the same level as it was when
the RB was created.

Action : Correct the environment and reissue the ESTAEX
macro or rerun your program, as appropriate.

24 none Meaning : Program error. A recovery routine address equal
to zero was specified, but it was rejected because no ESTAE
recovery routines were active for the current linkage stack
level.

Action : Correct the environment and reissue the ESTAEX
macro or rerun your program, as appropriate.

 ESTAE and ESTAEX — Extended Specify Task Abnormal Exit 465

 ESTAE and ESTAEX Macros

ESTAE and ESTAEX—List Form
The list form of the ESTAE and ESTAEX macros is used to construct a remote control
parameter list.

 Syntax
The list form of ESTAE and ESTAEX is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede ESTAE or ESTAEX.

ESTAE
ESTAEX

␣ One or more blanks must follow ESTAE or ESTAEX.

 exit addr exit addr: A-type address.
 0

 ,PARAM=list addr list addr: A-type address.

 ,PURGE=NONE Default: PURGE=NONE
 ,PURGE=QUIESCE
 ,PURGE=HALT

 ,ASYNCH=YES Default: ASYNCH=YES
 ,ASYNCH=NO

 ,TERM=NO Default: TERM=NO
 ,TERM=YES

 ,RELATED=value value: Any valid macro keyword specification.

,MF=L

 Parameters
The parameters are explained under the standard form of the ESTAE or ESTAEX macro,
with the following exception:

,MF=L
Specifies the list form of ESTAE or ESTAEX.

466 OS/390 V2R8.0 MVS Assembler Services Reference

 ESTAE and ESTAEX Macros

ESTAE and ESTAEX—Execute Form
A remote control parameter list is used in, and can be modified by, the execute form of the
ESTAE and ESTAEX macros. The control parameter list can be generated by the list form
of ESTAE or ESTAEX. A user who wants to dynamically change the contents of the remote
control parameter list can code a new recovery routine address (exit addr) or a new
parameter list address (PARAM). If exit addr or PARAM is coded, only the associated field
in the remote control parameter list will be changed. The other fields will remain as they
were before the current ESTAE or ESTAEX request was made.

 Syntax
The execute form of the ESTAE and the ESTAEX macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede ESTAE or ESTAEX.

ESTAE
ESTAEX

␣ One or more blanks must follow ESTAE or ESTAEX.

 exit addr exit addr: RX-type address, or register (2) - (12).
 0

 ,CT
 ,CV

 ,PARAM=list addr list addr: RX-type address, or register (2) - (12).

 ,XCTL=NO
 ,XCTL=YES

 ,PURGE=NONE
 ,PURGE=QUIESCE
 ,PURGE=HALT

 ,ASYNCH=YES
 ,ASYNCH=NO

 ,TERM=NO
 ,TERM=YES

 ,RELATED=value value: Any valid macro keyword specification.

,MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

 Parameters
The parameters are explained under the standard form of the ESTAE or ESTAEX macro,
with the following exception:

,MF=(E,ctrl addr)
Specifies the execute form of the ESTAE and ESTAEX macro using a remote control
parameter list.

 ESTAE and ESTAEX — Extended Specify Task Abnormal Exit 467

 ESTAE and ESTAEX Macros

468 OS/390 V2R8.0 MVS Assembler Services Reference

 EVENTS Macro

EVENTS — Wait for One or More Events to Complete

 Description
The EVENTS macro is the same as the WAIT macro with the ECBLIST parameter, with one
additional function: EVENTS notifies the calling program that event control blocks (ECBs)
have completed and the order in which they completed.

The macro performs the following functions:

� Creates and deletes EVENTS tables.
� Initializes and maintains a list of completed event control blocks.
� Provides for single or multiple ECB processing.

For a detailed explanation of how to use EVENTS to perform these functions see “Using the
EVENTS Macro” on page 471.

If your program is to execute in 31-bit addressing mode, you must use the SP Version 2
expansion of this macro or a later version. For information about how to select the macro for
an MVS/SP version other than the current version, see “Selecting the Macro Level” on
page 7.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in primary address space

 Programming Requirements
None.

 Restrictions
None.

Input Register Information
Before issuing the EVENTS macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system

 Copyright IBM Corp. 1988, 1999 469

 EVENTS Macro

2-13 Unchanged
14-15 Used as work registers by the system

 Performance Implications
None.

 Syntax
The EVENTS macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede EVENTS.

EVENTS

␣ One or more blanks must follow EVENTS.

ENTRIES=n n: Variable or decimal digit 1-32,767.
ENTRIES=addr addr: Register (2) - (12).
ENTRIES=DEL,TABLE=table
address

Note: If ENTRIES=n or ENTRIES=DEL,TABLE=table address is
specified, no other parameter should be specified.

TABLE=table address table address: Symbol, RX-type address, or register (2) - (12).

 ,WAIT=NO Default: None.
 ,WAIT=YES

 ,ECB=ecb address ecb address: Symbol, RX-type address, or register (2) - (12).
 ,LAST=last address last address: Symbol, RX-type address, or register (2) - (12).

Note: Optional parameters are only valid when TABLE=table
address is the only required parameter specified.

 Parameters
The parameters are explained as follows:

ENTRIES=n
ENTRIES=addr

Specifies either a register or a decimal number from 1 to 32,767 that specifies the
maximum number of completed ECB addresses that can be processed in an EVENTS
table concurrently.

Note: When this parameter is specified no other parameter should be specified.

ENTRIES=DEL,TABLE= table address
Specifies that the EVENTS table whose address is specified by TABLE=table address is
to be deleted. The user is responsible for deleting all of the tables he creates; however,
all existing tables are automatically freed at task termination.

Notes:

1. When this parameter is specified no other parameter should be specified.
2. table address specifies a storage location below 16 megabytes.

TABLE= table address
Specifies either a register number or the address of a word containing the address of
the EVENTS table associated with the request. The address specified with the operand
TABLE must be that of an EVENTS table created by this task.

Note: table address specifies a storage location below 16 megabytes.

470 OS/390 V2R8.0 MVS Assembler Services Reference

 EVENTS Macro

,WAIT=NO
,WAIT=YES

Specifies whether or not to put the issuing program in a wait state when there are no
completed events in the EVENTS table (specified by the TABLE= parameter).

,ECB=ecb address
Specifies either a register number or the address of a word containing the address of an
event control block. The EVENTS macro should be used to initialize any event-type
ECB. To avoid the accidental destruction of bit settings by a system service such as an
access method, the ECB should be initialized after the system service that will post the
ECB has been initiated (thus making the ECB eligible for posting) and before the
EVENTS macro is issued to wait on the EVENTS table.

Notes:

1. Register 1 should not be specified for the ECB address.

2. This parameter may not be specified with the LAST= parameter.

3. If only ECB initialization is being requested, neither WAIT=NO nor WAIT=YES
should be specified, to prevent any unnecessary WAIT processing from occurring.

,LAST= last address
Specifies either a register number or the address of a word containing the address of
the last EVENT parameter list entry processed.

Notes:

1. Register 1 should not be specified for the LAST address.
2. This parameter should not be specified with the ECB= parameter.
3. last address specifies a storage location below 16 megabytes.

Using the EVENTS Macro
The following explains the different uses of EVENTS:

� Creating EVENTS Tables — When ENTRIES=n is specified, the system creates an
EVENTS table with “n” entries for completed ECB addresses. This table is queued on
the EVENTS table queue associated with the task. (There is no limit to the number of
EVENTS tables that can be queued for a single task.) The address of the EVENTS
table is returned to the user in register 1. See Figure 26.

 EVENTS — Wait for One or More Events to Complete 471

 EVENTS Macro

Register 1

EVENTS Table

ENTRY1

ENTRY2

ENTRYn-1

ENTRYn

Header Section

Variable Length
Entry Section

Figure 26. Creating a Table

� Deleting EVENTS Tables — When ENTRIES=DEL,TABLE=table address is specified,
the EVENTS table whose address is specified by the TABLE=table address parameter
shall be deleted. The address specified with the TABLE operand must be that of an
EVENTS table created by this task. The user is responsible for deleting all of the tables
he creates; however, all existing tables are automatically freed at task termination.

� Initializing ECBs — When an ECB is created, bits 0 (wait bit) and bit 1 (post bit) must be
set to zero. When an EVENTS ECB= macro is issued, bit 0 of the associated event
control block is set to 1. When a POST macro is issued, bit 1 of the associated event
control block is set to 1 and bit 0 is set to 0. If the ECB is reused, bit 0 and bit 1 must
be set to zero before either a WAIT, EVENTS ECB=, or POST macro can be specified.
If, however, the bits are set to zero before the ECB has been posted, any task waiting
for that ECB to be posted will remain in wait state.

� Maintaining a List of Completed EVENT Control Blocks — After the ECB has been
initialized, the POST macro sets the complete bit and puts the address of the completed
ECB in the EVENTS table.

� Providing Single or Multiple ECB Processing — When the WAIT parameter is specified
and there are completed ECBs in the EVENTS table, the address of the parameter list is
returned in register 1. The parameter list has the following format:

472 OS/390 V2R8.0 MVS Assembler Services Reference

 EVENTS Macro

Register 1

ECB1

ECB2

ECBm-1

ECBm1

Figure 27. Parameter List Format

The parameter list contains completed ECB addresses in post occurrence order. The high
order bit of the last word in the list is set to 1. The user may choose to process the entire
list (see LAST parameter) or one event at a time by successive EVENTS requests with the
WAIT= option.

However, if WAIT=NO is specified and no ECBs are posted in the EVENTS table, register 1
contains a zero when the user receives control.

When a user has processed more than one ECB in the parameter list returned from the
previous EVENTS WAIT= macro, the LAST= parameter should be used to indicate the last
ECB processed. The EVENTS macro removes from the parameter list all entries from the
first thru the last specified by LAST, and then completes processing the request according to
the WAIT= specification.

In the illustration that follows, ECBs 6 through 10 were posted to the parameter list while the
user was processing 1 through 5.

 EVENTS — Wait for One or More Events to Complete 473

 EVENTS Macro

Register 1

1

EVENTS TABLE=table address, WAIT=YES, LAST=(2)

Register 1

1

ECB1

ECB2

ECB3

ECB4

ECB5

ECB6

ECB7

ECB8

ECB9

ECB10

EVENTS TABLE=table address, WAIT=YES

(Load register 2 with address of the last entry processed.)

Figure 28. Posting the Parameter List

474 OS/390 V2R8.0 MVS Assembler Services Reference

 EVENTS Macro

This figure demonstrates processing one event at a time.

Register 1

Register 1

1

ECB1

ECB2

ECB3

ECB4

ECB5

The second time that EVENTS TABLE=table address, WAIT=YES
is issued will initiate:

Issuing EVENTS TABLE=table address, WAIT=YES for the
first time will initiate:

1

ECB2

ECB3

ECB4

ECB5

Parameter List

Parameter List

Figure 29. Processing One Event At a Time

 ABEND Codes
The caller might encounter one of the following ABEND codes:

 � X'17A'
 � X'17D'
 � X'37A'
 � X'37D'
 � X'47A'
 � X'47D'
 � X'57D'
 � X'67D'
 � X'77D'
 � X'87D'

See OS/390 MVS System Codes for explanations and responses for these codes.

 EVENTS — Wait for One or More Events to Complete 475

 EVENTS Macro

Return and Reason Codes
None.

 Example 1
The following shows total processing via EVENTS.

EVENTS and ECB Initialization

 START
 EVENTS ENTRIES=1ððð
 ST R1,TABADD
 WRITE ECBA
 LA R2,ECBA
 EVENTS TABLE=TABADD,ECB=(R2)

Parameter List Processing

 BEGIN
 EVENTS TABLE=TABADD,WAIT=YES
 LR R3,R1 PARMLIST ADDR

B LOOP2 GO TO PROCESS ECB
LOOP1 EVENTS TABLE=TABADD,WAIT=YES,LAST=(R3)
 LR R3,R1 SAVE POINTER
LOOP2 EQU \ PROCESS COMPLETED EVENTS
 TM ð(R3),X'8ð' TEST FOR MORE EVENTS
 BO LOOP1 IF NONE, GO WAIT
 LA R3,4(,R3) GET NEXT ENTRY

B LOOP2 GO PROCESS NEXT ENTRY

Deleting EVENTS Table

 EVENTS TABLE=TABADD,ENTRIES=DEL
TABADD DS F

 Example 2
Processing One ECB at a Time.

 EVENTS ENTRIES=1ð
 ST 1,TABLE
 NEXTREC GET TPDATA,KEY
 ENQ (RESOURCE,ELEMENT,E,,SYSTEM)
 READ DECBRW,KU,,'S',MF=E
 LA 3,DECBRW
 EVENTS TABLE=TABLE,ECB=(3),WAIT=YES
 WRITE DECBRW,K,MF=E
 LA 3,DECBRW
 RETEST EVENTS TABLE=TABLE,ECB=(3),WAIT=NO
 LTR 1,1
 BNZ NEXTREC
 B RETEST
 TABLE DS F

476 OS/390 V2R8.0 MVS Assembler Services Reference

 FREEMAIN Macro

FREEMAIN — Free Virtual Storage

 Description
Use the FREEMAIN macro to free one or more areas of virtual storage. You can also use
the FREEMAIN macro to free an entire virtual storage subpool if it is owned by the task
under which your program is issuing the FREEMAIN. For more information on releasing a
subpool, see the chapter about virtual storage management in OS/390 MVS Programming:
Assembler Services Guide.

You can also use the STORAGE macro to free storage, even if the storage was obtained
using the GETMAIN macro. Compared to FREEMAIN, STORAGE provides an easier-to-use
interface and has no restrictions. If your program is running in AR-mode or cross-memory
mode, use the STORAGE macro to free storage.

 Environment
The requirements for the caller are:

Minimum authorization : For subpools 0-127: problem state and PSW key 8-15.
For subpools 131 and 132: a PSW key mask (PKM) that allows the
calling program to switch its PSW key to match the key of the
storage to be released.

Dispatchable unit mode : Task.

Cross memory mode : PASN=HASN=SASN.

AMODE: 24- or 31-bit.

� For RU, RC requests: The system treats all addresses and
values as 31-bit.

� For all other requests: If the calling program is in 31-bit mode,
the system treats all addresses and values, passed to the
FREEMAIN macro, as 31-bit. Otherwise, the system treats
addresses and values as 24-bit.

ASC mode : Primary.

Interrupt status : Enabled for I/O and external interrupts.

Locks : No locks held.

Control parameters : For LC, LU, L, VC, VU, V, EC, EU, E requests: control parameters
must be in the primary address space.
For other requests: control parameters are in registers.

 Programming Requirements
None.

 Restrictions
� Parameters passed to the FREEMAIN macro must not reside within the area being

freed. If this restriction is violated and the parameters are the last allocated areas on a
virtual page, the whole page is freed and FREEMAIN ends abnormally with an X'0C4'
abend code.

� The current task ends abnormally if the specified virtual storage area does not start on a
doubleword boundary or, for an unconditional request, if the specified area or subpool is
not owned by the task identified as the owner of the storage.

� For SVC entry, the caller cannot have an EUT FRR established.

 Copyright IBM Corp. 1988, 1999 477

 FREEMAIN Macro

Input Register Information

Before issuing the FREEMAIN macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system.
2-13 Unchanged.
14 Used as a work register by the system.
15 For a conditional request, contains the return code.

For an unconditional request, used as a work register by the system.

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the service returns
control.

 Performance Implications
None.

 Syntax
The standard form of the FREEMAIN macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede FREEMAIN.

FREEMAIN

␣ One or more blanks must follow FREEMAIN.

478 OS/390 V2R8.0 MVS Assembler Services Reference

 FREEMAIN Macro

LC,LA=length addr length addr: A-type address, or register (2) - (12).
LU,LA=length addr
L,LA=length addr

length value: symbol, decimal number, or register (2) - (12).
If R, RC, or RU is specified, register (0) may also be used.

VC
VU
V
EC,LV=length value
EU,LV=length value
E,LV=length value
RC,LV=length value

subpool nmbr: symbol, decimal number 0-127, 131, 132, or register
(2) - (12). If R is specified, register (0) may also be used.

Note: For a subpool release (RC,SP or RU,SP, or R,SP), no
other parameters except RELATED may be specified.

RC,SP=subpool nmbr
RU,LV=length value
RU,SP=subpool nmbr
R,LV=length value
R,SP=subpool nmbr

,A=addr addr: A-type address, or register (2) - (12).

If R, RC, or RU is specified, register (1) can also be used.
Note: If R, RC, or RU is specified, register (1) can also be
specified.

 ,SP=subpool nmbr subpool nmbr: symbol, decimal number 0-127, 131, 132, or register

(2) - (12).
Default : SP=0. If R is specified, register (0) may also be used.

 ,KEY=number nmbr: decimal numbers 0-15, or register (2) - (12).

Note: KEY may be specified only with RC or RU.

 ,RELATED=value value: any valid assembler character string.

 FREEMAIN — Free Virtual Storage 479

 FREEMAIN Macro

 Parameters
The parameters are explained as follows:

LC,LA= length addr
LU,LA= length addr
L,LA= length addr
VC
VU
V
EC,LV=length value
EU,LV=length value
E,LV=length value
RC,LV=length value
RC,SP=subpool nmbr
RU,LV=length value
RU,SP=subpool nmbr
R,LV=length value
R,SP=subpool nmbr

Specifies the type of FREEMAIN request:

LC, LU, and L indicate conditional (LC) and unconditional (LU and L) list requests and
specify release of one or more areas of virtual storage. The length of each virtual
storage area is indicated by the values in a list beginning at the address specified in the
LA parameter. The address of each of the virtual storage areas must be provided in a
corresponding list whose address is specified in the A parameter. All virtual storage
areas must start on a doubleword boundary.

VC, VU, and V indicate conditional (VC) and unconditional (VU and V) variable requests
and specify release of single areas of virtual storage. The address and length of the
virtual storage area are provided at the address specified in the A parameter.

EC, EU, and E indicate conditional (EC) and unconditional (EU and E) element requests
and specify release of single areas of virtual storage. The length of the single virtual
storage area is indicated in the LV parameter. The address of the virtual storage area is
provided at the address indicated in the A parameter.

RC, RU, and R indicate conditional (RC) and unconditional (RU and R) register requests
and specify either the release of all the storage in a subpool or the release of a certain
area in a subpool. For information on how to release all the storage in a subpool, see
the description for the SP parameter. If the release is for a certain area in a subpool,
the address of the virtual storage area is indicated in the A parameter. The length of
the area is indicated in the LV parameter. The virtual storage area must start on a
doubleword boundary.

Notes:

1. For a conditional request, errors detected while processing a FREEMAIN request
with incorrect or inconsistent parameters cause the FREEMAIN service to return to
the caller with a non-zero return code. For all other errors, the system abnormally
ends the active task if the FREEMAIN request cannot be successfully completed.

For an unconditional request, the system abnormally ends the active task if the
FREEMAIN request cannot be successfully completed.

2. If the address of the area to be freed is above 16 megabytes, you must use RC or
RU.

LA specifies the virtual storage address of one or more consecutive fullwords starting on
a fullword boundary. One word is required for each virtual storage area to be released;
the high-order bit in the last word must be set to 1 to indicate the end of the list. Each
word must contain the required length in the low-order three bytes. The fullwords in this
list must correspond with the fullwords in the associated list specified in the A
parameter. The words must not be in the area to be released. If this rule is violated
and if the words are the last allocated items on a virtual page, the whole page is
returned to storage and the FREEMAIN abends with an X'0C4' abend code.

480 OS/390 V2R8.0 MVS Assembler Services Reference

 FREEMAIN Macro

LV specifies the length, in bytes, of the virtual storage area being released. The value
should be a multiple of 8; if it is not, the control program uses the next high multiple of
8.

� If you specify R,LV=(0) you cannot specify the SP parameter. You must specify the
subpool in register 0; the high-order byte must contain the subpool number and the
low-order three bytes must contain the length unless you are requesting a subpool
release. On a subpool release, the low-order three bytes must contain zeros.

� If you specify R,LV using a symbol, decimal number, or register 2-12, you can
specify the SP parameter using registers 0 or 2-12.

,A=addr
Specifies the virtual storage address of one or more consecutive fullwords starting on a
fullword boundary.

� If E, EC, or EU is coded, one word is required, which contains the address of the
virtual storage area to be released.

� If V, VC, or VU is coded, two words are required; the first word contains the
address of the virtual storage area to be released, and the second word contains
the length of the area to be released.

� If L, LC, or LU is coded, one word is required for each virtual storage area to be
released; each word contains the address of one virtual storage area.

� If R, RC, or RU is coded, one word is required, which contains the address of the
virtual storage area to be released. If R, RC, or RU is coded and addr specifies a
register, register 1 through 12 can be used and must contain the address of the
virtual storage area to be released.

Do not specify a storage address of 0 with a storage length of 0. This combination
causes FREEMAIN to free the subpool specified with the SP parameter, or subpool 0 if
the SP parameter is omitted.

,SP=subpool nmbr
Specifies the subpool number of the virtual area to be released. Valid subpools
numbers are 0-127, 131, and 132. The SP parameter is optional and if omitted, subpool
0 is assumed. If you specify a register, the subpool number must be in bits 24-31 of the
register, with bits 0-23 set to zero.

A request to release all the storage in a subpool is known as a subpool release . To
issue a subpool release, specify RC,SP or RU,SP or R,SP, and do not use the A or the
KEY parameter. The following subpools are valid on the SP parameter for a subpool
release: 0-127, 131, and 132. An attempt to issue a subpool release for any other
subpool causes an abend X'478' or X'40A'. For information about subpools, see
OS/390 MVS Programming: Assembler Services Guide.

,KEY=key number
Specifies the storage key in which the storage was obtained. The valid storage keys
are 0-15. If a register is specified, the storage key must be in bits 24-27 of the register.
KEY can be specified for subpools 131 and 132.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services and can be any valid assembler character string.

 ABEND Codes
Abend codes FREEMAIN might issue are listed below in hexadecimal. For detailed abend
code information, see OS/390 MVS System Codes.

105 10A 178 205 20A

278 305 30A 378 40A

478 505 605 705 70A

778 805 80A 878 905

 FREEMAIN — Free Virtual Storage 481

 FREEMAIN Macro

90A 978 A05 A0A A78

B05 B0A B78 D05 D0A

D78

Return and Reason Codes
When the FREEMAIN macro returns control to your program and you specified a conditional
request, GPR 15 contains one of the following hexadecimal return codes:

Figure 30. Return Codes for the FREEMAIN Macro

Return Code Meaning and Action

0 Meaning : Successful completion.

Action : None.

4 Meaning : Program error. Not all requested virtual storage was freed.

Action : Check your program for the following kinds of errors:

� The address of the storage area to be freed is not correct.

� The subpool you have specified does not match the subpool of the storage to be freed.

� The key you have specified does not match the key of the storage to be freed.

8 Meaning : Program error. No virtual storage was freed because part of the storage area to
be freed is fixed.

Action : Determine whether you have made one of the following errors. If so, correct your
program and rerun it:

� You passed an incorrect storage area address to the FREEMAIN macro.

� You attempted to free storage that is fixed.

 Example 1
Free 400 bytes of storage from subpool 10. Register 1 contains the address of the storage
area. If the storage is not allocated to the current task, do not abnormally terminate the
caller.

FREEMAIN RC,LV=4ðð,A=(1),SP=1ð

 Example 2
Free all of subpool 3 (if any) that belongs to the current task. If the request is not
successful, abnormally terminate the caller.

FREEMAIN RU,SP=3

 Example 3
Free from subpool 5, three areas of storage of 200, 800, and 32 bytes, previously obtained
using the list and execute forms of the GETMAIN macro. Storage area addresses are in
AREAADD. If any of the storage areas to be freed are not allocated to the current task,
abnormally terminate the caller.

FREEMAIN LU,LA=LNTHLIST,A=AREAADD,SP=5
 .
 .
 .
LNTHLIST DC F'2ðð',F'8ðð',X'8ð',FL3'32'
AREAADD DS 3F

482 OS/390 V2R8.0 MVS Assembler Services Reference

 FREEMAIN Macro

 FREEMAIN—List Form
Use the list form of the FREEMAIN macro to construct a nonexecutable control program
parameter list.

The list form of the FREEMAIN macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede FREEMAIN.

FREEMAIN

␣ One or more blanks must follow FREEMAIN.

 LC
 LU
 L
 VC
 VU
 V
 EC
 EU
 E

 ,LA=length addr length addr: A-type address.
 ,LV=length value length value: symbol or decimal number.

Notes:
1. LA may only be specified with LC, LU, or L above.
2. LV may only be specified with EC, EU, or E above.

 ,A=addr addr: A-type address.

 ,SP=subpool nmbr subpool nmbr: symbol or decimal number.

 ,RELATED=value value: any valid assembler character string.

,MF=L

 Parameters
The parameters are explained under the standard form of the FREEMAIN macro, with the
following exceptions:

,MF=L
Specifies the list form of the FREEMAIN macro.

 FREEMAIN — Free Virtual Storage 483

 FREEMAIN Macro

 FREEMAIN—Execute Form
A remote control program parameter list is used in, and can be modified by, the execute
form of the FREEMAIN macro. The parameter list can be generated by the list form of either
a GETMAIN or a FREEMAIN.

The execute form of the FREEMAIN macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede FREEMAIN.

FREEMAIN

␣ One or more blanks must follow FREEMAIN.

 LC
 LU
 L
 VC
 VU
 V
 EC
 EU
 E

 ,LA=length addr length addr: RX-type address or register (2) - (12).
 ,LV=length value length value: symbol, decimal number, or register (2) - (12).

Notes:
1. LA may only be specified with LC, LU, or L above.
2. LV may only be specified with EC, EU, or E above.

 ,A=addr addr: RX-type address, or register (2) - (12).

 ,SP=subpool nmbr subpool nmbr: symbol, decimal number, or register (0) or (2) - (12).

 ,RELATED=value value: any valid assembler character string.

,MF=(E,list addr) list addr: RX-type address, or register (1) or (2) - (12).

 Parameters
The parameters are explained under the standard form of the FREEMAIN macro, with the
following exceptions:

,MF=(E,list addr)
Specifies the execute form of the FREEMAIN macro using a remote control program
parameter list.

484 OS/390 V2R8.0 MVS Assembler Services Reference

 GETMAIN Macro

GETMAIN — Allocate Virtual Storage

 Description
Use the GETMAIN macro to request one or more areas of virtual storage.

Before obtaining storage, be sure to read the information about subpools in the virtual
storage management chapter in OS/390 MVS Programming: Assembler Services Guide.

You can also use the STORAGE macro to obtain storage. Compared to GETMAIN,
STORAGE provides an easier-to-use interface and has fewer restrictions. If your program is
running in AR-mode or cross-memory mode, use the STORAGE macro to obtain storage.

Note: When you obtain storage, the system clears the requested storage to zeroes if you
obtain either:

� 8192 bytes or more from a pageable, private storage subpool, CSA or ECSA

� 4096 bytes or more from a pageable, private storage subpool, CSA or ECSA with
BNDRY=PAGE specified.

� The caller can specify CHECKZERO=YES to detect these and other cases where the
system clears the requested storage to zeros.

 Environment
The requirements for the caller are:

Minimum authorization : For subpools 0-127: problem state and PSW key 8-15.
For subpools 131 and 132: a PSW key mask (PKM) that allows the
calling program to switch its PSW key to match the key of the
storage to be obtained.

Dispatchable unit mode : Task.

Cross memory mode : PASN=HASN=SASN.

AMODE: 24- or 31-bit.

� For R, LC, LU, VC, VU, EC, or EU requests: If the calling
program is in 31-bit mode, the system treats all addresses and
values as 31-bit. Otherwise, the system treats addresses and
values as 24-bit.

� For RC, RU, VRC, and VRU requests: The system treats all
addresses and values as 31-bit.

ASC mode : Primary.

Interrupt status : Enabled for I/O and external interrupts.

Locks : No locks held.

Control parameters : For LC, LU, VC, VU, EC, EU requests: control parameters must be
in the primary address space.
For other requests: control parameters are in registers.

 Programming Requirements
None.

 Copyright IBM Corp. 1988, 1999 485

 GETMAIN Macro

 Restrictions
� For SVC entry, the caller cannot have an EUT FRR established.

Input Register Information

Before issuing the GETMAIN macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information

For LC, LU, VC, VU, EC, and EU requests: when control returns to the caller, the general
purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system.
2-13 Unchanged.
14 Used as a work register by the system.
15 Contains the return code.

For RC, RU, and R requests: when control returns to the caller the GPRs contain:

Register Contents
0 Used as a work register by the system.
1 The address of the allocated storage when GETMAIN is successful; otherwise,

used as a work register by the system.
2-13 Unchanged.
14 Used as a work register by the system.
15 Contains the return code.

For VRC and VRU requests: when control returns to the caller the GPRs contain:

Register Contents
0 For a successful request, contains the length of the storage obtained.

Otherwise, used as a work register by the system.
1 The address of the allocated storage when GETMAIN is successful; otherwise,

used as a work register by the system.
2-13 Unchanged.
14 Used as a work register by the system.
15 Contains the return code.

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the service returns
control.

486 OS/390 V2R8.0 MVS Assembler Services Reference

 GETMAIN Macro

 Performance Implications
Repeatedly issuing the GETMAIN macro can slow down performance. If your program
requires many identically sized storage areas, use the CPOOL macro or callable cell pool
services for better performance.

 Syntax
The standard form of the GETMAIN macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede GETMAIN.

GETMAIN

␣ One or more blanks must follow GETMAIN.

LC,LA=length addr,A=addr length addr: A-type address, or register (2) - (12).
LU,LA=length addr,A=addr length value: symbol, decimal number, or register (2) - (12).
VC,LA=length addr,A=addr If RC or RU is specified, register (0)
VU,LA=length addr,A=addr may also be specified.
EC,LV=length value,A=addr addr: A-type address or register (2) - (12).
EU,LV=length value,A=addr Note: RC, RU, VRC, or VRU must be
RC,LV=length value used for address greater than 16 megabytes.
RU,LV=length value
R,LV=length value
VRC,LV=(maximum length maximum length value: symbol, decimal number, or register (2) -

(12).value, minimum length value)
VRU,LV=(maximum length minimum length value: symbol, decimal number, or register (2) -

(12).value, minimum length value)

 ,SP=subpool nmbr subpool nmbr: symbol or decimal number 0-127, 131, 132; or

register (2) - (12).
Default: SP=0
Note: Specify the subpool as follows:

� Use the SP parameter for LC, LU, VC, VU, EC, EU, RC, RU,
VRC, and VRU requests, and for R requests where LV does
not indicate register 0.

� Use register 0 for R requests with LV=(0); do not code the SP
parameter. The low-order three bytes of register 0 must
contain the length of the requested storage, and the high-order
byte must contain the subpool number.

 ,BNDRY=DBLWD Default: BNDRY=DBLWD
 ,BNDRY=PAGE Note: This parameter may not be specified with R above.

 ,KEY=key number key number: decimal numbers 0-15, or register (2) - (12).

Note: KEY may be specified only with RC, RU, VRC, or VRU.

 ,LOC=BELOW Default: LOC=RES
 ,LOC=(BELOW,ANY) Note: This parameter can only be used with RC, RU
 ,LOC=ANY VRC, or VRU.
 ,LOC=(ANY,ANY) On all other forms, LOC=BELOW is used.
 ,LOC=RES
 ,LOC=(RES,ANY)
 ,LOC=EXPLICIT EXPLICIT can only be used with RC or RU.
 ,LOC=(EXPLICIT,ANY) Note: You must specify the INADDR parameter with
 ,LOC=(EXPLICIT,BELOW) EXPLICIT.

 ,INADDR=stor addr stor addr: RX-type address or register (1)-(12).

Note: This parameter can only be specified with LOC=EXPLICIT.

 GETMAIN — Allocate Virtual Storage 487

 GETMAIN Macro

 ,CHECKZERO=YES Default: CHECKZERO=NO
 ,CHECKZERO=NO Note: CHECKZERO may be specified only with RC, RU, VRC or

VRU.

 ,RELATED=value value: Any valid assembler character string

488 OS/390 V2R8.0 MVS Assembler Services Reference

 GETMAIN Macro

 Parameters
The parameters are explained as follows:

LC,LA= length addr, A=addr
LU,LA= length addr, A=addr
VC,LA= length addr, A=addr
VU,LA= length addr, A=addr
EC,LV=length value, A=addr
EU,LV=length value, A=addr
RC,LV=length value
RU,LV=length value
R,LV=length value
VRC,LV=(maximum length value,minimum length value)
VRU,LV=(maximum length value,minimum length value)

Specifies the type of GETMAIN request:

LC and LU indicate conditional (LC) and unconditional (LU) list requests, and specify
requests for one or more areas of virtual storage. The length of each virtual storage
area is indicated by the values in a list beginning at the address specified in the LA
parameter. The address of each of the virtual storage areas is returned in a list
beginning at the address specified in the A parameter. No virtual storage is allocated
unless all of the requests in the list can be satisfied.

VC and VU indicate conditional (VC) and unconditional (VU) variable requests, and
specify requests for single areas of virtual storage. The length of the single virtual
storage area is between the two values at the address specified in the LA parameter.
The address and actual length of the allocated virtual storage area are returned by the
system at the address indicated in the A parameter.

EC and EU indicate conditional (EC) and unconditional (EU) element requests, and
specify requests for single areas of virtual storage. The length of the single virtual
storage area is indicated by the parameter, LV=length value. The address of the
allocated virtual storage area is returned at the address indicated in the A parameter.

RU and R indicate unconditional register requests; RC indicates a conditional register
request. RC, RU, and R specify requests for single areas of virtual storage. The length
of the single virtual area is indicated by the parameter, LV=length value. The address of
the allocated virtual storage area is returned in register 1.

VRC and VRU indicate variable register conditional (VRC) and unconditional (VRU)
requests for a single area of virtual storage. The length returned will be between the
maximum and minimum lengths specified by the parameter LV=(maximum length value,
minimum length value). The address of the allocated virtual storage is returned in
register 1 and the length in register 0.

Notes:

1. A conditional request indicates that the task is not to be abnormally terminated if
virtual storage is not allocated to the specified task. An unconditional request
indicates that the task is to be abnormally terminated in this situation.

2. The LC, LU, VC, VU, EC, EU, and R requests can be used only to obtain virtual
storage with addresses below 16 megabytes. The RC, RU, VRC, and VRU
requests can be used to obtain virtual storage with addresses above 16 megabytes.

LA specifies the virtual storage address of consecutive fullwords starting on a fullword
boundary. Each fullword must contain the required length in the low-order three bytes,
with the high-order byte set to 0. The lengths should be multiples of 8; if they are not,
the system uses the next higher multiple of 8. If VC or VU was coded, two words are
required. The first word contains the minimum length required, the second word
contains the maximum length. If LC or LU was coded, one word is required for each
virtual storage area requested; the high-order bit of the last word must be set to 1 to
indicate the end of the list. The list must not overlap the virtual storage area specified in
the A parameter.

 GETMAIN — Allocate Virtual Storage 489

 GETMAIN Macro

LV=length value specifies the length, in bytes, of the requested virtual storage. The
number should be a multiple of 8; if it is not, the system uses the next higher multiple of
8. If R is specified, LV=(0) may be coded; the low-order three bytes of register 0 must
contain the length, and the high-order byte must contain the subpool number.
LV=(maximum length value, minimum length value) specifies the maximum and
minimum values of the length of the storage request.

The A parameter specifies the virtual storage address of consecutive fullwords, starting
on a fullword boundary. The system places the address of the virtual storage area
allocated in one or more words. If E was coded, one word is required. If LC or LU was
coded, one word is required for each entry in the LA list. If VC or VU was coded, two
words are required. The first word contains the address of the virtual storage area, and
the second word contains the length actually allocated. The list must not overlap the
virtual storage area specified in the LA parameter.

,SP=subpool nmbr
Specifies the number of the subpool from which the virtual storage area is to be
allocated. If you specify a register, the subpool number must be in bits 24-31 of the
register, with bits 0-23 set to zero. Valid subpool numbers are 0-127, 131, and 132.
See the virtual storage management chapter in OS/390 MVS Programming: Assembler
Services Guide for complete information about these subpools.

,BNDRY=DBLWD
,BNDRY=PAGE

Specifies that alignment on a doubleword boundary (DBLWD) or alignment with the start
of a virtual page on a 4K boundary (PAGE) is required for the start of a requested area.

,KEY=key number
Specifies the storage key in which the storage is to be obtained. The valid storage keys
are 0-15. If a register is specified, the storage key must be in bits 24-27 of the register.
KEY is valid with RC, RU, VRC, or VRU, and applies to subpools 131 and 132 only.
See the virtual storage management chapter in OS/390 MVS Programming: Assembler
Services Guide for information about how the system assigns the storage key for your
storage request.

,LOC=BELOW
,LOC=(BELOW,ANY)
,LOC=ANY
,LOC=(ANY,ANY)
,LOC=RES
,LOC=(RES,ANY)
,LOC=EXPLICIT
,LOC=(EXPLICIT,ANY)
,LOC=(EXPLICIT,BELOW)

Specifies the location of virtual storage and central (also called real) storage. This is
especially helpful for callers with 24-bit dependencies. When LOC is specified, central
storage is allocated anywhere until the storage is fixed. You can specify the location of
central storage (after the storage is fixed) and virtual storage (whether or not the storage
is fixed) using the following LOC parameter values:

LOC=BELOW indicates that central and virtual storage are to be located below 16
megabytes. LOC=BELOW must not be used to allocate disabled reference (DREF)
storage.

LOC=(BELOW,ANY) indicates that virtual storage is to be located below 16 megabytes
and central storage can be located anywhere.

LOC=ANY and LOC=(ANY,ANY) indicate that virtual and central storage can be located
anywhere.

Note: When you specify LOC=ANY, GETMAIN tries to allocate virtual storage above
16 megabytes. If the attempt fails, GETMAIN tries to allocate virtual storage below 16
megabytes. If this attempt also fails, GETMAIN does not allocate any storage.

490 OS/390 V2R8.0 MVS Assembler Services Reference

 GETMAIN Macro

When you use LOC=RES to allocate storage that can reside either above or below 16
megabytes, LOC=RES indicates that the location of virtual and central storage depends
on the location of the caller. If the caller resides below 16 megabytes, virtual and
central storage are to be located below 16 megabytes. If the caller resides above 16
megabytes, virtual and central storage are to be located either above or below 16
megabytes.

LOC=(RES,ANY) indicates that the location of virtual storage depends upon the location
of the caller. If the caller resides below 16 megabytes, virtual storage is to be located
below 16 megabytes; if the caller resides above 16 megabytes, virtual storage can be
located anywhere. In either case, central storage can be located anywhere.

LOC=EXPLICIT, LOC=(EXPLICIT,ANY), or LOC=(EXPLICIT,BELOW) specify that the
requested virtual storage is to be located at the address specified with the INADDR
parameter, which is required with EXPLICIT. EXPLICIT is valid only for subpools 0-127,
131, and 132. You can use LOC=EXPLICIT only with RC or RU. You cannot specify
the BNDRY parameter with EXPLICIT.

LOC=EXPLICIT and LOC=(EXPLICIT,ANY) indicate that virtual storage is to be located
at the address specified on the INADDR parameter, and central storage can be located
above or below 16 megabytes.

LOC=(EXPLICIT,BELOW) indicates that virtual storage is to be located at the address
specified on the INADDR parameter, and central storage is to be located below 16
megabytes. The virtual storage address specified on the INADDR parameter must be
below 16 megabytes.

When you specify EXPLICIT on a request for storage from the same virtual page as
previously requested storage, you must request it in the same key, subpool, and central
storage area as on the previous storage request. For example, if you request virtual
storage backed with central storage below 16 megabytes, any subsequent requests for
storage from that virtual page must be specified as LOC=(EXPLICIT,BELOW).

,INADDR=stor addr
Specifies the desired virtual address for the storage to be obtained. When you specify
INADDR, you must specify EXPLICIT on the LOC parameter.

Notes:

1. The address specified on INADDR must be on a doubleword boundary.

2. Make sure that the virtual storage address specified on INADDR and the central
storage backing specified on the LOC=EXPLICIT parameter are a valid
combination. For example, if the address specified on INADDR is for virtual storage
above 16 megabytes, specify LOC=EXPLICIT or LOC=(EXPLICIT,ANY). Valid
combinations include:

� Virtual above, central any
� Virtual any, central any
� Virtual below, central below
� Virtual below, central any

,CHECKZERO=YES
,CHECKZERO=NO

Specifies whether or not the return code for a successful completion should indicate if
the system has cleared the requested storage to zeroes. When CHECKZERO=NO is
specified or defaulted, the return code for a successful completion is 0. When
CHECKZERO=YES is specified, the return code for a successful completion is X'14' if
the system has cleared the requested storage to zeroes, and 0 if the system has not
cleared the requested storage to zeroes.

There is no performance cost to specifying CHECKZERO=YES.

CHECKZERO processing is available as of OS/390 R6. Programs that issue the
GETMAIN macro with the CHECKZERO parameter can run on any MVS system from
MVS/SP 2.1 to the current release. On a down-level system, CHECKZERO will be

 GETMAIN — Allocate Virtual Storage 491

 GETMAIN Macro

ignored, and the return code for a successful completion (conditional or unconditional)
will be 0.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid assembler character
string.

 ABEND Codes
Abend codes the GETMAIN macro might issue are listed below in hexadecimal. For detailed
abend code information, see OS/390 MVS System Codes.

104 10A 178 204 20A

278 30A 378 40A 478

504 604 704 70A 778

804 80A 878 90A 978

A0A A78 B04 B0A B78

D04 D0A D78

Return and Reason Codes
When the GETMAIN macro returns control to your program and you specified a conditional
request, GPR 15 contains one of the following hexadecimal return codes:

Figure 31 (Page 1 of 2). Return Codes for the GETMAIN Macro

Return Code Meaning and Action

0 Meaning : Successful completion. CHECKZERO=YES was not specified, or the system has
not cleared the requested storage to zeroes.

Action : None.

4 If you did not specify EXPLICIT on the LOC parameter :

Meaning : Environmental or system error. Virtual storage was not obtained because
insufficient storage is available.

Action : If the request was for low private (local) storage, consult the system
programmer to see if you have exceeded an installation-determined private storage limit.

If you specified EXPLICIT on the LOC parameter :

Meaning : Program error. Virtual storage was not obtained because part of the
requested storage area is outside the bounds of the user region.

Action : Determine why your program is mistakenly requesting storage outside the user
region. If the request was for low private (local) storage, consult the system programmer
to see if you have exceeded an installation-determined private storage limit.

8 Meaning : System error. Virtual storage was not obtained because the system has
insufficient central storage to back the request.

Action : Report the problem to the system programmer so the cause of the problem can be
determined and corrected.

C Meaning : System error. Virtual storage was not obtained because the system cannot page
in the page table associated with the storage to be allocated.

Action : Report the problem to the system programmer so the cause of the problem can be
determined and corrected.

10 Meaning : Program error. Virtual storage was not obtained for one of the following reasons:
This reason code applies only to GETMAIN requests with LOC=EXPLICIT specified.

� Part of the requested area is allocated already.

� Virtual storage was already allocated in the same page as this request, but one of the
following characteristics of the storage was different:

 – The subpool
 – The key

– Central storage backing

Action : Determine why your program is attempting to obtain allocated storage or why your
program is attempting to obtain virtual storage with different attributes from the same page of
storage. Correct the coding error.

492 OS/390 V2R8.0 MVS Assembler Services Reference

 GETMAIN Macro

Figure 31 (Page 2 of 2). Return Codes for the GETMAIN Macro

Return Code Meaning and Action

14 Meaning : Successful completion. The system has cleared the requested storage to zeroes.
This return code occurs only when CHECKZERO=YES is specified.

Action : None.

 Example 1
Obtain 400 bytes of storage from subpool 10. If the storage is available, the address will be
returned in register 1 and register 15 will contain 0; if storage is not available, register 15 will
contain 4.

GETMAIN RC,LV=4ðð,SP=1ð

 Example 2
Obtain 48 bytes of storage from default subpool 0. If the storage is available, the address
will be stored in the word at AREAADDR; if the storage is not available, the task will be
abnormally terminated.

 GETMAIN EU,LV=48,A=AREAADDR
 .
 .
 .
AREAADDR DS F

 Example 3
Obtain a minimum of 1024 bytes to a maximum of 4096 bytes of virtual storage from default
subpool 0 with virtual and central storage locations either above or below 16 megabytes. If
the storage is available, the starting address is to be returned in register 1 and the length of
the storage allocated is to be returned in register 0; if the storage is not available, the caller
is to be terminated.

GETMAIN VRU,LV=(4ð96,1ð24),LOC=ANY

 GETMAIN — Allocate Virtual Storage 493

 GETMAIN Macro

 GETMAIN—List Form
Use the list form of the GETMAIN macro to construct a control program parameter list. The
list form of the GETMAIN macro cannot be used to allocate virtual storage with addresses
greater than 16 megabytes.

The list form of the GETMAIN macro is written as follows:

The parameters are explained under the standard form of the GETMAIN macro, with the
following exception:

,MF=L
Specifies the list form of the GETMAIN macro.

 name name: Begin name in column 1.

␣ One or more blanks must precede GETMAIN.

GETMAIN

␣ One or more blanks must follow GETMAIN.

 LC
 LU
 VC
 VU
 EC
 EU

 ,LA=length addr length addr: A-type address.
 ,LV=length value length value: symbol or decimal number.

Notes:
1. LA may not be specified with EC or EU above.
2. LV may not be specified with LC, LU, VC or VU above.

 ,A=addr addr: A-type address.

 ,SP=subpool nmbr subpool nmbr: symbol or decimal number 0-127, 131, 132.

Default: SP=0
Note: Specify the subpool as follows:

� Use the SP parameter for LC, LU, VC, VU, EC, EU, RC, RU,
VRC, and VRU requests, and for R requests where LV does
not indicate register 0.

� Use register 0 for R requests with LV=(0); do not code the SP
parameter. The low-order three bytes of register 0 must
contain the length of the requested storage, and the high-order
byte must contain the subpool number.

 ,BNDRY=DBLWD Default: BNDRY=DBLWD
 ,BNDRY=PAGE

 ,RELATED=value value: any valid assembler character string.

,MF=L

494 OS/390 V2R8.0 MVS Assembler Services Reference

 GETMAIN Macro

 GETMAIN—Execute Form
A remote control program parameter list is used in, and can be modified by, the execute
form of the GETMAIN macro. The parameter list can be generated by the list form of either
a GETMAIN or a FREEMAIN. The execute form of the GETMAIN macro cannot be used to
allocate virtual storage with addresses greater than 16 megabytes.

The execute form of the GETMAIN macro is written as follows:

The parameters are explained under the standard form of the GETMAIN macro, with the
following exception:

,MF=(E,list addr)
Specifies the execute form of the GETMAIN macro using a remote control program
parameter list.

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede GETMAIN.

GETMAIN

␣ One or more blanks must follow GETMAIN.

 LC
 LU
 VC
 VU
 EC
 EU

 ,LA=length addr length addr: RX-type address or register (2) - (12).
 ,LV=length value length value: symbol, decimal number, or register (2) - (12).

Note: LA may not be specified with EC or EU above.
Note: LV may not be specified with LC, LU, VC, or VU above.

 ,A=addr addr: RX-type address, or register (2) - (12).

 ,SP=subpool nmbr subpool nmbr: symbol; decimal number 0-127, 131, 132; or register

(2) - (12).
Default: SP=0
Note: Specify the subpool as follows:

� Use the SP parameter for LC, LU, VC, VU, EC, EU, RC, RU,
VRC, and VRU requests, and for R requests where LV does
not indicate register 0.

� Use register 0 for R requests with LV=(0); do not code the SP
parameter. The low-order three bytes of register 0 must
contain the length of the requested storage, and the high-order
byte must contain the subpool number.

 ,BNDRY=DBLWD Default: BNDRY=DBLWD
 ,BNDRY=PAGE

 ,RELATED=value value: any valid assembler character string.

,MF=(E,list addr) ctrl prog: RX-type address, or register (1) or (2) - (12).

 GETMAIN — Allocate Virtual Storage 495

 GETMAIN Macro

496 OS/390 V2R8.0 MVS Assembler Services Reference

 GQSCAN Macro

GQSCAN — Extract Information From Global Resource Serialization Queue

 Description
Use the GQSCAN macro to obtain the status of resources and requestors of those
resources. The GQSCAN macro allows you to obtain resource information from the system.

The ISGRIB macro allows you to interpret the data that the GQSCAN service routine returns
to the user-specified area. The ISGRIB macro maps the resource information block (RIB)
and the resource information block extent (RIBE) as shown in OS/390 MVS Data Areas, Vol
4 (RD-SRRA).

There are two fields in the RIB that you can use to determine whether any RIBEs were not
returned:

� RIBTRIBE contains the total number of RIBEs associated with this RIB

� RIBNRIBE contains the total number of RIBEs returned by GQSCAN with this RIB in the
user-specified area indicated by the AREA parameter.

Global resource serialization counts and limits the number of outstanding global resource
serialization requests. A global resource serialization request is any ENQ, RESERVE, or
GQSCAN that causes an element to be inserted into a queue in the global resource
serialization request queue area.

 Environment
The requirements for the caller are:

Minimum authorization : Problem state with any PSW key.
Dispatchable unit mode : Task
Cross memory mode : PASN=HASN=SASN or PASN¬=HASN¬=SASN

Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode : Primary
Interrupt status : Enabled for I/O and external interrupts
Locks : No locks held
Control parameters : Control parameters must be in the primary address space.

 Programming Requirements
To interpret the data that the GQSCAN service routine returns in the user-specified area, you
must include the ISGRIB mapping macro as a DSECT in your program.

Input Register Information
Before issuing the GQSCAN macro, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register Contents
13 The address of an 18-word save area

Output Register Information
When control returns to the caller, the GPRs contain:

 Copyright IBM Corp. 1988, 1999 497

 GQSCAN Macro

Register Contents
0 Register 0 contains a fullword reason code if the return code in register 15 is

X'0A' or X'0C'. Otherwise, register 0 contains the following two halfword
values:

� The first (high-order) halfword contains the length of the fixed portion of
each RIB returned.

� The second (low-order) halfword contains the length of each RIBE returned
or reason code.

1 Contains the number of RIBs that were copied into the area provided
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The standard form of the GQSCAN macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede GQSCAN.

GQSCAN

␣ One or more blanks must follow GQSCAN.

AREA=(area addr,area size) area addr: A-type address or register (2) - (12).

area size: symbol, decimal digit, or register (2) - (12).
Note: AREA cannot be specified with QUIT=YES.

 ,REQLIM=value value: symbol, decimal digit, register (2) - (12), or the word MAX.
 ,REQLIM=MAX Default: REQLIM=MAX

 ,SCOPE=ALL Default: SCOPE=STEP
 ,SCOPE=STEP
 ,SCOPE=SYSTEM
 ,SCOPE=SYSTEMS

 ,RESERVE=YES Default: All resources requested with RESERVE and all
 ,RESERVE=NO resources requested with ENQ.

 ,RESNAME=(qname
 addr[,rname addr, qname addr: RX-type address or register (2) - (12).
 rname length], rname addr: RX-type address or register (2) - (12).
 [GENERIC|SPECIFIC], rname length: decimal digit, or register (2) - (12).
 qname length) Default: assembled length of rname.

498 OS/390 V2R8.0 MVS Assembler Services Reference

 GQSCAN Macro

Default: qname length of eight.

 ,SYSNAME=(sysname addr sysname addr: RX-type address or register (2) - (12).
 [,asid value]) asid value: symbol, decimal digit, or register (2) - (12).

Notes: Provide rname addr only when qname addr is used. Code
rname length if a register is specified for rname addr. Code an
asid value only when the sysname addr is used.

 ,QUIT=YES Default: QUIT=NO
 ,QUIT=NO Note: QUIT=YES is mutually exclusive with all parameters but

TOKEN and MF.

 ,REQCNT=value value: decimal digit or register (2) - (12).

Default: REQCNT=0

 ,OWNERCT=value,WAITCNT=
 value

value: decimal digit or register (2) - (12).

 ,OWNERCT=value value: decimal digit or register (2) - (12).

 ,WAITCNT=value value: decimal digit or register (2) - (12).

 ,TOKEN=addr addr: RX-type address or register (2) - (12).

 ,XSYS=YES Default: XSYS=YES
 ,XSYS=NO Note: XSYS=NO is mutually exclusive with TOKEN, QUIT=YES

and SYSNAME, when SYSNAME is not equal to zero or zero and
the asid value(0,asid value). In a global resource serialization ring
complex, XSYS=NO is ignored.

 Parameters
The parameters are explained as follows:

AREA= (area addr,area size)
Specifies the location and size of the area where information extracted from the global
resource serialization resource queues is to be placed. The minimum size is the
amount needed to describe a single resource, which is the length of the fixed portions of
the RIB and the maximum size rname rounded up to a fullword value. IBM
recommends that you use a minimum of 1024 bytes as the area size.

,REQLIM=value
,REQLIM=MAX

Specifies the maximum number of owners and waiters to be returned for each resource,
which can be any value between 0 and 215-1. MAX specifies 215-1 (32767).

,SCOPE=ALL
,SCOPE=STEP
,SCOPE=SYSTEM
,SCOPE=SYSTEMS

Specifies that you want information only for resources having the indicated scope.
STEP, SYSTEM, or SYSTEMS is the scope specified on the resource request. If you
specify SCOPE=ALL (meaning STEP, SYSTEM, and SYSTEMS), the system returns
information for all resources the system recognizes that have the specified RESNAME,
RESERVE, or SYSNAME characteristics.

,RESERVE=YES
,RESERVE=NO

If you specify RESERVE=YES, information is only returned for the requestors of the
resource, that requested the resource with the RESERVE macro. If, for example, the
resource also had requestors with the ENQ macro, the ENQ requestor's information
would not be returned for the resource.

 GQSCAN — Extract Information From Global Resource Serialization Queue 499

 GQSCAN Macro

RESERVE=NO information is only returned for the requestors of the resource that
requested the resource with the ENQ macro. In other words, if the resource also had
requestors with the RESERVE macro, the RESERVE requestor's information would not
be returned for the resource.

,RESNAME=(qname addr[,rname addr,rname length],[GENERIC|SPECIFIC], qname length)
RESNAME with (rname) indicates the name of one resource.

The qname addr specifies the address of the 8-character major name of the requested
resource.

The rname addr specifies the virtual storage address of a 1 to 255-byte minor name
used with the major name to represent a single resource. Information returned is for a
single resource unless you specify SCOPE=ALL, in which case it could be for three
resources (STEP, SYSTEM, and SYSTEMS). If the name specified by rname is defined
by an EQU assembler instruction, the rname length must be specified.

The rname length specifies the length of the minor name. If you use the register form,
specify length in the low-order (rightmost) byte. The length must match the rname
length specified on ENQ or RESERVE.

GENERIC specifies that the rname of the requested resource must match but only for
the length specified. For example, an ENQ for SYS1.PROCLIB would match the
GQSCAN rname specified as SYS1 for an rname length of 4.

SPECIFIC specifies that the rname of the requested resource must exactly match the
GQSCAN rname.

Note: GENERIC and SPECIFIC are mutually exclusive.

The qname length specifies the number of characters in a resource qname that must
match the GQSCAN qname specified by RESNAME. You must specify a qname length
to request a GQSCAN for a generic qname. For example, an ENQ with a qname of
SYSDSN would match a GQSCAN specifying GENERIC with a qname of SYSD and
qname length of 4. Specify zero for the qname length (with any qname) to request a
generic GQSCAN matching any resource qname. If you do not specify a qname length,
GQSCAN uses the default of 8.

,SYSNAME=(sysname addr [,asid value])
Specify SYSNAME to tell GQSCAN to return information for resources requested by
tasks running on the MVS system specified in an 8-byte field pointed to by the address
in sysname address and the asid value, a 4-byte address space identifier, right justified.
Valid SYSNAMEs are specified in the IEASYSxx parmlib member.

Information returned includes only those resources whose sysname addr and asid value
match the ones specified. SYSNAME=0 or SYSNAME=(0,asid value), specifies that the
system name is that of the system on which GQSCAN is issued. The system issues
return code X'0A' with a reason code of X'0C', if SYSNAME≠0 or SYSNAME≠(0,asid
value) is specified with XSYS=NO.

,QUIT=YES
,QUIT=NO

QUIT=NO indicates that you do not want to end the current global resource serialization
queue scan. QUIT=YES tells GQSCAN to stop processing the current global resource
serialization queue scan and release the storage allocated to accumulate the information
specified in the token.

If you specify QUIT=YES, you must specify the TOKEN parameter. If you specify
QUIT=YES without the TOKEN parameter, the system issues abend X'09A'.

,REQCNT=rcount
Specifies that you want GQSCAN to return resource information only when the total
number of requestors (owners plus waiters) is greater than or equal to rcount, which can
be any value between 0 and 231-1.

500 OS/390 V2R8.0 MVS Assembler Services Reference

 GQSCAN Macro

,OWNERCT=ocount
Specifies that you want GQSCAN to return resource information only when the total
number of owners is greater than or equal to ocount, which can be any value between 0
and 231-1.

,WAITCNT=wcount
Specifies that you want GQSCAN to return resource information only when the total
number of waiters is greater than or equal to wcount, which can be any value between 0
and 231-1.

OWNERCT=ocount,WAITCNT=wcount
Specifies that you want GQSCAN to return resource information either when the total
number of owners is greater than or equal to ocount or when the total number of waiters
is greater than or equal to wcount.

,TOKEN=addr
Specifies the address of a fullword of storage that the GQSCAN service routine can use
to provide you with any remaining information in subsequent invocations. If the token
value is zero, the scan starts at the beginning of the resource queue. If the token value
is not zero, the scan resumes at the point specified on TOKEN. Specify the same token
value that GQSCAN returned on its previous invocation to continue where processing
left off on the previous invocation.

When providing a non-zero token value, you must specify the same scope that you
specified on the GQSCAN request that returned the token.

,XSYS=YES
,XSYS=NO

Specifies whether GQSCAN should be propagated across systems in the global
resource serialization complex, to gather complex-wide information. This parameter is
ignored in a global resource serialization ring complex, and for requests that only gather
local data.

Specify XSYS=YES if the program requires complex-wide global resource serialization
information. The caller might be suspended while the information is being gathered. Do
not specify or default to XSYS=YES if this condition cannot be tolerated.

Specify XSYS=NO if the program will accept global resource serialization information
from this system only. The RIBE data will contain information about requestors from
other other systems in the complex only if that information is already available on the
GQSCAN caller's system. Otherwise, RIBE data will be provided only for requests from
the GQSCAN caller's system, and the counts in the RIB will reflect only those requests.
This request is always handled without placing the caller's dispatchable unit into a wait.

 GQSCAN — Extract Information From Global Resource Serialization Queue 501

 GQSCAN Macro

 ABEND Codes
None

Return and Reason Codes
When GQSCAN returns control, register 15 contains one of the following return codes:

Figure 32 (Page 1 of 3). Return Codes for the GQSCAN Macro

Hexadecimal
Return Code

Meaning and Action

0 Meaning : Queue scan processing is complete. Data is now in the area you specified. There
is no more data to return.

Action : Process the data.

4 Meaning : Queue scan processing is complete. No resources matched your request.

Action : Do not try to process any data; none exists.

8 Meaning : The area you specified was filled before queue scan processing completed.

Action : If you specified TOKEN, process the information in the area and issue GQSCAN
again, specifying the TOKEN returned to you. If you did not specify TOKEN, specify a
larger area or specify a TOKEN.

502 OS/390 V2R8.0 MVS Assembler Services Reference

 GQSCAN Macro

Figure 32 (Page 2 of 3). Return Codes for the GQSCAN Macro

Hexadecimal
Return Code

Meaning and Action

0A Meaning :

The information you specified to GQSCAN is not valid.

Action : Take the action indicated by the following hexadecimal reason code found in
register 0.

Reason
Code Meaning

04 The caller attempted to use GQSCAN before the global resource serialization
(GRS) address space was active.

08 The size of the reply area, specified by the the AREA parameter, is too small to
contain a resource information block (RIB) of maximum size.

0C You specified mutually exclusive arguments (RESERVE=YES, RESERVE=NO,
RESNAME=, SYSNAME=, or XSYS=NO) to GQSCAN.

10 The caller was holding a local lock other than the GRS local lock when
GQSCAN was invoked.

14 One of the following conditions, in reference to the RESNAME parameter, was
detected by GQSCAN:

The qname length was specified with a value greater than eight.

The qname length value was specified without the qname addr value.

The SPECIFIC parameter was specified with a rname length value of zero.

The rname length value was specified without a rname addr value.

| The rname or rname length was specified without the qname addr value.

18 The asid value, for the SYSNAME parameter was specified without the
sysname addr value.

1C The REQCNT parameter was specified with either the OWNERCNT or
WAITCNT parameters.

20 The combination of values specifed on the SCOPE parameter is not valid.

28 An element in GQSCAN's input parameter list was not in the caller's storage
protect key.

2C An invalid token was specified to GQSCAN.

30 The GQSCAN caller is not authorized to use the restricted interface
(SCOPE=LOCAL or GLOBAL).

34 QUIT=YES was specified without the TOKEN parameter.

38 The caller held a CMS lock other than CMSEQDQ when GQSCAN was
invoked.

3C The caller held a lock that violated the environmental restrictions of a service
required by GQSCAN.

40 The caller invoked GQSCAN in the service request block (SRB) mode.

44 The value specified for the REQLIM parameter was not valid.

48 The value specified for the REQCNT parameter was not valid.

4C The value specified for the OWNERCT parameter was not valid.

50 The value specified for the WAITCNT parameter was not valid.

0C Meaning : System error. Queue scan encountered an abnormal situation while processing.
The information in your area is not meaningful. The reason code in register 0 contains one
of the following:

Reason
Code Meaning

00 GQSCAN has sustained an unrecoverable error.

04 The GQSCAN caller attempted to resume a scan that was started when the
global resource serialization complex, which is now in star mode, was in ring
mode.

08 The GQSCAN service is not able to obtain storage to satisfy the request.

0C Sysplex processing of a SYSTEMS or GLOBAL request failed.

10 The GQSCAN service failed because the complex was migrating from a ring to
a star configuration.

14 The GQSCAN service failed because inconsistent data was returned from one
or more systems.

Action : Do not try to process any data; none exists. Retry the request one or more times.

 GQSCAN — Extract Information From Global Resource Serialization Queue 503

 GQSCAN Macro

Figure 32 (Page 3 of 3). Return Codes for the GQSCAN Macro

Hexadecimal
Return Code

Meaning and Action

10 Meaning : Program error. An incorrect SYSNAME was specified as input to queue scan.
The information in your area is not meaningful.

Action : Specify a valid SYSNAME on the call to GQSCAN.

14 Meaning : Environmental error. The area you specified was filled before queue scan
processing completed. Your request specified TOKEN, but the limit for the number of
concurrent resource requests (ENQ, RESERVE, or GQSCAN) has been reached. The
information in your area is valid but incomplete. The scan cannot be resumed.

Action : Retry the request one or more times. If the problem persists, consult your system
programmer, who might be able to tune the system so that the limit is no longer exceeded.

504 OS/390 V2R8.0 MVS Assembler Services Reference

 GQSCAN Macro

 GQSCAN—List Form
The list form of the GQSCAN macro is used to construct a non-executable parameter list.
This parameter list, or a copy of it for reentrant programs, can be referred to by the execute
form of the GQSCAN macro.

The list form of the GQSCAN macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede GQSCAN.

GQSCAN

␣ One or more blanks must follow GQSCAN.

AREA=(area addr, area size) area addr: A-type address.

area size: symbol, decimal digit.
Notes:
1. This parameter cannot be specified with QUIT=YES.
2. AREA is required on either the list or the execute form of the
macro.

 ,REQLIM=value value: symbol, decimal digit or the word MAX.
 ,REQLIM=MAX Default: REQLIM=MAX

 ,SCOPE=ALL Default: SCOPE=STEP
 ,SCOPE=STEP
 ,SCOPE=SYSTEM
 ,SCOPE=SYSTEMS

 ,RESERVE=YES Default: All resources requested with RESERVE and all
 ,RESERVE=NO resources requested with ENQ.
 ,RESNAME=(qname

addr [,rname addr, qname addr: A-type address.
 rname length], rname addr: A-type address.
 [GENERIC|SPECIFIC], rname length: decimal digit.
 qname length) Default: assembled length of rname.

Default: qname length of eight.
 ,SYSNAME=(sysname addr sysname addr: A-type address.
 [,asid value]) asid value: symbol, decimal digit.

Notes: rname addr can be provided only when qname addr is
used. rname length must be provided if a register is specified for
rname addr. An asid value can be coded only when the sysname
addr is used.

 ,QUIT=YES Default: QUIT=NO
 ,QUIT=NO Note: Only TOKEN and MF=L can be specified with QUIT=YES.

 ,REQCNT=value value: decimal digit.

Default: REQCNT=0

 ,OWNERCT=value,WAITCNT= value: decimal digit.
 value

 ,OWNERCT=value value: decimal digit.

 ,WAITCNT=value value: decimal digit.

 ,TOKEN=addr addr: RX-type address.

 ,XSYS=YES Default: XSYS=YES

 GQSCAN — Extract Information From Global Resource Serialization Queue 505

 GQSCAN Macro

The parameters are explained under the standard form of the GQSCAN macro with the
following exception:

,MF=L
Specifies the list form of the GQSCAN macro.

 ,XSYS=NO Note: XSYS=NO is mutually exclusive with TOKEN, QUIT=YES
and SYSNAME, when SYSNAME is not equal to zero or zero and
the asid value(0,asid value). In a global resource serialization ring
complex, XSYS=NO is ignored.

,MF=L

506 OS/390 V2R8.0 MVS Assembler Services Reference

 GQSCAN Macro

 GQSCAN—Execute Form
The execute form of the GQSCAN macro can refer to and modify a remote parameter list
built by the list form of the macro. There are no defaults for any of the parameters in the
execute form of the macro.

The execute form of the GQSCAN macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede GQSCAN.

GQSCAN

␣ One or more blanks must follow GQSCAN.

AREA=(area addr,area size) area addr: RX-type address or register (2) - (12).

area size: symbol, decimal digit, or register (2) - (12).
Notes:
1. AREA cannot be specified with QUIT=YES.
2. AREA is required on either the list or the execute form of the
macro.

 ,REQLIM=value value: symbol, decimal digit, register (2) - (12), or the word MAX.
 ,REQLIM=MAX

 ,SCOPE=ALL Note : SCOPE=LOCAL and SCOPE=GLOBAL cannot be
 ,SCOPE=STEP coded on the list form of this macro.
 ,SCOPE=SYSTEM
 ,SCOPE=SYSTEMS

 ,RESERVE=YES
 ,RESERVE=NO
 ,RESNAME=(qname
 addr[,rname addr, qname addr: RX-type address or register (2) - (12).
 rname length], rname addr: RX-type address or register (2) - (12).
 [GENERIC|SPECIFIC], rname length: decimal digit, register (2) - (12).
 qname length) Default: assembled length of rname.
 ,SYSNAME=(sysname addr sysname addr: RX-type address or register (2) - (12).
 [,asid value]) asid value: symbol, decimal digit, or register (2) - (12).

Note: rname addr can be provided only when qname addr is used.
rname length must be provided if a register is specified for rname
addr. An asid value can be coded only when the sysname addr is
used.

 ,QUIT=YES Default: QUIT=NO
 ,QUIT=NO Note: Only TOKEN and MF=(E, parm list addr) can be specified

with QUIT=YES.

 ,REQCNT=value value: decimal digit or register (2) - (12).

Default: REQCNT=0

 ,OWNERCT=value,WAITCNT= value: decimal digit.
 value

 ,OWNERCT=value value: decimal digit.

 ,WAITCNT=value value: decimal digit.

 ,TOKEN=addr addr: RX-type address of register (2) - (12).

 ,XSYS=YES Default: XSYS=YES

 GQSCAN — Extract Information From Global Resource Serialization Queue 507

 GQSCAN Macro

The parameters are explained under the standard form of the GQSCAN macro with the
following exception:

,MF=(E,list addr)
Specifies the execute form of the GQSCAN macro.

list addr specifies the area that the system uses to contain the parameters.

 ,XSYS=NO Note: XSYS=NO is mutually exclusive with TOKEN, QUIT=YES
and SYSNAME, when SYSNAME is not equal to zero or zero and
the asid value(0,asid value). In a global resource serialization ring
complex, XSYS=NO is ignored.

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).

508 OS/390 V2R8.0 MVS Assembler Services Reference

 HSPSERV Macro

HSPSERV — Read from and Write to a Hiperspace

 Description
HSPSERV transfers data between virtual storage areas in address spaces and hiperspaces.
It reads data from a hiperspace to an address space and it writes data to a hiperspace from
an address space.

A hiperspace can be either a standard hiperspace , of which there are two types, shared
and nonshared, or an ESO (expanded storage only) hiperspace . The nonshared standard
hiperspace and the shared standard hiperspace are backed with expanded storage and, if
necessary, auxiliary storage. Through the buffer area in the address space, your program
can view or scroll through the hiperspace. HSPSERV SWRITE and HSPSERV SREAD
transfer data to and from a standard hiperspace. For more information about hiperspaces,
see OS/390 MVS Programming: Assembler Services Guide.

The STOKEN parameter identifies the specific hiperspace to be read from or written to. The
HSPALET parameter specifies an optional ALET for the hiperspace. The RANGLIST
parameter identifies the storage range in the address space and the storage range in the
hiperspace. A storage range consists of contiguous 4K byte blocks starting on a 4K byte
boundary.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN

Note: PASN=HASN=SASN is required for a nonshared standard
hiperspace for which an ALET is not used (the HSPALET
parameter is omitted).

AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the caller's primary address space. If the caller's PSW

key is not zero, the PSW key must match the storage key
associated with the control parameters.

 Programming Requirements
� If you code the HSPALET parameter on the HSPSERV macro, you must first issue the

SYSSTATE macro to indicate the ASC mode of your program.

� If you code the HSPALET parameter on the HSPSERV macro, you must provide a
144-byte save area in the caller's primary address space.

� The range list must be addressable in the caller's primary address space.

 Restrictions
None.

 Copyright IBM Corp. 1988, 1999 509

 HSPSERV Macro

Input Register Information
Before issuing the HSPSERV macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

However, if the caller specifies the HSPALET parameter:

� General purpose register (GPR) 13 must contain the address of a 144-byte save area.
The save area must be in the caller's primary address space.

� Access register (AR) 13 must contain 0, regardless of whether the caller is in primary or
AR address space control (ASC) mode.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Reason code
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

The following figure describes the characteristics and restrictions for the use of standard
hiperspaces, the hiperspaces that allow your program to scroll through large areas of data.

510 OS/390 V2R8.0 MVS Assembler Services Reference

 HSPSERV Macro

Address Space
Standard
Hiperspace

SWRITE

SREAD

HSPSERV SWRITE

HSPSERV SREAD

...

...

Area in address space:

Must be in private subpool.
Must be within the home address space.
Must be on a 4K-byte boundary.
Can’t be part of a VIO window.
For PSW key 1-F callers, must have a matching storage key with
one exception: for SWRITE callers, if the area is not fetch-protected,
it can have any storage key.

Area of standard hiperspace:

For SWRITE requests, cannot have a DIV SAVE current for
the area of the hiperspace.
If an ALET is used, cannot have a DIV SAVE current for
any part of the hiperspace.

Non-shared standard hiperspace:

If an ALET is not used, the caller’s TCB must own the hiperspace.
If an ALET is used, any TCB in the caller’s home address space can own the hiperspace.
ALET is used:
- The ALET must be used for a hiperspace on the caller’s current DU-AL or PASN-AL.
- The cross memory mode can be any.
If an ALET is not used, the cross memory mode must be PASN=HASN.
For PSW key 1-F callers requesting SWRITE or SREAD RELEASE=YES, must have matching storage key.
For PSW key 1-F callers requesting SREAD RELEASE=NO, can have non-matching storage key
only if hiperspace is not fetch-protecte

Shared standard hiperspace:

Callers must use an ALET.
Any task in the system can own the hiperspace. If the owning task is not in the caller’s home
or primary address space, the owner’s home address space must be non-sw

The ALET must be for a hiperspace on the caller’s current DU-AL or PASN-AL.
The cross memory mode can be any.
For PSW keys 1-F callers requesting SWRITE or SREAD RELEASE=YES, must have matching
storage key.

For PSW key 1-F callers requesting SREAD RELEASE=NO, can have non-matching storage key
only if hiperspace is not fetch protected.

Figure 33. Characteristics and Restrictions for Standard Hiperspaces

 HSPSERV — Read from and Write to a Hiperspace 511

 HSPSERV Macro

 Syntax
The standard form of the HSPSERV macro for standard hiperspaces is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede HSPSERV.

HSPSERV

␣ One or more blanks must follow HSPSERV.

SREAD
SWRITE

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

 ,HSPALET=alet-addr alet-addr: RX-type address or register (2) - (12).

 ,NUMRANGE=n n: Number from 1 to 50.
 ,NUMRANGE=num-addr num-addr: RX-type address or register (2) - (12).

Default: NUMRANGE=1.

,RANGLIST=list-addr list-addr: RX-type address or register (2) - 12).

 ,RELEASE=NO Default: RELEASE=NO.
 ,RELEASE=YES

 ,RETCODE=ret-addr ret-addr: RX-type address or register (2) - (12).

 ,RSNCODE=rsn-addr rsn-addr: RX-type address or register (2) - (12).

 ,MF=S

 Parameters
The parameters are explained as follows:

SREAD
Requests that the system read data from a standard hiperspace to an address space.

STOKEN and RANGLIST are required parameters on the SREAD request.
NUMRANGE, RELEASE, HSPALET, RSNCODE, and RETCODE are optional
parameters.

SWRITE
Requests that the system write data to a standard hiperspace from an address space.

Notes :

� When HSPSERV returns to the caller after the SWRITE operation, the contents of
the address space storage range are not preserved. You can use the address
space area again.

� If the hiperspace maps a data-in-virtual object, do not issue an SWRITE request
while a DIV SAVE request is current.

STOKEN and RANGLIST are required parameters on the SWRITE request.
NUMRANGE, HSPALET, RETCODE, and RSNCODE are optional parameters.

,STOKEN=stoken-addr
Specifies the address of the eight-character variable that contains the STOKEN for the
standard hiperspace from which the data is to be read or into which the data is to be
written. Restrictions on standard hiperspaces are described in Figure 33 on page 511.

512 OS/390 V2R8.0 MVS Assembler Services Reference

 HSPSERV Macro

,HSPALET=alet-addr
Specifies either the address of a fullword or a register that contains the ALET for the
hiperspace that is to be accessed. The ALET must be for a hiperspace that is on the
caller's DU-AL or PASN-AL.

The HSPALET parameter is optional except for the following case: If the calling program
accesses a shared hiperspace, is in problem state, and uses PSW key 8 - F, HSPALET
is required.

If you code HSPALET, do not code RELEASE=YES.

If you code HSPALET, your recovery routine cannot attempt retry at the time of error.

,NUMRANGE=n
,NUMRANGE=num-addr

Specifies the number of entries, from 1 to 50, or specifies a fullword that identifies the
number of entries in the range list (that the RANGLIST parameter points to), or specifies
a register containing the address of a fullword containing the number of entries. The
default is NUMRANGE=1.

If you omit NUMRANGE, HSPSERV reads or writes one entry in the range list.

,RANGLIST= list-addr
Specifies a fullword that contains an address of a list of ranges that the system is to
read or write, or specifies a register that contains the address of the fullword pointer to
the range list. The range list consists of a number of entries (specified by NUMRANGE)
where each entry specifies (1) a storage location in an address space, (2) a storage
location in a hiperspace, and (3) the number of blocks of data the system is to read or
write.

Each entry in the range list consists of three words as follows:

First Word The starting virtual address in the address space into which the data
is to be read or from which the data is to be written

Second Word The starting virtual address in the hiperspace from which the system
is to read or into which the system is to write

Third Word The number of blocks the system is to read or write

Note that the address is the block number followed by 12 binary zeros.

An example of how to code the RANGLIST parameter when NUMRANGE=3 is as
follows:

AddrSp Loc Hiper Loc Blocks

AddrSp Loc Hiper Loc Blocks

AddrSp Loc Hiper Loc Blocks

Register 5

or

12 Bytes

RANGADDR
(fullword)

NUMRANGE=3, RANGLIST=(5)

NUMRANGE=3, RANGLIST=RANGADDR

Restrictions on the areas in the address space and the hiperspace are described in
Figure 33 on page 511.

On return, only if the caller issued the HSPSERV macro with the HSPALET parameter,
the range list values might be different from the input values if the system could not at
first successfully complete the read or write operation. In that case, the system changes

 HSPSERV — Read from and Write to a Hiperspace 513

 HSPSERV Macro

the range list values, but does not restore the input values when it finally returns control
to the caller.

,RELEASE=NO
,RELEASE=YES

Specifies whether or not the system is to release the hiperspace pages after it
completes the SREAD operation. RELEASE is valid only with SREAD.

RELEASE=NO specifies that the system does not release the hiperspace pages after it
completes the SREAD operation. (Unless a subsequent SWRITE request changes the
data, the same data will be available again on the next SREAD request.)
RELEASE=NO is the default.

RELEASE=YES specifies that, after the SREAD request, the system is to release the
storage that backed the data in the hiperspace.

If you code RELEASE=YES, do not code HSPALET.

,RSNCODE=rsn-addr
Specifies the location where the system is to store the reason code. The reason code is
also in GPR 0.

,RETCODE=ret-addr
Specifies the location where the system is to store the return code. The return code is
also in GPR 15.

,MF=S
Specifies the standard form of the macro. This form generates code to place the
parameters into an inline parameter list and invoke the service.

 ABEND Codes
HSPSERV might abnormally terminate with abend code X'01D'. See OS/390 MVS System
Codes for an explanation of abend code X'01D'.

Return and Reason Codes
When control returns from HSPSERV SREAD or HSPSERV SWRITE, GPR 15 (and ret-addr,
if you coded RETCODE) contains one of the following hexadecimal return codes. GPR 0
(and rsn-addr, if you coded RSNCODE) contains one of the following hexadecimal reason
codes.

Note: yy is X'09' for SREAD and X'0A' for SWRITE.

Return Code Reason Code Meaning and Action

00 00 Meaning : HSPSERV completed successfully.

Action : None.

08 xxyy05xx Meaning : System error. The system rejects the request. A
hiperspace page is unavailable.

Action : Record the return and reason code and supply it to the
appropriate IBM support personnel.

08 xxyy06xx Meaning : System error. The system rejects the request. An
address space page is unavailable.

Action : Record the return and reason code and supply it to the
appropriate IBM support personnel.

0C xx006xx Meaning : System error. System failure due to environmental
problems.

Action : Record the return and reason code and supply it to the
appropriate IBM support personnel.

514 OS/390 V2R8.0 MVS Assembler Services Reference

 HSPSERV Macro

 HSPSERV—List Form
Use the list form of the HSPSERV macro together with the execute form of the macro for
applications that require reentrant code. The list form of the macro defines an area of
storage, which the execute form of the macro uses to store the parameters.

 Syntax
The list form of the HSPSERV macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede HSPSERV.

HSPSERV

␣ One or more blanks must follow HSPSERV.

 PLISTVER=vernum vernum: Parameter list version 0 or 1.

Default: Version that allows all specified parameters.

,MF=(L,list addr) list addr: Symbol.
,MF=(L,list addr,attr) attr: 1- to 60-character input string. Default : 0D

 Parameters
Parameters for the list form of HSPSERV are as follows:

PLISTVER=vernum
Specifies the macro version associated with HSPSERV. PLISTVER is an optional
parameter that determines which parameter list the system generates. Specify zero if
you use parameters only from this group:

 MF
 NUMRANGE
 PLISTVER
 RANGLIST
 RELEASE
 RETCODE
 RSNCODE
 SREAD
 STOKEN
 SWRITE

If you use the HSPALET parameter, specify 1.

If you do not specify PLISTVER, the default is to allow all of the parameters you specify
on the invocation to be processed.

,MF=(L,list addr)
,MF=(L,list addr,attr)

Specifies the list form of HSPSERV.

list-addr is the address of the storage area for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
0D, which forces the parameter list to a doubleword boundary.

 HSPSERV — Read from and Write to a Hiperspace 515

 HSPSERV Macro

 HSPSERV—Execute Form
The execute form of the HSPSERV macro changes parameters in the control parameter list
that the system created through the list form of the macro and performs the specified
operation.

 Syntax
The execute form of the HSPSERV macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede HSPSERV.

HSPSERV

␣ One or more blanks must follow HSPSERV.

SREAD
SWRITE

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

 ,HSPALET=alet-addr alet-addr: RX-type address or register (2) - (12).

 ,NUMRANGE=1 Default: NUMRANGE=1.
 ,NUMRANGE=num-addr num-addr: RX-type address or register (2) - (12).

,RANGLIST=list-addr list-addr: RX-type address or register (2) - (12).

 ,RELEASE=NO Default: RELEASE=NO.
 ,RELEASE=YES

 ,RETCODE=ret-addr ret-addr: RX-type address or register (2) - (12).

 ,RSNCODE=rsn-addr rsn-addr: RX-type address or register (2) - (12).

,MF=(E,list-addr,COMPLETE) list-addr: RX-type address or register (2) - (12).
,MF=(E,list-addr,NOCHECK) Default : COMPLETE.

 Parameters
The parameters are explained under the standard form of the HSPSERV macro with the
following exceptions:

,MF=(E,list-addr,COMPLETE)
,MF=(E,list-addr,NOCHECK)

Specifies the execute form of the HSPSERV macro.

list-addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system checks for required
parameters and supplies the optional parameters that you did not specify.

NOCHECK specifies that the system does not check for required parameters and does
not supply the optional parameters that you did not specify.

516 OS/390 V2R8.0 MVS Assembler Services Reference

 HSPSERV Macro

 HSPSERV—Modify Form
Use the modify form of the HSPSERV macro together with the list and execute forms of the
macro for service routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the appropriate
options; then use the execute form to call the service.

 Syntax
The modify form of the HSPSERV macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede HSPSERV.

HSPSERV

␣ One or more blanks must follow HSPSERV.

SREAD
SWRITE

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

 ,HSPALET=alet-addr alet-addr: RX-type address or register (2) - (12).

 ,NUMRANGE=1 Default: NUMRANGE=1.
 ,NUMRANGE=num-addr num-addr: RX-type address or register (2) - (12).

,RANGLIST=list-addr list-addr: RX-type address or register (2) - (12).

 ,RELEASE=NO Default: RELEASE=NO.
 ,RELEASE=YES

 ,RETCODE=ret-addr ret-addr: RX-type address or register (2) - (12).

 ,RSNCODE=rsn-addr rsn-addr: RX-type address or register (2) - (12).

,MF=(M,list-addr,COMPLETE) list-addr: RX-type address or register (2) - (12).
,MF=(M,list-addr,NOCHECK) Default : COMPLETE.

 Parameters
Parameters for the modify form of HSPSERV are described under the standard form of the
macro with the following exceptions:

,MF=(M,list-addr,COMPLETE)
,MF=(M,list-addr,NOCHECK)

Specifies the modify form of the macro.

list-addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for required
parameters and supply the optional parameters that you did not specify. NOCHECK
specifies that the system does not check for required parameters and does not supply
the optional parameters that you did not specify.

 HSPSERV — Read from and Write to a Hiperspace 517

 HSPSERV Macro

518 OS/390 V2R8.0 MVS Assembler Services Reference

 IARR2V Macro

IARR2V — Convert a Central Storage Address to a Virtual Storage Address

 Description
Use the IARR2V macro to convert a central storage address to a virtual storage address.
This conversion can be useful when you have the central storage address from handling I/O
or doing diagnostic support and need to know the corresponding virtual address.

When the input storage address is a central storage address that backs a single page, the
system returns the ASID that indicates the address space that owns the central storage, and
the STOKEN that indicates the address space or data space that uses the central storage.
When a central storage address does not back any page, or backs a read-only nucleus
page, the system returns a non-zero return code and reason code.

For more information on the use of the IARR2V macro, see OS/390 MVS Programming:
Assembler Services Guide.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with any PSW key.
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit.
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold the local or CPU lock, but is not required to

hold any locks.
Control parameters: None.

 Programming Requirements
None.

 Restrictions
None.

Input Register Information
Before issuing the IARR2V macro, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter, or using it as a base
register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 ASID if return code is 0 or 4; otherwise, reason code. The ASID value is

X'FFFF' if the returned virtual address represents common storage.
1 Virtual storage address if return code is 0 or 4; otherwise, used as a work

register by the system.
2 - 13 Unchanged.
14 Used as a work register by the system.
15 Return code.

When control returns to the caller, the ARs contain:

 Copyright IBM Corp. 1988, 1999 519

 IARR2V Macro

Register Contents
0 First four bytes of STOKEN if return code is 0 or 4; otherwise, used as a work

register by the system.
1 Last four bytes of STOKEN if return code is 0 or 4; otherwise, used as a work

register by the system.
2 - 13 Unchanged.
14 Total shared view count if return code is 0 or 4; otherwise, used as a work

register by the system.
15 Valid shared view count if return code is 0 or 4; otherwise, used as a work

register by the system.

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The standard form of the IARR2V macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IARR2V.

IARR2V

␣ One or more blanks must follow IARR2V.

RSA=rsa_addr rsa_addr: RS-type address, or address in register (2) - (12).

 ,VSA=vsa_addr vsa_addr: RS-type address, or address in register (2) - (12).

 ,ASID=asid_addr asid_addr: RS-type address, or address in register (2) - (12).

 ,STOKEN=stoken_addr stoken_addr: RS-type address, or address in register (2) - (12).

 ,WORKREG=work_reg work_reg: RS-type address, or address in register (2) - (12).
 ,WORKREG=NONE Default : WORKREG=NONE

 ,NUMVIEW=view_addr view_addr: RS-type address, or address in register (2) - (12).

 ,NUMVALID=val_addr val_addr: RS-type address, or address in register (2) - (12).

 ,RETCODE=retcode retcode: RS-type address, or address in register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address, or address in register (2) - (12).

520 OS/390 V2R8.0 MVS Assembler Services Reference

 IARR2V Macro

 Parameters
The parameters are explained as follows:

RSA=rsa_addr
Specifies the name (RS-type) or address (in register 2-12) of a required input fullword
that contains the central storage address to be converted to a virtual storage address.

,VSA=vsa_addr
Specifies the name (RS-type) or address (in register 2-12) of an optional output fullword
that the system uses to return the virtual storage address that corresponds to the input
central storage address.

,ASID=asid_addr
Specifies the name (RS-type) or address (in register 2-12) of an optional output fullword
that the system uses to return the ASID of the address space associated with the output
virtual storage address. The system returns the ASID in bits 16-31 of the fullword, and
clears bits 1-15 to 0. If the input central storage address backs a page that is shared
through the use of the IARVSERV macro, the system sets bit 0 to 1; otherwise, bit 0
contains 0.

,STOKEN=stoken_addr
Specifies the name (RS-type) or address (in register 2-12) of an optional 8-character
output field that the system uses to return the STOKEN for the address space or data
space associated with the output virtual storage address.

,WORKREG=work_reg
,WORKREG=NONE

Specifies whether the system is to return a page sharing view count. If you want the
system to return a page sharing view count, specify work-reg as a digit from 2 through
12 that identifies a GPR/AR pair that the system can use as work registers.
WORKREG=work_reg is required if you code NUMVIEW or NUMVALID.

WORKREG=NONE is the default and specifies that the system is not to return the
sharing count.

,NUMVIEW=view_addr
Specifies the name (RS-type) or address (in register 2-12) of an optional output fullword
that the system uses to return the number of page sharing views associated with the
input central storage address. This number is non-zero only if the system sets bit 0 of
the ASID. NUMVIEW=view_addr is required with the WORKREG=work_reg parameter.

,NUMVALID=val_addr
Specifies the name (RS-type) or address (in register 2-12) of an optional output fullword
that the system uses to return the number of valid page sharing views associated with
the input central storage address. A valid page must be currently defined in central
storage. This number is non-zero only if the system sets bit 0 of the asid_addr.
NUMVALID=val_addr is required with the WORKREG=work_reg parameter.

,RETCODE=retcode
Specifies the name (RS-type) or address (in register 2-12) of an optional output fullword
into which the system copies the return code from GPR 15.

,RSNCODE=rsncode
Specifies the name (RS-type) or address (in register 2-12) of an optional output fullword
into which the system copies the a reason code from GPR 0.

 IARR2V — Convert a Central Storage Address to a Virtual Storage Address 521

 IARR2V Macro

 ABEND Codes
None.

Return and Reason Codes
When the IARR2V macro returns control to your program, GPR 15 (and retcode if you coded
RETCODE) contains the return code. If the return code is not 0 or 4, GPR 0 (and rsncode if
you coded RSNCODE) contains the reason code.

Figure 34. Return and Reason Codes for the IARR2V Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None Meaning : The IARR2V request completed successfully. The address
returned in the VSA parameter represents an address space page.

Action : None required.

04 None Meaning : The IARR2V request completed successfully. The address
returned in the VSA parameter represents a data space page.

Action : None required.

08 xx0001xx Meaning : Program error. The IARR2V request was unsuccessful
because the input central storage address was not within the bounds
of central storage.

Action : Check your input central storage address and rerun the
program.

08 xx0002xx Meaning : Program error. The IARR2V request was unsuccessful
because the frame corresponding to the input central storage address
was not assigned to a page.

Action : Check your input central storage address and rerun the
program.

08 xx0003xx Meaning : Program error. The IARR2V request was unsuccessful
because the frame corresponding to the input central storage address
contains shared data, but no virtual address for any accessible
address space (either home, primary, or secondary) corresponds to
the frame.

Action : Check your input central storage address and rerun the
program.

08 xx0004xx Meaning : System error. The IARR2V request was recursively
invoked.

Action : Record the return code and reason code and supply them to
the appropriate IBM support personnel.

08 xx0005xx Meaning : Program error. The IARR2V request was unsuccessful
because the frame corresponding to the input central storage address
was assigned, but the data space STOKEN could not be found.

Action : Check your input central storage address and rerun the
program.

 Example 1
Convert the central storage address in variable VSA and place the result in variable
VSAOUT.

 LRA 1,VSA
 LR 5,1
INVOKE1 IARR2V RSA=(5),VSA=VSAOUT
 .
 .
VSA DS F
VSAOUT DS F

522 OS/390 V2R8.0 MVS Assembler Services Reference

 IARR2V Macro

 Example 2
Same as Example 1, but return ASID in variable ASIDO.

INVOKE2 IARR2V RSA=(5),ASID=ASIDO
 .
 .
ASIDO DS F

 Example 3
Same as Example 1, but return STOKEN in variable STOKO.

INVOKE3 IARR2V RSA=(5),STOKEN=STOKO
 .
 .
STOKO DS F

 Example 4
Obtain the total and valid number of page sharing views associated with the input address.
WORKREG is required.

INVOKE4 IARR2V RSA=(5),WORKREG=(6),NUMVIEW=VIEWS,NUMVALID=VALS
 .
 .
VIEWS DS F
VALS DS F

 IARR2V — Convert a Central Storage Address to a Virtual Storage Address 523

 IARR2V Macro

524 OS/390 V2R8.0 MVS Assembler Services Reference

 IARVSERV Macro

IARVSERV — Request to Share Virtual Storage

 Description
Use the IARVSERV macro to define virtual storage areas to be shared by programs. This
sharing can reduce the amount of processor storage required and the I/O necessary to
support many applications that process large amounts of data. It also provides a way for
programs executing in 24 bit addressing mode to access data residing above 16 megabytes.

Using IARVSERV allows programs to share data in virtual storage without the central
storage constraints and processor overhead of other methods of sharing data. The type of
storage access is controlled so that you can choose to allow read only or writing to the
shared data with several variations. The type of storage access is called a view . Data to be
shared is called the source . The source is the original data or the virtual storage that
contains the data to be shared. This data is made accessible through an obtained storage
area called the target . The source and target form a sharing group .

Through the IARVSERV macro, you can:

� Request that a virtual storage area (source) be eligible to be shared through a target
view (SHARE parameter).

� Request that the source and targets no longer be shared (UNSHARE parameter).

� Request that the type of storage access to the data be changed.

See OS/390 MVS Programming: Assembler Services Guide for more information about
sharing data through the use of the IARVSERV macro.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key that allows access to the source,
target, or both, depending on the value specified through the
TARGET_VIEW parameter. See OS/390 MVS Programming:
Assembler Services Guide for additional information.

Dispatchable unit mode: Task or SRB.
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 31-bit.
ASC mode: Primary or access register (AR).
Interrupt status: Enabled for I/O and external interrupts.
Locks: The caller may hold the local lock, but is not required to hold any

locks.
Control parameters: Control parameters must be in the primary address space.

 Programming Requirements
� You must specify a range list that is mapped by the IARVRL macro. This is done using

the RANGLIST parameter. For information on the IARVRL macro, see OS/390 MVS
Data Areas, Vol 2 (DCCB-ITTCTE).

� The calling program can use IARVSERV only to share data that resides within the
address space, or in a data space that the calling program created.

� Before your program issues the IARVSERV macro, it must use the GETMAIN,
STORAGE, or DSPSERV macro to obtain storage for the source, target, or both.

� Attributes for storage depend on the subpool specified on the GETMAIN, STORAGE, or
DSPSERV macros.

 Copyright IBM Corp. 1988, 1999 525

 IARVSERV Macro

 Restrictions
None.

Input Register Information
Before issuing the IARVSERV macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code, if GPR 15 contains a non-zero return code; otherwise, used as a

work register by the system.
1 Used as a work register by the system.
2 - 13 Unchanged.
14 Used as a work register by the system.
15 Return code.

When control returns to the caller, the ARs contain:

Register Contents
0 - 1 Used as work registers by the system.
2 - 13 Unchanged.
14 - 15 Used as work registers by the system.

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
Take care when using the RETAIN=YES parameter value. With RETAIN=YES, storage is
not returned to the system which reduces the amount available to the system and other
programs, thus potentially affecting system performance.

 Syntax
The standard form of the IARVSERV macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IARVSERV.

IARVSERV

␣ One or more blanks must follow IARVSERV.

SHARE
UNSHARE
CHANGEACCESS

,RANGLIST=ranglist_addr ranglist_addr: RS-type address, or address in register (2) - (12).

 ,NUMRANGE=numrange_addr numrange_addr: RS-type address, or address in register (2) - (12).

Default : 1 range

,TARGET_VIEW=READONLY

526 OS/390 V2R8.0 MVS Assembler Services Reference

 IARVSERV Macro

,TARGET_VIEW=SHAREDWRITE
,TARGET_VIEW=UNIQUEWRITE
,TARGET_VIEW=TARGETWRITE
,TARGET_VIEW=LIKESOURCE
,TARGET_VIEW=HIDDEN

 ,COPYNOW

 ,RETAIN=NO Default : RETAIN=NO
 ,RETAIN=YES

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 0

 IARVSERV — Request to Share Virtual Storage 527

 IARVSERV Macro

 Parameters
The SHARE, UNSHARE, and CHANGEACCESS parameters designate the services of the
IARVSERV macro, and are mutually exclusive.

The parameters are explained as follows:

SHARE
Requests that the source be made shareable through the target to create a sharing
group. When you issue the IARVSERV macro with SHARE, you must specify the
RANGLIST and the TARGET_VIEW parameters. The NUMRANGE parameter is
optional.

UNSHARE
Requests that the specified virtual storage no longer be used to access shared storage.
When you issue the IARVSERV macro with UNSHARE, you must specify the
RANGLIST parameter. The NUMRANGE, and RETAIN parameters are optional. Using
the RETAIN parameter can allow the target area data to remain available to other
programs that can access the target area.

CHANGEACCESS
Requests that the type of access to the specified virtual storage be changed. When you
issue the IARVSERV macro with CHANGEACCESS, you must specify the RANGLIST
and the TARGET_VIEW parameters. The NUMRANGE parameter is optional.

,RANGLIST= ranglist_addr
Specifies the name (RS-type) or address (in register 2-12) of a required input fullword
that contains the address of the range list. The range list consists of a number of
entries (as specified by NUMRANGE) where each entry is 28 bytes long. A mapping of
each entry is provided through the mapping macro IARVRL.

,NUMRANGE=numrange_addr
Specifies the name (RS-type) or address (in register 2-12) of an optional parameter that
provides the number of entries in the supplied RANGLIST. The value specified must be
no greater than 16 entries. If you do not specify NUMRANGE, the system assumes the
range list contains only one entry.

,TARGET_VIEW=READONLY
,TARGET_VIEW=SHAREDWRITE
,TARGET_VIEW=UNIQUEWRITE
,TARGET_VIEW=TARGETWRITE
,TARGET_VIEW=LIKESOURCE
,TARGET_VIEW=HIDDEN

Specifies the way you want to share storage when used on storage not already part of a
sharing group, or how you want to change or add storage access to the sharing group
for storage already shared.

The keywords that are valid for TARGET_VIEW and their meanings follow:

READONLY Specifies that the target can be used only to read shared data. Any
attempt to alter shared data by writing into the target will cause a
program check.

SHAREDWRITE Specifies that the target can be used to read or modify shared data.
When a program changes data in the target, the new data becomes
visible among all those programs that have READONLY and
SHAREDWRITE access to the source. Those programs with
UNIQUEWRITE access to the source will not see the changed data.

UNIQUEWRITE Specifies that the target can be used to read shared data and to
retain a private copy of the shared data should the source or any
target get altered. When another user of the target modifies the
data, the page in the target containing the modified data becomes a
private copy that is unique to that user (with UNIQUEWRITE) and
not accessible to any other program.

528 OS/390 V2R8.0 MVS Assembler Services Reference

 IARVSERV Macro

TARGETWRITE Specifies that the target can be used to read shared data and retain
a private copy of the shared data if this view of the shared data is
altered. When another user of the target area writes new data into
the target area, any page in the target area containing the new data
becomes a private copy that is unique and is not seen by to any
other user. The page is no longer a member of any sharing group.
The original source data is unchanged. When a SHAREDWRITE
view of the data gets altered, the TARGETWRITE view will see
those changes.

LIKESOURCE Specifies that the view type for the new target area is to be the
same as the current view of the source. If the source is not
currently shared, a copy of the source is made to the new target as
if COPYNOW had been coded.

HIDDEN Specifies that the data in the target area will be inaccessible until
the view type is changed to READONLY, SHAREDWRITE,
UNIQUEWRITE, or TARGETWRITE. Any attempt to access a
hidden target area will cause a program check.

,COPYNOW
Specifies whether the target should get a copy of the source data when using
UNIQUEWRITE or LIKESOURCE. You can use COPYNOW only when you specify
TARGET_VIEW=UNIQUEWRITE or TARGET_VIEW=LIKESOURCE.

,RETAIN=YES
,RETAIN=NO

Specifies whether a copy of the shared data is to be retained in the target after the
system finishes processing the UNSHARE request.

RETAIN=YES Specifies that the target view should retain a copy of the shared
data. Using UNSHARE with RETAIN=YES requires the system to
allocate new resources to back the target area.

RETAIN=NO Specifies that the contents of the target area are unpredictable. To
ensure zeroes, the user should issue a PGSER RELEASE or
DSPSERV RELEASE on the area after unsharing it. RETAIN=NO
is the default.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list the
system generates. PLISTVER is an optional input parameter on all forms of the macro,
including the list form. When using PLISTVER, specify it on all macro forms used for a
request and with the same value on all of the macro forms. The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form; in this way, MAX ensures that the parameter list does
not overwrite nearby storage.

� 0, if you use the currently available parameters.

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION

 IARVSERV — Request to Share Virtual Storage 529

 IARVSERV Macro

 � MAX
� A decimal value of 0

 ABEND Codes
IARVSERV might abnormally terminate with the abend code X'6C5'. See OS/390 MVS
System Codes for an explanation and programmer response.

Return and Reason Codes
When the IARVSERV macro returns control to your program, GPR 15 contains the return
code. If the return code is not 0, GPR 0 contains the reason code.

Figure 35 (Page 1 of 2). Return and Reason Codes for the IARVSERV Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None Meaning : The IARVSERV request completed successfully.

Action : None required.

04 xx0101xx Meaning IARVSERV SHARE completed successfully. The processor
does not support SHARE for UNIQUEWRITE. A unique copy of the
target was made by the system.

Action : None required.

04 xx0102xx Meaning : IARVSERV SHARE completed successfully. However, the
system found a condition that would lead to a storage requirement
conflict for sharing with UNIQUEWRITE. For example, the source
might be in non-pageable storage. A copy of the target was made by
the system to avoid this conflict.

Action : None required. However, you might want to correct the
storage conflict.

04 xx0103xx Meaning : IARVSERV SHARE found that some source pages were
not obtained using the GETMAIN or STORAGE macros, or the
source and target keys do not match and the request is for a
UNIQUEWRITE target view. If the corresponding target pages were
obtained using the GETMAIN or STORAGE macro, then they have
been made first reference.

Action : This is not necessarily an error. If you think you should not
get this reason code, check program to be sure GETMAIN or
STORAGE is issued and storage is of the same storage key for all
source and target storage prior to using IARVSERV.

04 xx0203xx Meaning : IARVSERV UNSHARE completed successfully. However,
the system has overridden the RETAIN=NO option and kept a copy
of the data in the target.

Action : None required. However, you may want to correct your use
of DIV.

04 xx0204xx Meaning : IARVSERV UNSHARE completed successfully. The
system has overridden the RETAIN=YES option because the shared
data is associated with a DIV object, and the target area is not the
original window mapped to the DIV object. The data in the target is
unpredictable.

Action : None required.

04 xx0205xx Meaning : IARVSERV UNSHARE completed successfully. Some
pages in the target area no longer belong to any sharing group. This
could be due to a copy being created by UNIQUEWRITE, or a
second invocation of UNSHARE on the same view.

Action : None required.

04 xx0301xx Meaning : IARVSERV CHANGEACCESS completed successfully.
The processor does not support CHANGEACCESS for
UNIQUEWRITE, and a unique copy of the target page was made.

Action : None required.

04 xx030Cxx Meaning : IARVSERV CHANGEACCESS completed successfully.
The system processed a CHANGEACCESS request for
UNIQUEWRITE or TARGETWRITE for non-shared pages as a
SHAREDWRITE request.

Action : None required.

530 OS/390 V2R8.0 MVS Assembler Services Reference

 IARVSERV Macro

Figure 35 (Page 2 of 2). Return and Reason Codes for the IARVSERV Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 xx0104xx Meaning : Environmental error. An unauthorized user attempted to
share more pages than allowed by the installation.

Action : Contact your system programmer to find out your installation
limit and reduce the number of shared pages.

08 xx0105xx Meaning : Environmental error. IARVSERV SHARE was requested
with TARGETWRITE, but the SOP hardware feature was not
available.

Action : Contact your system programmer to find out when the SOP
feature might become available.

08 xx0305xx Meaning : Environmental error. IARVSERV CHANGEACCESS was
requested with TARGETWRITE, but the SOP hardware feature was
not available.

Action : Contact your system programmer to find out when the SOP
feature may become available.

0C xx010Axx Meaning : Environmental error. IARVSERV SHARE cannot complete
the request because of a shortage of resources.

Action : Retry the request one or more times to see if resources
become available. Contact the system programmer to determine
resources available to you.

0C xx013Cxx Meaning : System error. IARVSERV SHARE cannot complete the
request because a required page is unavailable or lost.

Action : Check the paging data set for possible I/O errors. Refer to
X'028' abend description in OS/390 MVS System Codes for paging
error advice.

0C xx020Bxx Meaning : System error. IARVSERV UNSHARE cannot complete the
request because of a required page being unavailable or lost.

Action : Check the logrec data set for possible I/O errors. Refer to
X'028' abend description in OS/390 MVS System Codes for paging
error advice.

0C xx030Bxx Meaning : System error. IARVSERV CHANGEACCESS cannot
complete the request because of a required page being unavailable
or lost.

Action : Check the logrec data set for possible I/O errors. Refer to
X'028' abend description in OS/390 MVS System Codes for paging
error advice.

 Example 1
Issue a request to share eight pages as read-only, and use a register to specify the address
of the range list.

SERV1 IARVSERV SHARE,RANGLIST=(4),TARGET_VIEW=READONLY
\
 IARVRL

 Example 2
Issue UNSHARE for the pages in Example 1, and specify that the system is not to retain the
shared data.

SERV2 IARVSERV UNSHARE,RANGLIST=(4),RETAIN=NO
\
 IARVRL

 IARVSERV — Request to Share Virtual Storage 531

 IARVSERV Macro

 Example 3
Issue a request to share pages as read-only, and use an RS-type address to specify the
location of the range list address.

SERV3 IARVSERV SHARE,RANGLIST=VRLPTR,TARGET_VIEW=READONLY
\
VRLPTR DC A(MYVRL1)
MYVRL1 DS 7F
 IARVRL

 Example 4
Issue a request to share pages as target write.

SERV4 IARVSERV SHARE,RANGLIST=(5),TARGET_VIEW=TARGETWRITE
\
 IARVRL

 Example 5
Issue a request to change access for hidden.

SERV5 IARVSERV CHANGEACCESS,RANGLIST=(5),TARGET_VIEW=HIDDEN
\
 IARVRL

532 OS/390 V2R8.0 MVS Assembler Services Reference

 IARVSERV Macro

IARVSERV— List Form
Use the list form of the IARVSERV macro together with the execute form of the macro for
applications that require reentrant code. The list form of the macro defines an area of
storage, which the execute form of the macro uses to contain the parameters.

The list form of the IARVSERV macro is written as follows:

The parameters are explained under the standard form of the IARVSERV macro with the
following exception:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the IARVSERV macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
0D, which forces the parameter list to a doubleword boundary.

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IARVSERV.

IARVSERV

␣ One or more blanks must follow IARVSERV.

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 0

MF=(L,list addr) list addr: symbol.
MF=(L,list addr,attr) attr: 1- to 60-character input string.
MF=(L,list addr,0D) Default: 0D

 IARVSERV — Request to Share Virtual Storage 533

 IARVSERV Macro

IARVSERV— Execute Form
Use the execute form of the IARVSERV macro together with the list form of the macro for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

The execute form of the IARVSERV macro is written as follows:

The parameters are explained under the standard form of the IARVSERV macro with the
following exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

Specifies the execute form of the IARVSERV macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the system is to check for required
parameters and supply defaults for omitted optional parameters.

NOCHECK specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IARVSERV.

IARVSERV

␣ One or more blanks must follow IARVSERV.

SHARE
UNSHARE
CHANGEACCESS

,RANGLIST=ranglist_addr ranglist_addr: RS-type address, or address in register (2) - (12).

 ,NUMRANGE=numrange_addr numrange_addr: RS-type address, or address in register (2) - (12).

Default : 1 range

,TARGET_VIEW=READONLY
,TARGET_VIEW=SHAREDWRITE
,TARGET_VIEW=UNIQUEWRITE
,TARGET_VIEW=TARGETWRITE
,TARGET_VIEW=LIKESOURCE
,TARGET_VIEW=HIDDEN

 ,COPYNOW

 ,RETAIN=NO Default : RETAIN=NO
 ,RETAIN=YES

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 0

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).
,MF=(E,list addr,COMPLETE) Default: COMPLETE
,MF=(E,list addr,NOCHECK)

534 OS/390 V2R8.0 MVS Assembler Services Reference

 IDENTIFY Macro

IDENTIFY — Add an Entry Name

 Description
The IDENTIFY macro is used to add an entry name to a copy of a load module currently in
virtual storage. The copy must be one of the following:

� A copy that satisfied the requirements of a LOAD macro issued during the execution of
the current task.

� The last load module given control, if control was passed to the load module using a
LINK, LINKX, ATTACH, ATTACHX, XCTL, or XCTLX macro.

Attention: The IDENTIFY macro may not be issued by an asynchronous exit routine. The
IDENTIFY macro assigns the identified entry point as reentrant. Callers issuing this macro
should be sure that their programs have been marked as reenterable.

The IDENTIFY service sets the addressing mode of the entry name that was added equal to
the addressing mode of the major entry name. The system assigns the major entry name
according to how the load module was constructed.

� If the load module was constructed using the linkage editor (and brought into virtual
storage via program fetch or virtual fetch), the major entry name is the name of the load
module in the partitioned data set directory (not an alias to that member).

� If the load module was brought into storage by the loader, the major entry name is
either the name that the user provided as input to the loader or the name that the loader
used as a default.

If an authorized caller creates an entry name for a module in the link pack area, the
IDENTIFY service places an entry for the alias on the active link pack area queue. If an
unauthorized caller creates an entry name for a module in the link pack area, the IDENTIFY
service places an entry for the alias on the task's job pack queue.

If an unauthorized caller creates an entry name for an authorized module, the IDENTIFY
service marks the new entry as unauthorized. In all other cases, the new entry name
receives the same level of authorization as the main entry point.

The caller cannot have an EUT FRR established.

 Syntax
The IDENTIFY macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede IDENTIFY.

IDENTIFY

␣ One or more blanks must follow IDENTIFY.

EP=entry name entry name: Symbol
EPLOC=entry name addr entry name addr: RX-type address, or register (0) or (2) - (12).

,ENTRY=entry addr added entry addr added: RX-type address, or register (1) or (2) - (12).

 Copyright IBM Corp. 1988, 1999 535

 IDENTIFY Macro

 Parameters
The parameters are explained as follows:

EP=entry name
EPLOC=entry name addr

Specifies the entry name or address of the entry name. The name does not have to
correspond to any symbol or name in the load module, and must not correspond to any
name, alias, or added entry name for a load module in the link pack area queue, or the
job pack area of the job step. If EPLOC is coded, the name must be padded to eight
bytes, if necessary.

,ENTRY=entry addr added
Specifies the virtual storage address of the entry point being added. If the program that
issues the IDENTIFY macro is running in 24-bit addressing mode, the value for entry
addr added must be a 24-bit address.

 Return Codes
When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Return Code.

Meaning

00 Successful completion of requested function.

04 Entry name and address already exist.

08 Entry name duplicates the major name of a load module currently in virtual storage; entry
address was not added.

0C Entry address is not within an eligible load module; entry address was not added.

10 Request issued by an asynchronous exit routine; entry address was not added.

14 Entry name duplicates the name already used for a minor entry or for an entry created by
another IDENTIFY request, and the entry point addresses are different; the current request
is rejected.

18-1C An internal error occurred. Record the return code and contact the appropriate IBM support
personnel.

24 An unexpected error occurred.

28 The address specified by the EPLOC parameter was fetch protected.

2C An internal error occurred. Record the return code and contact the appropriate IBM support
personnel.

30 Unsuccessful processing due to a system queue area (SQA) storage shortage.

34 Unsuccessful processing due to a local system queue area (LSQA) storage shortage.

38 Unsuccessful processing due an error in the job pack area. Record the return code and
contact the appropriate IBM support personnel.

 Example
Add an entry name (PGMTAL2A) to a load module in virtual storage. Register 3 contains
the entry point address.

IDENTIFY EP=PGMTAL2A,ENTRY=(R3)

536 OS/390 V2R8.0 MVS Assembler Services Reference

IEAFP — Floating Point Services

 Description
IEAFP allows you to request that the system stop its status saving of the additional floating
point status provided with this release. This status consists of the additional floating point
(AFP) registers - FPRs 1,3,5,7-15 and the floating point control (FPC) register.

You would typically use this service only when you are a server task which "subdispatches"
unrelated units of work (e.g., CICS transactions). To avoid subsequent units of work being
penalized by the floating point actions of previous units of work, the additional FP status
saving function of the operating system can be turned off. When a unit of work actually
begins to use FP, all appropriate status saving will be resumed.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller is not required to hold any locks on entry. The caller

may hold the local, CMS, or CPU lock.
Control parameters: None

 Programming Requirements
The caller can include the IHAFPRET mapping macro to get equate symbols for the return
and reason codes provided by the IEAFP macro.

 Restrictions
IEAFP must not be issued from an asynchronous exit routine.

Input Register Information
Before issuing the IEAFP macro, the caller does not have to place any information into any
general purpose register (GPR) or access register (AR) unless using it in register notation for
a particular parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code, when GPR 15 is non-zero
1 Used as a work register by the system
2-13 Unchanged
14-15 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

 Copyright IBM Corp. 1988, 1999 537

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The IEAFP macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IEAFP.

IEAFP

␣ One or more blanks must follow IEAFP.

STOP

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IEAFP macro
invocation. The name must conform to the rules for an ordinary assembler language
symbol.

STOP
A required input parameter, keyword that indicates to stop saving additional floating
point status until such time as a new floating point operation requires it.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

 ABEND Codes
None.

538 OS/390 V2R8.0 MVS Assembler Services Reference

Return and Reason Codes
When the IEAFP macro returns control to your program:

� GPR 15 (and retcode, when you code RETCODE) contains a return code.
� When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro IHAFPRET provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the equate
symbol associated with each reason code. IBM support personnel may request the entire
reason code, including the xxxx value.

Figure 36. Return and Reason Codes for the IEAFP Macro

Return Code Reason Code Equate Symbol
Meaning and Action

0 — Equate Symbol : IeafpRc_OK

Meaning : IEAFP request successful.

Action : None required.

8 — Equate Symbol : IeafpRc_InvParm

Meaning : IEAFP request specifies parmeters that are not valid.

Action : Refer to the action provided with the specific reason code.

8 xxxx0801 Equate Symbol : IeafpRsnBadFunction

Meaning : Incorrect value passed to target routine.

Action : Check for possible storage overlay.

C — Equate Symbol : IeafpRc_Env

Meaning : Environmental error

Action : Refer to the action provided with the specific reason code.

C xxxx0C01 Equate Symbol : IeafpRsnFromAsynchExit

Meaning : IEAFP was issued from an asynchronous exit routine.

Action : Avoid issuing IEAFP from an asynchronous exit routine.

 Example
 Operation:

1. Stop additional status saving

The code is as follows.

 IEAFP STOP

 IEAFP — Floating Point Services 539

540 OS/390 V2R8.0 MVS Assembler Services Reference

 IEAINTKN Macro

IEAINTKN — Build Incident Token

 Description
Use the IEAINTKN macro to build an incident token. You can pass the token to other
routines to identify related pieces of problem data.

Normally you will not need to use an IEAINTKN macro because the system generates an
incident token when an SVC dump is requested and an incident token is not provided. For
example, the system provides an incident token when it processes an SDUMPX macro
without an INTOKEN parameter.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31- bit
ASC mode: Primary or access register (AR)
Interrupt Status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.

 Programming Requirements
� Place the TOKEN area in the primary address space or, for AR-mode callers, in an

address space or data space that is addressable through an ALET that you provide.

� Include the CVT mapping macro.

 Restrictions
None.

Input Register Information
Before issuing the IEAINTKN macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Copyright IBM Corp. 1988, 1999 541

 IEAINTKN Macro

 Performance Implications
None.

 Syntax
The standard form of the IEAINTKN macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede IEAINTKN.

IEAINTKN

␣ One or more blanks must follow IEAINTKN.

,TOKEN=inctoken addr inctoken addr: RX-type address or register (2) - (12).

 Parameters
The parameters are explained as follows:

TOKEN=inctoken addr
Specifies the address of a 32-character area where the system builds the incident token.
The area must begin on a doubleword boundary.

 ABEND Codes
None.

Return and Reason Codes
None.

 Example
Provide an incident token in the area named MYTOKEN.

 IEAINTKN TOKEN=MYTOKEN
 .
 .
 .

DS ðD Align parameter on double word boundary
MYTOKEN DS CL32 Incident token
 CVT , CVT mapping

542 OS/390 V2R8.0 MVS Assembler Services Reference

 IEALSQRY Macro

IEALSQRY — Linkage Stack Query

 Description
The linkage stack query macro IEALSQRY checks the level of the current entry on the
linkage stack relative to the level of the entry associated with the most recent recovery
routine. The output of the macro is a value (in the TOKEN parameter) a recovery routine
can use to ensure that a retry routine runs with the appropriate linkage stack entry. If the
return code is not zero, the value in TOKEN is not valid.

Your program is to pass the value in TOKEN to a recovery routine. When the recovery
routine gets control, it can place that value in the SDWA field SDWALSLV. That action
ensures that, when a retry routine gets control, it has the correct linkage stack level. For
information about how to use the value in TOKEN, see the section about the linkage stack at
a retry routine in OS/390 MVS Programming: Assembler Services Guide.

The output of IEALSQRY depends upon the current environment and on the recovery
environment that exists:

� If at least one ESTAE-type recovery routine is in effect, the output depends on the most
recently activated routine:

– If it is a STAE or STAI routine, a return code of 8 is returned.

– If it is an ESTAE or ESTAEX for the current RB, the value returned is the difference
between the current level of the linkage stack and the level of the stack at the time
the ESTAE or ESTAEX was activated.

– If it is an ESTAI, the value returned is the difference between the current level of
the linkage stack and the level of the stack at the time the newest PRB that is older
than the oldest non-PRB was created (or simply the newest PRB if all the RBs are
PRBs).

� If no STAEs, ESTAEXs, ESTAEs exist for this RB and no ESTAI or STAIs are in effect,
a return code of 8 is returned.

See OS/390 MVS Programming: Assembler Services Guide for further information about the
use of the SDWALSLV field.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state, PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
Amode: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks are required.
Control parameters: Control parameters must be in the primary address space.

 Programming Requirements
None

 Copyright IBM Corp. 1988, 1999 543

 IEALSQRY Macro

 Restrictions
None.

Input Register Information
Before issuing the IEALSQRY macro, the caller does not have to place any information into
a general purpose register (GPR) or access register (AR).

Output Register Information
When control returns to the caller from IEALSQRY, the GPRs contain:

Register Contents
0 Output token value, which is copied to the area specified by the TOKEN

parameter.
1 Used as a work register by the system.
2-13 Unchanged.
14 Used as a work register by the system.
15 Return code.

When control returns to the caller from IEALSQRY, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system.
2-13 Unchanged.
14 and 15 Used as work registers by the system.

 Performance Implications
This macro should not be used in a performance-sensitive program.

 Syntax
The standard form of the IEALSQRY macro is written as follows:

The parameters are explained as follows:

TOKEN=token
specifies a halfword area (or the address of the area in register (1)-(12)) where the
system places a value that indicates the difference between the number of linkage stack
entries present when the recovery routine was activated and the number that are
currently present. A recovery routine can place this value in field SDWALSLV (in
mapping macro IHASDWA) to ensure that the retry routine runs with the proper level of
the linkage stack. If you do not use TOKEN, you can find the value in GPR 0.

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IEALSQRY.

IEALSQRY

␣ One or more blanks must follow IEALSQRY.

Valid parameters

 TOKEN=token token: RS-type address or register (1) - (12).
Default: Leave token in GPR 0.

 ,RETCODE=retcode retcode: RS-type address, or register (2) - (12).

Default: No retcode processing.

544 OS/390 V2R8.0 MVS Assembler Services Reference

 IEALSQRY Macro

RETCODE=retcode
specifies a fullword output variable (or register (2)-(12)) into which the system copies the
return code GPR 15. If you do not use RETCODE, you can find the return code in GPR
15.

 ABEND Codes
The IEALSQRY caller might receive abend code X'B78'. For detailed abend code
information, see OS/390 MVS System Codes.

 Return Codes
When control returns to the caller, register 15 contains one of the following decimal return
codes (hexadecimal values are shown in parentheses):

Figure 37. Return Codes for IEALSQRY

Return Code Meaning and Action

0 (0) Meaning : Successful completion. A valid value is in the TOKEN parameter.

Action : None required.

4 (4) Meaning : The system encountered a linkage stack entry that violates the authorization or
stacking-PC conditions that are required for successful retry.

Action : Avoid using the token when retrying. You cannot retry to the current linkage stack
level.

8 (8) Meaning : No recovery routine of the proper type exists. Either no recovery routine exists
or the most recently activated recovery routine is STAE or STAI.

Action : Avoid using the token when retrying. You cannot retry to the current linkage stack
level.

16 (10) Meaning : System error.

Action : Report the problem to IBM. Avoid using the token when retrying. You cannot retry
to the current linkage stack level.

 Example
Obtain the value that a recovery routine can place in SDWALSLV:

 IEALSQRY TOKEN=MYTOKEN
 .
 .
MYTOKEN DS H Output TOKEN

 IEALSQRY — Linkage Stack Query 545

 IEALSQRY Macro

546 OS/390 V2R8.0 MVS Assembler Services Reference

 IEANTCR Callable Service

IEANTCR — Create a Name/Token Pair

 Description
Call the IEANTCR service to create a name/token pair.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state, with any PSW key
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: The parameter list and all parameters must reside in the caller's

primary address space.

 Programming Requirements
Before you use name/token services, you can optionally include the IEANTASM macro to
invoke name/token services equate (EQU) statements. IEANTASM provides the following
constants for use in your program:

\ Name/Token Level Constants
\
IEANT_TASK_LEVEL EQU 1
IEANT_HOME_LEVEL EQU 2
IEANT_PRIMARY_LEVEL EQU 3
IEANT_SYSTEM_LEVEL EQU 4
IEANT_TASKAUTH_LEVEL EQU 11
IEANT_HOMEAUTH_LEVEL EQU 12
IEANT_PRIMARYAUTH_LEVEL EQU 13
\
\ Name/Token Persistence Constants
\
IEANT_NOPERSIST EQU ð
IEANT_PERSIST EQU 1
\
\ Name/Token Return Code Constants
\
IEANT_OK EQU ð
IEANT_DUP_NAME EQU 4
IEANT_NOT_FOUND EQU 4
IEANT_24BITMODE EQU 8
IEANT_NOT_AUTH EQU 16
IEANT_SRB_MODE EQU 2ð
IEANT_LOCK_HELD EQU 24
IEANT_LEVEL_INVALID EQU 28
IEANT_NAME_INVALID EQU 32
IEANT_PERSIST_INVALID EQU 36
IEANT_AR_INVALID EQU 4ð
IEANT_UNEXPECTED_ERR EQU 64

 Copyright IBM Corp. 1988, 1999 547

 IEANTCR Callable Service

 Restrictions
None.

Input Register Information
Before issuing the IEANTCR callable service, the caller does not have to place any
information into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

548 OS/390 V2R8.0 MVS Assembler Services Reference

 IEANTCR Callable Service

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram. You must code all parameters on the CALL
statement in the order shown.

Link edit your program with a linkage-assist routine (also called a stub) in SYS1.CSSLIB
unless you use one of the following techniques as an alternative to CALL IEANTCR:

 1. LOAD EP=IEANTCR
Save the entry point address

 ...
Put the saved entry point address into R15

 CALL (15),(...)

 2. L 15,X'10'
 L 15,X'220'(15,0)
 L 15,X'14'(15,0)
 L 15,X'04'(15,0)
 CALL (15),(...)

This second technique requires AMODE=31, and, before the CALL is issued, verification that
the IEANTCR service is supported by the system (in the CVT, both the CVTOSEXT and the
CVTOS390 bits are set on).

CALL IEANTCR

,(level
,user_name
,user_token
,persist_option
,return_code)

 Parameters
The parameters are explained as follows:

level
Specifies a fullword that contains an integer indicating the level of the name/token pair:

� 1 - Task
� 2 - Home address space
� 3 - Primary address space.

,user_name
Specifies the 16-byte area containing the name of the name/token pair that the user
creates. The bytes of the name may have any value. The name may contain blanks,
integers, or addresses.

Names must be unique within a level. Here are some examples.

� Two task-level name/token pairs owned by the same task cannot have the same
name. However, two task-level name/token pairs owned by different tasks can
have the same name.

� Two home-address-space-level name/token pairs in the same address space
cannot have the same name. However, two home-address-space-level name/token
pairs in different address spaces can have the same name.

Because of these unique requirements you must avoid using the same names that IBM
uses for name/token pairs. Do not use the following names:

 IEANTCR — Create a Name/Token Pair 549

 IEANTCR Callable Service

� Names that begin with A through I
� Names that begin with X'00'.

,user_token
Specifies the 16-byte area containing the token of the name/token pair that the user
creates.

,persist_option
Specifies a fullword that contains zero.

,return_code
Specifies a fullword to contain the return code from the IEANTCR service.

 ABEND Codes
The caller might encounter abend X'AC7' with a reason code of either X'00030000' or
X'00030001'. See OS/390 MVS System Codes for an explanation and responses for these
codes.

Return and Reason Codes
When IEANTCR returns control to your program, GPR 15 and return_code contain a return
code. The following table identifies return codes in hexadecimal and decimal, tells what
each means, and recommends an action that you should take:

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

00 0 Meaning : The operation was successful.

Action : None.

04 4 Meaning : The user_name specified already exists.

Action : Choose a different user_name.

08 8 Meaning : The request is rejected because the caller is in 24-bit
addressing mode.

Action : Change your program to 31-bit addressing mode.

10 16 Meaning : An unauthorized caller attempted to create a system-level
name/token pair.

Action : Check which level of name/token pair you are creating.

18 24 Meaning : The caller held locks.

Action : Release all locks before issuing IEANTCR.

1C 28 Meaning : The caller specified an incorrect level.

Action : Respecify the correct level. Valid values are 1, 2, or 3.

20 32 Meaning : The caller specified an incorrect user_name.

Action : Respecify the correct user_name.

24 36 Meaning : The caller specified an incorrect persist_option.

Action : You must specify zero for the persist_option.

28 40 Meaning : The caller was in AR ASC mode and AR1 was not zero.

Action : Change your program to primary mode or make sure the
parameter list is in the primary address space.

40 64 Meaning : A system error occurred while handling the request.

Action : Retry the request.

550 OS/390 V2R8.0 MVS Assembler Services Reference

 IEANTCR Callable Service

 Example
Initialize the name/token fields, and create, retrieve, and delete a task-level name/token pair.

TITLE 'NAME/TOKEN EXAMPLE PROGRAM'
NTIDSAMP CSECT
NTIDSAMP AMODE 31
NTIDSAMP RMODE ANY

BAKR R14,ð SAVE CALLING PROGRAM'S
\ REGISTERS AND RETURN LOCATION

LR R12,R15 ESTABLISH BASE REG
 USING NTIDSAMP,R12
\\\
\ INITIALIZE THE NAME AND TOKEN FIELDS \
\\\

MVC NAME,=CL16'NTIDSAMP NAME ' INITIALIZE NAME FIELD
MVC TOKEN,NAME FOR EXAMPLE, MAKE TOKEN THE

\ SAME AS THE NAME
\\\
\ TASK LEVEL CREATE EXAMPLE \
\\\
 CALL IEANTCR,(LEVEL,NAME,TOKEN,PERSOPT,RETCODE)
\\\

CLC RETCODE,=F'ð' IS RETURN CODE ð?
BNE ABEND NO, GO ABEND

 EJECT
\\\
\ TASK LEVEL RETRIEVE EXAMPLE \
\\\
 CALL IEANTRT,(LEVEL,NAME,TOKEN,RETCODE)
\\\

CLC RETCODE,=F'ð' IS RETURN CODE ð?
BNE ABEND NO, GO ABEND

 EJECT
\\\
\ TASK LEVEL DELETE EXAMPLE \
\\\
 CALL IEANTDL,(LEVEL,NAME,RETCODE)
\\\

CLC RETCODE,=F'ð' IS RETURN CODE ð?
BNE ABEND NO, GO ABEND

 EJECT
SLR R15,R15 SET RETURN CODE OF ZERO

EXIT PR RETURN TO CALLER
 EJECT
ABEND ABEND X'BAD' ABEND IF NONZERO RETURN CODE
 EJECT
\\\
\ NAME/TOKEN VARIABLE DECLARES
\\\
 IEANTASM
 EJECT
\\\
\ Constants and data areas \
\\\
LEVEL DC A(IEANT_TASK_LEVEL) Task level
NAME DS CL16 Name for name/token pair
TOKEN DS XL16 Token for name/token pair
PERSOPT DC A(IEANT_NOPERSIST) Persist option
RETCODE DS F Return code
\\\
\ EQUATES
\\\
R1 EQU 1
R12 EQU 12

 IEANTCR — Create a Name/Token Pair 551

 IEANTCR Callable Service

R13 EQU 13
R14 EQU 14
R15 EQU 15
 END NTIDSAMP

552 OS/390 V2R8.0 MVS Assembler Services Reference

 IEANTDL Callable Service

IEANTDL — Delete a Name/Token Pair

 Description
Call the IEANTDL service to delete a name/token pair.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key

Note: Problem-state programs with PSW key 8 - 15 cannot delete
name/token pairs created by supervisor-state or PSW key 0 - 7
programs.

Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: The parameter list and all parameters must reside in the caller's

primary address space.

 Programming Requirements
Before you use name/token services, you can optionally include the IEANTASM macro to
invoke name/token services equate (EQU) statements. IEANTASM provides the following
constants for use in your program:

\ Name/Token Level Constants
\
IEANT_TASK_LEVEL EQU 1
IEANT_HOME_LEVEL EQU 2
IEANT_PRIMARY_LEVEL EQU 3
IEANT_SYSTEM_LEVEL EQU 4
IEANT_TASKAUTH_LEVEL EQU 11
IEANT_HOMEAUTH_LEVEL EQU 12
IEANT_PRIMARYAUTH_LEVEL EQU 13
\
\ Name/Token Persistence Constants
\
IEANT_NOPERSIST EQU ð
IEANT_PERSIST EQU 1
\
\ Name/Token Return Code Constants
\
IEANT_OK EQU ð
IEANT_DUP_NAME EQU 4
IEANT_NOT_FOUND EQU 4
IEANT_24BITMODE EQU 8
IEANT_NOT_AUTH EQU 16
IEANT_SRB_MODE EQU 2ð
IEANT_LOCK_HELD EQU 24
IEANT_LEVEL_INVALID EQU 28
IEANT_NAME_INVALID EQU 32
IEANT_PERSIST_INVALID EQU 36
IEANT_AR_INVALID EQU 4ð
IEANT_UNEXPECTED_ERR EQU 64

 Copyright IBM Corp. 1988, 1999 553

 IEANTDL Callable Service

 Restrictions
None.

Input Register Information
Before issuing the IEANTDL callable service, the caller does not have to place any
information into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram. You must code all parameters on the CALL
statement in the order shown.

Link edit your program with a linkage-assist routine (also called a stub) in SYS1.CSSLIB
unless you use one of the following techniques as an alternative to CALL IEANTDL:

 1. LOAD EP=IEANTDL
Save the entry point address

 ...
Put the saved entry point address into R15

 CALL (15),(...)

 2. L 15,X'10'
 L 15,X'220'(15,0)
 L 15,X'14'(15,0)
 L 15,X'0C'(15,0)
 CALL (15),(...)

This second technique requires AMODE=31, and,

CALL IEANTDL

,(level
,user_name
,return_code)

554 OS/390 V2R8.0 MVS Assembler Services Reference

 IEANTDL Callable Service

before the CALL is issued, verification that
the IEANTDL service is supported by the system
(in the CVT, both the CVTOSEXT and the CVTOS390
bits are set on).

 Parameters
The parameters are explained as follows:

level
Specifies a fullword that contains an integer indicating the level of the name/token pair
you wish to delete:

� 1 - Task
� 2 - Home address space
� 3 - Primary address space.

,user_name
Specifies the 16-byte area containing the name of the name/token pair to be deleted.

,return_code
Specifies a fullword to contain the return code from the IEANTDL service.

 ABEND Codes
The caller might encounter abend X'AC7' with a reason code of either X'00030000' or
X'00030001'. See OS/390 MVS System Codes for an explanation and responses to these
codes.

Return and Reason Codes
When IEANTDL returns control to your program, GPR 15 and return_code contain a return
code. The following table identifies return codes in hexadecimal and decimal, tells what
each means, and recommends an action that you should take:

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

00 0 Meaning : The operation was successful.

Action : None.

04 4 Meaning : The request is rejected because the system could not find
the requested name/token pair.

Action : Check the user_name you specified.

08 8 Meaning : The request is rejected because the caller is in 24-bit
addressing mode.

Action : Change your program to 31-bit addressing mode.

10 16 Meaning : An unauthorized caller attempted to delete a system-level
name/token pair or a name/token pair created by an authorized
program.

Action : Check which level of name/token pair you are deleting.

18 24 Meaning : The caller held locks.

Action : Release all locks before issuing IEANTDL.

1C 28 Meaning : The caller specified an incorrect level.

Action : Respecify the correct level. Valid values are 1, 2, or 3.

20 32 Meaning : The caller specified an incorrect user_name.

Action : Respecify the correct user_name.

28 40 Meaning : The caller was in AR ASC mode and AR1 was not zero.

Action : Change your program to primary mode or make sure the
parameter list is in the primary address space.

40 64 Meaning : A system error occurred while handling the request.

Action : Retry the request.

 IEANTDL — Delete a Name/Token Pair 555

 IEANTDL Callable Service

 Example
For a complete example of creating, retrieving, and deleting a task-level name/token pair,
see the IEANTCR callable service.

556 OS/390 V2R8.0 MVS Assembler Services Reference

 IEANTRT Callable Service

IEANTRT — Retrieve the Token from a Name/Token Pair

 Description
Call the IEANTRT service to retrieve the token from a name/token pair. For example, you
can use IEANTRT to obtain the name of the logrec recording medium, which is either the
name of the logrec data set or the name of the logrec log stream.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller can hold a local, CML, or CMS lock; however, no locks

are required.
Control parameters: The parameter list and all parameters must reside in the caller's

primary address space.

 Programming Requirements
Before you use name/token services, you can optionally include macro IEANTASM to invoke
name/token services equate (EQU) statements. IEANTASM provides the following constants
for use in your program:

\ Name/Token Level Constants
\
IEANT_TASK_LEVEL EQU 1
IEANT_HOME_LEVEL EQU 2
IEANT_PRIMARY_LEVEL EQU 3
IEANT_SYSTEM_LEVEL EQU 4
IEANT_TASKAUTH_LEVEL EQU 11
IEANT_HOMEAUTH_LEVEL EQU 12
IEANT_PRIMARYAUTH_LEVEL EQU 13
\
\ Name/Token Persistence Constants
\
IEANT_NOPERSIST EQU ð
IEANT_PERSIST EQU 1
\
\ Name/Token Return Code Constants
\
IEANT_OK EQU ð
IEANT_DUP_NAME EQU 4
IEANT_NOT_FOUND EQU 4
IEANT_24BITMODE EQU 8
IEANT_NOT_AUTH EQU 16
IEANT_SRB_MODE EQU 2ð
IEANT_LOCK_HELD EQU 24
IEANT_LEVEL_INVALID EQU 28
IEANT_NAME_INVALID EQU 32
IEANT_PERSIST_INVALID EQU 36
IEANT_AR_INVALID EQU 4ð
IEANT_UNEXPECTED_ERR EQU 64

 Copyright IBM Corp. 1988, 1999 557

 IEANTRT Callable Service

To obtain the name of the logrec data set or the name of the logrec log stream, you can
include the IFBNTASM macro, as well as the IEANTASM macro, in your program. See
“Example 2” on page 560 for the list of definitions IFBNTASM provides.

 Restrictions
Do not call the IEANTRT callable service with the user_name and user_token parameters in
the same storage location.

Input Register Information
Before issuing the IEANTRT callable service, the caller does not have to place any
information into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
Write the call as shown on the syntax diagram. You must code all parameters on the CALL
statement in the order shown.

Link edit your program with a linkage-assist routine (also called a stub) in SYS1.CSSLIB
unless you use one of the following techniques as an alternative to CALL IEANTRT:

1. LOAD EP=IEANTRT
Save the entry point address

 ...
Put the saved entry point address into R15

 CALL (15),(...)

2. L 15,X'10'

CALL IEANTRT

,(level
,user_name
,user_token
,return_code)

558 OS/390 V2R8.0 MVS Assembler Services Reference

 IEANTRT Callable Service

 L 15,X'220'(15,0)
 L 15,X'14'(15,0)
 L 15,X'08'(15,0)
 CALL (15),(...)

This second technique requires AMODE=31, and,
before the CALL is issued, verification that
the IEANTCR service is supported by the system
(in the CVT, both the CVTOSEXT and the CVTOS390
bits are set on).

 Parameters
The parameters are explained as follows:

level
Specifies a fullword that contains an integer indicating the level of the name/token pair
from which you want to retrieve the token:

� 1 - Task
� 2 - Home address space
� 3 - Primary address space
� 4 - System.

,user_name
Specifies the 16-byte area containing the name of the requested name/token pair.

,user_token
Specifies the 16-byte area to contain the token of the requested name/token pair.

,return_code
Specifies a fullword to contain the return code from the IEANTRT service.

 ABEND Codes
None.

Return and Reason Codes
When IEANTRT returns control to your program, GPR 15 and return_code contain a return
code. The following table identifies return codes in hexadecimal and decimal, tells what
each means, and recommends an action that you should take:

Hexadecimal
Return Code

Decimal
Return Code

Meaning and Action

00 0 Meaning : The operation was successful.

Action : None.

04 4 Meaning : The request is rejected because the system could not find
the requested name/token pair.

Action : Check the user_name you specified.

08 8 Meaning : The request is rejected because the caller is in 24-bit
addressing mode.

Action : Change your program to 31-bit addressing mode.

1C 28 Meaning : The caller specified an incorrect level.

Action : Respecify the correct level. Valid values are 1, 2, 3, or 4.

40 64 Meaning : A system error occurred while handling the request.

Action : Retry the request.

 IEANTRT — Retrieve the Token from a Name/Token Pair 559

 IEANTRT Callable Service

 Example 1
For a complete example of creating, retrieving, and deleting a task-level name/token pair,
see the IEANTCR callable service.

 Example 2
Following is an example of using Name/Token services to obtain the name of the logrec data
set or logrec log stream. (Note that because the routine is not reentrant, module IEANTRT
is first loaded and then called.) IEANTRT returns a token that contains a pointer to the
name of the logrec data set or logrec log stream.

Before you use name/token services, you can optionally include macro IFBNTASM which
provides the following definitions for use in your program:

\ IFBNTASM Parameters

IFBNT_DSNLOGREC DC CL16'DSNLOGREC ' System level
\ DSNLOGREC name
IFBNT_VERSION1 EQU X'ð1' First version of IFBNT_TOKEN
IFBNT_VERSION2 EQU X'ð2' Second version of IFBNT_TOKEN
IFBNT_LATEST_VERSION EQU X'ð2' Latest version of IFBNT_TOKEN
\
IFBNT_TOKEN DSECT , Token area
IFBNT_LOGREC_NAME_PTR DS A Address of the LOGREC data
\ set name area
IFBNT_VERSION DS X Version of IFBNT_LOGREC
IFBNT_RESV1 DS X Reserved for IBM
IFBNT_LENGTH DS XL2 Length of IFBNT_LOGREC area
IFBNT_RESV2 DS CL8 Reserved for IBM
\
IFBNT_LOGREC DSECT , Pointed to by
\ IFBNT_LOGREC_NAME_PTR
IFBNT_LOGREC_NAME DS CL44 LOGREC data set name or
\ no data set name string (see
\ comments at end of mapping)
IFBNT_LOGREC_CURRENT DS XL1 Current Logrec recording
\ medium
IFBNT_LOGREC_PREVIOUS DS XL1 Previous Logrec recording
\ medium
IFBNT_LOGREC_LOGSTREAM DS CL26 Logrec log stream name,
\ only filled in when
\ IFBNT_USE_LOGSTREAM is
\ the current medium
IFBNT_LOGREC_LEN EQU \-IFBNT_LOGREC Length of IFBNT_LOGREC
\
\\
\ The following values are used in the following fields:
\ IFBNT_LOGREC_CURRENT
\ IFBNT_LOGREC_PREVIOUS
\\
IFBNT_USE_DATASET EQU X'ð1' Logrec data set being used
IFBNT_USE_LOGSTREAM EQU X'ð2' Logrec log stream being used
IFBNT_IGNORE_RECORDS EQU X'ð3' Logrec recording is ignored
\
\\
\ If a Logrec data set was not defined during the IPL of the system
\ then the following string will appear in field
\ IFBNT_LOGREC_NAME = '...NO.LOGREC.DATA.SET.DEFINED... '
\\

IFBNT_TOKEN provides a DSECT to map the returned token area.

IFBNT_LOGREC_NAME_PTR contains the address of the logrec data set name.

560 OS/390 V2R8.0 MVS Assembler Services Reference

 IEANTRT Callable Service

IFBNT_LOGREC provides a DSECT to map the logrec recording medium.

IFBNT_LOGREC_NAME contains the name of the installation-defined logrec data set or no
data set name, if the recording medium is other than a data set.

TITLE 'DSNLOGREC Name/Token Retrieve Example Routine'
IFBNTXMP AMODE 31
IFBNTXMP RMODE ANY
IFBNTXMP CSECT

BAKR R14,ð Save calling program's
\ registers and return location

LR R12,R15 Establish base ref
 USING IFBNTXMP,R12 Set addressability
 MODID BRANCH=YES
\\\
\ Initialize the NAME field
\\\

MVC NAME,IFBNT_DSNLOGREC Request DSNLOGREC name
\\\
\ System level DSNLOGREC Retrieve example
\\\

LOAD EP=IEANTRT Get address of IEANTRT routine
LR R15,Rð Set address for Call

 CALL (15),(LEVEL,NAME,TOKEN,RETCODE)
\

LA R15,IEANT_OK Get successful return code value
C R15,RETCODE Was TOKEN Returned?
BNE ABEND No, Go ABEND

 EJECT
\\\
\ Get the installation specified LOGREC data set name
\\\

LA R2,TOKEN Set pointer to TOKEN area
 USING IFBNT_TOKEN,R2 Set addressability
\ DSNLOGREC TOKEN area

L R2,IFBNT_LOGREC_NAME_PTR Get pointer to data set name
DROP R2 Free up register 2
USING IFBNT_LOGREC,R2 Set addressability to

\ LOGREC data set name area
\\\
\ If you are interested in obtaining the log stream name, reference
\ IFBNT_LOGREC_LOGSTREAM instead of IFBNT_LOGREC_NAME here,
\ using the MVC command to move the log stream name to your
\ own program's area.
\\\

MVC LOGRNAME,IFBNT_LOGREC_NAME Move LOGREC data set name
\ to own area

DROP R2 Free up register 2
EXIT DS ðH Return point

SLR R15,R15 Set return code of zero
PR Return to caller

 EJECT
ABEND ABEND X'BAD' ABEND if non-zero return code
 EJECT

 IEANTRT — Retrieve the Token from a Name/Token Pair 561

 IEANTRT Callable Service

\\\
\ Local working storage declares
\\\
NAME DS CL16 Name for Name/Token pair
TOKEN DS XL16 Token for Name/Token Pair
RETCODE DS F Return code from IEANTRT
LOGRNAME DS CL44 Area for LOGREC data set name
\
\\\
\ Constant and Equates
\\\
LEVEL DC A(IEANT_SYSTEM_LEVEL) SYSTEM LEVEL
Rð EQU ð
R1 EQU 1
R2 EQU 2
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 EJECT
\\\
\ NAME/TOKEN SYSTEM LEVEL DSNLOGREC VARIABLE DECLARES
\\\
 IFBNTASM
 EJECT
\\\
\ NAME/TOKEN VARIABLE DECLARES
\\\
 IEANTASM
 END IFBNTXMP

562 OS/390 V2R8.0 MVS Assembler Services Reference

IEATDUMP — Transaction dump request

 Description
Transaction dump is a service used to request an unformatted dump of virtual storage to a
data set, similar to a SYSMDUMP. It is invoked with the IEATDUMP assembler macro, which
issues SVC 51. The service is available to both authorized and unauthorized callers;
however, not all functions are available to unauthorized callers. If an unauthorized caller
requests a transaction dump with authorized keywords, the request will be rejected and
message IEA820I will be issued indicating this condition. A transaction dump can request
that the dump be written to a data set that is either pre- or automatically allocated. A
pre-allocated data set is provided by specifying an open MACRF=W DCB, which must
contain sufficient space in one or more extents for the entire dump to be written. Failing to
provide a sufficiently large data set will result in a partial dump. Automatic allocation is
requested by specifying a data set name pattern, similar to the pattern used for the operator
DUMPDS NAME=parameter. Automatic allocation ensures that a dump will not be truncated
due to space contraints, and is done using the generic allocation unit name of SYSALLDA.
When a dump is written, message IEA822I is issued indicating whether the dump is
complete or partial.

When a transaction dump is written, a dump directory record describing the dump may be
written. The dump directory to be used is specified on the dump request using the IDX
keyword. If no dump directory is specified on the request, the directory allocated to
IPCSDDIR in the current job step will be used. If no dump directory is specified and
IPCSDDIR is not allocated, no record describing the dump will be written.

Dump suppression occurs using symptoms available in the current SDWA or a symptom
string may be provided (via the SYMREC keyword). If a symptom string is provided and an
SDWA exists, the symptom string is used for suppression purposes. Statistics for dump
suppression are contained in the DAE data set and are not differentiated from SYSMDUMPs.
If a dump is requested but not taken because it was suppressed, message IEA820I is issued
indicating this condition.

An asynchronous dump may be requested by specifying ASYNC=YES on the dump request.
It is recommended that an ECB be specified for asynchronous dumps to ensure that any
volatile resources are captured before being freed.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and PSW key 8-15. Use of some keywords is
restricted to authorized callers (supervisor state, PSW key 0-7 or
APF-authorized).

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled
Locks: The caller must not hold any locks.
Control parameters: Control parameters must be in the primary address space or, for

AR-mode callers, must be in an address/data space that is
addressable through a public entry on the caller's dispatchable unit
access list (DU-AL).

The caller-provided title, data set name, dump index name,
symptom record, incident token, problem description area and
storage list area all have the same requirements and restrictions as
the control parameters.

 Copyright IBM Corp. 1988, 1999 563

 Programming Requirements
If the caller is passing a DCB to transaction dumping, it must be opened before the
invocation.

 Restrictions
The caller may not have any FRRs established.

Input Register Information
Before issuing the IEATDUMP macro, the caller does not have to place any information into
any general purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

Before issuing the IEATDUMP macro, the caller does not have to place any information into
any access register (AR) unless using it in register notation for a particular parameter, or
using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code
1 Used as a work register by the system
2-14 Unchanged
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

 Performance Implications
None.

 Syntax
The IEATDUMP macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IEATDUMP.

IEATDUMP

␣ One or more blanks must follow IEATDUMP.

DCBAD=dcbad dcbad: RS-type address or address in register (2) - (12).
DCB=dcb dcb: RS-type address or address in register (2) - (12).
DSNAD=dsnad dsnad: RS-type address or address in register (2) - (12).
DSN=dsn dsn: RS-type address or address in register (2) - (12).

,HDRAD=hdrad hdrad: RS-type address or address in register (2) - (12).
,HDR=hdr hdr: RS-type address or address in register (2) - (12).

 ,IDXAD=idxad idxad: RS-type address or address in register (2) - (12).
 ,IDX=idx idx: RS-type address or address in register (2) - (12).

564 OS/390 V2R8.0 MVS Assembler Services Reference

 ,SYMRECAD=symrecad symrecad: RS-type address or address in register (2) - (12).
 ,SYMREC=symrec symrec: RS-type address or address in register (2) - (12).

 ,INTOKENAD=intokenad intokenad: RS-type address or address in register (2) - (12).
 ,INTOKEN=intoken intoken: RS-type address or address in register (2) - (12).

 ,PROBDESCAD=probdescad probdescad: RS-type address or address in register (2) - (12).
 ,PROBDESC=probdesc probdesc: RS-type address or address in register (2) - (12).

 ,LISTAD=listad listad: RS-type address or address in register (2) - (12).
 ,LIST=list list: RS-type address or address in register (2) - (12).

 ,SUBPLSTAD=subplstad subplstad: RS-type address or address in register (2) - (12).
 ,SUBPLST=subplst subplst: RS-type address or address in register (2) - (12).

 ,DSPLISTAD=dsplistad dsplistad: RS-type address or address in register (2) - (12).
 ,DSPLIST=dsplist dsplist: RS-type address or address in register (2) - (12).

 ,SDATA=DEFS Default: SDATA=DEFS
 ,SDATA=ALLNUC
 ,SDATA=CSA
 ,SDATA=GRSQ
 ,SDATA=LPA
 ,SDATA=LSQA
 ,SDATA=NUC
 ,SDATA=RGN
 ,SDATA=SQA
 ,SDATA=SUM
 ,SDATA=SWA
 ,SDATA=TRT
 ,SDATA=PSA

 ,ASYNC=NO Default: ASYNC=NO
 ,ASYNC=YES

 ,ECBAD=ecbad ecbad: RS-type address or address in register (2) - (12).
 ,ECB=ecb ecb: RS-type address or address in register (2) - (12).

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX
 ,PLISTVER=1

 ,MF=S Default: MF=S
 ,MF=(L,list addr) list addr: RS-type address or register (1) - (12).
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)
 ,MF=(E,list addr,NOCHECK)
 ,MF=(M,list addr)
 ,MF=(M,list addr,COMPLETE)
 ,MF=(M,list addr,NOCHECK)

 IEATDUMP — Transaction dump request 565

 Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IEATDUMP macro
invocation. The name must conform to the rules for an ordinary assembler language
symbol.

DCBAD=dcbad
DCB=dcb
DSNAD=dsnad
DSN=dsn

A required input parameter.

DCBAD=dcbad
A 4 byte field which contains the address of a previously opened MACRF=W data
control block (DCB) for the data set that is to contain the dump. If specified, the
DCB must be writeable in the caller's key.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer
field.

DCB=dcb
A parameter of a previously opened MACRF=W data control block (DCB) for the
data set that is to contain the dump. If specified, the DCB must be writeable in the
caller's key.

To code: Specify the RS-type address, or address in register (2)-(12), of a
96-character field.

DSNAD=dsnad
A 4 byte field which contains the area of the name pattern used to create the data
set that is to contain the dump. The format of the area is a single byte specifying
the length of the name pattern followed by the name pattern itself. The name
pattern must resolve to a valid data set name which can be allocated from the
caller's address space.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer
field.

DSN=dsn
A parameter of a 101 character input of the area that contains the name pattern
used to create the data set that is to contain the dump. The format of the area is a
single byte specifying the length of the name pattern followed by the name pattern
itself. The name pattern is similar to that used by the operator DUMPDS
NAME=parameter, and must not be greater than 100 bytes long. There is no
default name pattern available, but the use of system symbols is supported. The
name pattern must resolve to a valid data set name which can be allocated from
the caller's address space.

To code: Specify the RS-type address, or address in register (2)-(12), of a
45-character field.

,HDRAD=hdrad
,HDR=hdr

A required input parameter.

,HDRAD=hdrad
A 4 byte field which contains the address of a parameter of the dump title. The
format of the area is a single byte specifying the length of the title followed by the
title itself.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer
field.

566 OS/390 V2R8.0 MVS Assembler Services Reference

,HDR=hdr
A parameter of an area that contains the dump title. The format of the area is a
single byte specifying the length of the title followed by the title itself.

To code: Specify the RS-type address, or address in register (2)-(12), of a
101-character field.

,IDXAD=idxad
,IDX=idx

An optional input parameter.

,IDXAD=idxad
A 4 byte field which contains the address of a parameter of an area that contains
the name of the dump index which is to contain information about the dump after
the dump is written. The format of the area is a single byte specifying the length of
the dump index data set name followed by the name itself. The data set must be
an existing IPCS dump directory. The data set will be allocated from the caller's
address space.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer
field.

,IDX=idx
A parameter of an area that contains the name of the dump index which is to
contain information about the dump after the dump is written. The format of the
area is a single byte specifying the length of the dump index data set name
followed by the name itself. The data set must be an existing IPCS dump directory.
The data set will be allocated from the caller's address space.

To code: Specify the RS-type address, or address in register (2)-(12), of a
45-character field.

,SYMRECAD=symrecad
,SYMREC=symrec

An optional input parameter.

,SYMRECAD=symrecad
A 4 byte field which contains the address of a parameter of a valid symptom record
for DAE to use for dump suppression. This area is built using SYMRBLD and
mapped by ADSR. This area has a maximum length of 1900 bytes.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer
field.

,SYMREC=symrec
A parameter of a valid symptom record for DAE to use for dump suppression. This
area is built using SYMRBLD and mapped by ADSR. This area has a maximum
length of 1900 bytes.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,INTOKENAD= intokenad
,INTOKEN=intoken

An optional input parameter.

,INTOKENAD= intokenad
A 4 byte field which contains the address of a parameter of a 32-byte area that
contains an incident token previously built by the IEAINTKN macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer
field.

,INTOKEN=intoken
A parameter of a 32-byte area that contains an incident token previously built by the
IEAINTKN macro.

 IEATDUMP — Transaction dump request 567

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,PROBDESCAD=probdescad
,PROBDESC=probdesc

An optional input parameter.

,PROBDESCAD=probdescad
A 4 byte field which contains the address of a parameter of an area that contains
information describing the problem. This area has a maximum length of 1024
bytes.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer
field.

,PROBDESC=probdesc
A parameter of an area that contains information describing the problem. This area
has a maximum length of 1024 bytes.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,LISTAD= listad
,LIST=list

An optional input parameter.

,LISTAD= listad
A 4 byte field which contains the address of a parameter of a list of starting and
ending addresses of areas to be dumped. The high-order bit of the last ending
address is set to 1; the high-order bit of all other addresses is 0. This area has a
maximum length of 240 bytes.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer
field.

,LIST=list
A parameter of a list of starting and ending addresses of areas to be dumped. The
high-order bit of the last ending address is set to 1; the high-order bit of all other
addresses is 0. This area has a maximum length of 240 bytes.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,SUBPLSTAD= subplstad
,SUBPLST=subplst

An optional input parameter.

,SUBPLSTAD= subplstad
A 4 byte field which contains the address of a parameter of a list of subpool
numbers to be dumped. The first halfword is the number subpools in the list and
must be on a fullword boundary. Each entry is two bytes.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer
field.

,SUBPLST=subplst
A parameter of a list of subpool numbers to be dumped. The first halfword is the
number subpools in the list and must be on a fullword boundary. Each entry is two
bytes.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,DSPLISTAD=dsplistad
,DSPLIST=dsplist

An optional input parameter.

568 OS/390 V2R8.0 MVS Assembler Services Reference

,DSPLISTAD=dsplistad
A 4 byte field which contains the address of a parameter of a list of data space
storage to be dumped. The first word is the total size of the DSPLIST. The next 8
characters is the STOKEN of the data space to be dumped. A full word indicates
the number of ranges to be dumped for that STOKEN. Then, 2 full words for each
range, which are the starting and ending addresses of the range. More than one
STOKEN may be specified per DSPLIST.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer
field.

,DSPLIST=dsplist
A parameter of a list of data space storage to be dumped. The first word is the
total size of the DSPLIST. The next 8 characters is the STOKEN of the data space
to be dumped. A full word indicates the number of ranges to be dumped for that
STOKEN. Then, 2 full words for each range, which are the staring and ending
addresses of the range. More than one STOKEN may be specified per DSPLIST.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,SDATA=DEFS
,SDATA=ALLNUC
,SDATA=CSA
,SDATA=GRSQ
,SDATA=LPA
,SDATA=LSQA
,SDATA=NUC
,SDATA=RGN
,SDATA=SQA
,SDATA=SUM
,SDATA=SWA
,SDATA=TRT
,SDATA=PSA

An optional parameter that specifies what system data should be provided in the
transaction dump. No fetch-protected storage which is inaccessable in the caller's key
will be dumped. The default is SDATA=DEFS.

,SDATA=DEFS
the following SDATA options are included in the dump:
LSQA,NUC,PSA,RGN,SQA,SUM,SWA and TRT.

,SDATA=ALLNUC
all of DAT-on nucleus, including page-protected areas, and all of the DAT-off
nucleus.

,SDATA=CSA
common storage area.

,SDATA=GRSQ
global resource serialization (ENQ/DEQ/RESERVE) queues.

,SDATA=LPA
link pack area for this job.

,SDATA=LSQA
local system queue area.

,SDATA=NUC
non-page-protected areas of the DAT-on nucleus.

,SDATA=RGN
entire private area.

 IEATDUMP — Transaction dump request 569

,SDATA=SQA
system queue area.

,SDATA=SUM
requests the summary dump function.

,SDATA=SWA
scheduler work area.

,SDATA=TRT
system trace data.

,SDATA=PSA
prefixed save area.

One or more values may be specified for the SDATA parameter. If more than one value
is specified, group the values within parentheses.

,ASYNC=NO
,ASYNC=YES

An optional parameter that specifies whether the transaction dump should be taken
synchronously or asynchronously. The default is ASYNC=NO.

,ASYNC=NO
The transaction dump should be taken synchronously.

,ASYNC=YES
The transaction dump should be taken asynchronously.

,ECBAD=ecbad
,ECB=ecb

An optional input parameter.

,ECBAD=ecbad
A 4 byte field which contains the address of a parameter of an ECB to be posted
when the entire dump has been written. This area must be on a word boundary.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer
field.

,ECB=ecb
A parameter of an ECB to be posted when the entire dump has been written. This
area must be on a word boundary.

To code: Specify the RS-type address, or address in register (2)-(12), of a
4-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an optional input
parameter on all forms of the macro, including the list form. When using PLISTVER,
specify it on all macro forms used for a request and with the same value on all of the
macro forms. The values are:

570 OS/390 V2R8.0 MVS Assembler Services Reference

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form; in this way, MAX ensures that the parameter list does
not overwrite nearby storage.

� 1, if you use the currently available parameters.

To code: Specify one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 1

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with
the list form of the macro for applications that require reentrant code. The execute form
of the macro stores the parameters into the storage area defined by the list form, and
generates the macro invocation to transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines
that need to provide different options according to user-provided input. Use the list form
to define a storage area; use the modify form to set the appropriate options; then use
the execute form to call the service.

IBM recommends that you use the modify and execute forms of IEATDUMP in the
following order:

� Use IEATDUMP ...MF=(M,list-addr,COMPLETE) specifying appropriate parameters,
including all required ones.

� Use IEATDUMP ...MF=(M,list-addr,NOCHECK), specifying the parameters that you
want to change.

� Use IEATDUMP ...MF=(E,list-addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E, and
MF=M, this can be an RS-type address or an address in register (1)-(12).

 IEATDUMP — Transaction dump request 571

,attr
An optional 1- to 60-character input string that you use to force boundary alignment
of the parameter list. Use a value of 0F to force the parameter list to a word
boundary, or 0D to force the parameter list to a doubleword boundary. If you do not
code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to
supply defaults for omitted optional parameters.

 ABEND Codes
None.

Return and Reason Codes
When the IEATDUMP macro returns control to your program:

� GPR 15 (and retcode, if you coded RETCODE) contains a return code.
� When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE)

contains a reason code.

X'00000000' A complete dump was written.

X'00000004' A partial dump was written.

X'00000008' No dump was written.

X'0000000C' Internal processing error. No dump was written.

X'00000010' Unexpected return code from IEAVAD00.

Figure 38 (Page 1 of 5). Return and Reason Codes for the IEATDUMP Macro

Return Code Reason Code Meaning and Action

00000000 00000000 Meaning : A complete dump was written.

Action : None.

00000004 00000001 Meaning : The dump was truncated because the data set was too
small.

Action : Reissue IEATDUMP with a larger data set or use the
DSN|DSNAD parameter to allocate the dump data set automatically.

00000004 00000002 Meaning : Contention detected when attempting to set tasks in the
address space non-dispatchable.

Action : Data in dump may be inconsistent. Reissue IEATDUMP.
Reissue IEATDUMP.

00000004 00000003 Meaning : Unable to add dump data set to dump index.

Action : Verify that the dump index specified on the IDX parameter is
correct and reissue IEATDUMP.

00000008 00000001 Meaning : The address of the transaction dump parameter list was
zero.

Action : Ensure register 1 is non-zero when the transaction dump is
requested. Reissue IEATDUMP.

00000008 00000002 Meaning : The dump was suppressed by CHNGDUMP.

Action : Issue CHNGDUMP SET,SYSMDUMP or CHNGDUMP
RESET,SYSMDUMP. Reissue IEATDUMP.

00000008 00000003 Meaning : The dump was suppressed by SLIP

Action : Delete SLIP trap with SLIP DEL command. Reissue
IEATDUMP.

572 OS/390 V2R8.0 MVS Assembler Services Reference

Figure 38 (Page 2 of 5). Return and Reason Codes for the IEATDUMP Macro

Return Code Reason Code Meaning and Action

00000008 00000004 Meaning : The ALET for the transaction dump parameter list was not
valid.

Action : Ensure that access register 1 has a valid ALET when the
transaction dump is requested. Reissue IEATDUMP.

00000008 00000005 Meaning : The transaction dump parameter list was not addressable.

Action : Ensure that the entire transaction dump parameter list is
addressable via register 1 (and access register 1 if running in AR
ASC mode) when the transaction dump is requested. Reissue
IEATDUMP.

00000008 00000006 Meaning : The transaction dump parameter list version number was
not valid.

Action : Ensure the transaction dump request was built using the
IEATDUMP macro for the system on which the dump was requested.
Reissue IEATDUMP.

00000008 00000007 Meaning : The length of the transaction dump parameter list did not
match the parameter list version number.

Action : Ensure the transaction dump request was built using the
IEATDUMP macro for the system on which the dump was requested.
Reissue IEATDUMP.

00000008 00000008 Meaning : No DCB(AD) of DSN(AD) keyword was specified.

Action : Reissue IEATDUMP with either the DCB(AD) or DSN(AD)
keyword.

00000008 00000009 Meaning : Both DCB(AD) and DSN(AD) keywords were specified.

Action : Reissue IEATDUMP with either the DCB(AD) or DSN(AD)
keyword.

00000008 0000000A Meaning : The ALET for the DCB(AD) keyword was not valid.

Action : Ensure that the access register for the DCB(AD) has a valid
ALET when the transaction dump is requested. Reissue IEATDUMP.

00000008 0000000B Meaning : The DCB(AD) was not addressable.

Action : Ensure that the entire DCB(AD) is addressable using the
specified address (and ALET if running in AR ASC mode) when the
transaction dump is requested. Reissue IEATDUMP.

00000008 0000000C Meaning : The ALET for the DSN(AD) keyword was not valid.

Action : Ensure that the access register for the DSN(AD) has a valid
ALET when the transaction dump is requested. Reissue IEATDUMP.

00000008 0000000D Meaning : The DSN(AD) was not addressable.

Action : Ensure that the entire DSN(AD) is addressable using the
specified address (and ALET if running in AR ASC mode) when the
transaction dump is requested. Reissue IEATDUMP.

00000008 0000000E Meaning : No HDR(AD) keyword was specified.

Action : Reissue IEATDUMP with the HDR(AD) keyword.

00000008 0000000F Meaning : The ALET for the HDR(AD) keyword was not valid.

Action : Ensure that the access register for the HDR(AD) has a valid
ALET when the transaction dump is requested. Reissue IEATDUMP.

00000008 00000010 Meaning : The HDR(AD) was not addressable.

Action : Ensure that the entire HDR(AD) is addressable using the
specified address (and ALET if running in AR ASC mode) when the
transaction dump is requested. Reissue IEATDUMP.

00000008 00000011 Meaning : The specified HDR(AD) was longer than 100 characters.

Action : Reissue IEATDUMP with a shorter header.

00000008 00000012 Meaning : The ALET for the IDX(AD) keyword was not valid.

Action : Ensure that the access register for the IDX(AD) has a valid
ALET when the transaction dump is requested. Reissue IEATDUMP.

00000008 00000013 Meaning : The IDX(AD) was not addressable.

Action : Ensure that the entire IDX(AD) is addressable using the
specified address (and ALET if running in AR ASC mode) when the
transaction dump is requested. Reissue IEATDUMP.

 IEATDUMP — Transaction dump request 573

Figure 38 (Page 3 of 5). Return and Reason Codes for the IEATDUMP Macro

Return Code Reason Code Meaning and Action

00000008 00000014 Meaning : The IDX(AD) keyword did not specify a valid data set name
after symbol substitution.

Action : Reissue IEATDUMP with an IDX keyword that resolves to a
valid dump index data set name.

00000008 00000015 Meaning : The ALET for the SYMREC(AD) keyword was not valid.

Action : Ensure that the access register for the SYMREC(AD) has a
valid ALET when the transaction dump is requested. Reissue
IEATDUMP.

00000008 00000016 Meaning : The SYMREC(AD) was not addressable.

Action : Ensure that the entire SYMREC(AD) is addressable using the
specified address (and ALET if running in AR ASC mode) when the
transaction dump is requested. Reissue IEATDUMP.

00000008 00000017 Meaning : The specified SYMREC(AD) was not valid. Either ADSRID
not set to 'SR' or primary symptom string offset or length not
initialized.

Action : Reissue IEATDUMP with a valid symptom record.

00000008 00000018 Meaning : The ALET for the INTOKEN(AD) keyword was not valid.

Action : Ensure that the access register for the INTOKEN(AD) has a
valid ALET when the transaction dump is requested. Reissue
IEATDUMP.

00000008 00000019 Meaning : The INTOKEN(AD) was not addressable.

Action : Ensure that the entire INTOKEN(AD) is addressable using
the specified address (and ALET if running in AR ASC mode) when
the transaction dump is requested. Reissue IEATDUMP.

00000008 0000001A Meaning : The ALET for the REMOTE(AD) keyword was not valid.

Action : Ensure that the access register for the REMOTE(AD) has a
valid ALET when the transaction dump is requested. Reissue
IEATDUMP.

00000008 0000001B Meaning : The REMOTE(AD) was not addressable.

Action : Ensure that the entire REMOTE(AD) is addressable using the
specified address (and ALET if running in AR ASC mode) when the
transaction dump is requested. Reissue IEATDUMP.

00000008 0000001C Meaning : The specified REMOTE(AD) was not valid.

Action : Reissue IEATDUMP with a valid remote area.

00000008 0000001D Meaning : The ALET for the PROBDESC(AD) keyword was not valid.

Action : Ensure that the access register for the PROBDESC(AD) has
a valid ALET when the transaction dump is requested. Reissue
IEATDUMP.

00000008 0000001E Meaning : The PROBDESC(AD) was not addressable.

Action : Ensure that the entire PROBDESC(AD) is addressable using
the specified address (and ALET if running in AR ASC mode) when
the transaction dump is requested. Reissue IEATDUMP.

00000008 0000001F Meaning : The specified PROBDESC(AD) was not valid.

Action : Reissue IEATDUMP with a valid problem description area.

00000008 00000020 Meaning : The ALET for the LIST(AD) keyword was not valid.

Action : Ensure that the access register for the LIST(AD) has a valid
ALET when the transaction dump is requested. Reissue IEATDUMP.

00000008 00000021 Meaning : The LIST(AD) was not addressable.

Action : Ensure that the entire LIST(AD) is addressable using the
specified address (and ALET if running in AR ASC mode) when the
transaction dump is requested. Reissue IEATDUMP.

00000008 00000022 Meaning : The specified LIST(AD) was not valid. A range in the
storage list had a start address greater than its ending address.

Action : Reissue IEATDUMP with a valid storage list.

00000008 00000023 Meaning : The ALET for the SUBPLST(AD) keyword was not valid.

Action : Ensure that the access register for the SUBPLST(AD) has a
valid ALET when the transaction dump is requested. Reissue
IEATDUMP.

574 OS/390 V2R8.0 MVS Assembler Services Reference

Figure 38 (Page 4 of 5). Return and Reason Codes for the IEATDUMP Macro

Return Code Reason Code Meaning and Action

00000008 00000024 Meaning : The SUBPLST(AD) was not addressable.

Action : Ensure that the entire SUBPLST(AD) is addressable using
the specified address (and ALET if running in AR ASC mode) when
the transaction dump is requested. Reissue IEATDUMP.

00000008 00000025 Meaning : The specified SUBPLST(AD) was not valid. An invalid
subpool was specified.

Action : Reissue IEATDUMP with a valid subpool list.

00000008 00000026 Meaning : The ALET for the DSPLIST(AD) keyword was not valid.

Action : Ensure that the access register for the DSPLIST(AD) has a
valid ALET when the transaction dump is requested. Reissue
IEATDUMP.

00000008 00000027 Meaning : The DSPLIST(AD) was not addressable.

Action : Ensure that the entire DSPLIST(AD) is addressable using the
specified address (and ALET if running in AR ASC mode) when the
transaction dump is requested. Reissue IEATDUMP.

00000008 00000028 Meaning : The specified DSPLIST(AD) was not valid. An invalid
dataspace was specified.

Action : Reissue IEATDUMP with a valid dataspace list.

00000008 00000029 Meaning : The ALET for the ECB(AD) keyword was not valid.

Action : Ensure that the access register for the ECB(AD) has a valid
ALET when the transaction dump is requested. Reissue IEATDUMP.

00000008 0000002A Meaning : The ECB(AD) was not addressable.

Action : Ensure that the entire ECB(AD) is addressable using the
specified address (and ALET if running in AR ASC mode) when the
transaction dump is requested. Reissue IEATDUMP.

00000008 0000002B Meaning : The specified ECB(AD) was not valid. The ECB was not on
a fullword boundary.

Action : Reissue IEATDUMP with a ECB.

00000008 0000002C Meaning : The dump was rejected because caller authorization
insufficient for requested function(s).

Action : Verify authorization and requested functions. Reissue
IEATDUMP.

00000008 0000002D Meaning : The DSN(AD) keyword did not specify a valid data set
name after symbol substitution.

Action : Reissue IEATDUMP with a DSN keyword that resolves to a
valid dump data set name.

00000008 0000002E Meaning : The DSN(AD) keyword specified a data set name that was
too long.

Action : Reissue IEATDUMP with a DSN(AD) keyword that resolves
to a shorter dump data set name.

00000008 0000002F Meaning : The DSN(AD) keyword specified a data set name that
contained a bad symbol.

Action : Reissue IEATDUMP with a DSN(AD) keyword that does not
contain bad symbols.

00000008 00000030 Meaning : Unable to create dataspace to capture transaction dump.

Action : Remedy cause of DSPSERV CREATE failure or request
transaction dump specifying DCB(AD). Reissue IEATDUMP.

00000008 00000031 Meaning : Unable to add transaction dump data space to access list.

Action : Remedy cause of ALESERV ADD failure or request
transaction dump specifying DCB(AD). Reissue IEATDUMP.

00000008 00000032 Meaning : Unable to allocate transaction dump data set.

Action : Look at allocation failure messages. Reissue IEATDUMP.

 IEATDUMP — Transaction dump request 575

Figure 38 (Page 5 of 5). Return and Reason Codes for the IEATDUMP Macro

Return Code Reason Code Meaning and Action

00000008 00000033 Meaning : The transaction dump was suppressed by DAE.

Action : If you do not wish transaction dumps to be suppressed on an
installation basis, issue the SET DAE=xx console command
specifying an ADYSETxx member that does not specify
SYSMDUMP(SUPPRESS).

If you do not wish transaction dumps to be suppressed on an
application basis, include the VRANODAE key in the VRADATA of
your recovery routine.

Reissue IEATDUMP.

00000008 00000034 Meaning : An I/O error occurred writing to the dump.

Action : Ensure that the specified DCB is MACRF=W and is open
when the transaction dump is requested. Reissue IEATDUMP.

0000000C 00000001 Meaning : Unable to obtain storage for transaction dump from
subpool 230 below the line.

Action : Determine why storage is not available and reissue
IEATDUMP.

0000000C 00000002 Meaning : Unable to establish recovery environment for transaction
dump.

Action : Determine why ESTAEX failed and reissue IEATDUMP.

0000000C 00000003 Meaning : Unable to obtain storage for transaction dump from
subpool 239 above the line.

Action : Determine why storage is not available and reissue
IEATDUMP.

0000000C 00000004 Meaning : Unable to obtain storage for transaction dump from
subpool 231 above the line.

Action : Determine why storage is not available and reissue
IEATDUMP.

0000000C 00000005 Meaning : Unable to obtain storage for transaction dump from
subpool 239 above the line.

Action : Determine why storage is not available and reissue
IEATDUMP.

0000000C 00000006 Meaning : Unable to obtain storage for transaction dump from
subpool 239 above the line.

Action : Determine why storage is not available and reissue
IEATDUMP.

0000000C 00000007 Meaning : Unable to obtain storage for transaction dump from
subpool 239 above the line.

Action : Determine why storage is not available and reissue
IEATDUMP.

0000000C 00000008 Meaning : Unable to obtain storage for transaction dump from
subpool 250 above the line.

Action : Determine why storage is not available and reissue
IEATDUMP.

0000000C 000000FF Meaning : IEAVTDMP's recovery received control.

Action : Inform the system programmer.

00000010 xxxxxxxx Meaning : Unexpected return code from IEAVAD00. Return code
from IEAVAD00 returned as reason code.

Action : Inform the system programmer.

576 OS/390 V2R8.0 MVS Assembler Services Reference

 Examples
An example using DCB:

 OPEN (DUMPDCB,OUTPUT)
 IEATDUMP DCB=DUMPDCB,HDR=DUMPTITL
 CLOSE DUMPDCB
 .
 .
 .
DUMPDCB DCB DDNAME=TDUMP,MACRF=(W),BLKSIZE=416ð,LRECL=416ð, X
 RECFM=FB,DSORG=PS
DUMPTITL DC AL1(E1-S1)
S1 DC C'TRANSACTION DUMP TO AN OPEN DCB'
E1 EQU \

An example using DSN:

 IEATDUMP DSN=DUMPDSN,HDR=DUMPTTL2
 .
 .
 .
DUMPDSN DC AL1(E2-S2)
S2 DC C'HLQ.TDUMP.D&&YYMMDD..T&&HHMMSS..&&SYSNAME..&&JOBNAME..'
E2 EQU \
DUMPTTL2 DC AL1(E3-S3)
S3 DC C'IEADUMP TO AUTOMATICALLY ALLOCATED DATA SET'
E3 EQU \

 IEATDUMP — Transaction dump request 577

578 OS/390 V2R8.0 MVS Assembler Services Reference

 IEAVAPE Callable Service

| IEAVAPE — Allocate_Pause_Element

| Description
| Allocate_Pause_Element obtains a pause element token (PET), which uniquely identifies a
| pause element. The PET is used as input to the following services:

| � Pause
| � Release
| � Transfer
| � Deallocate_Pause_Element

| Environment
| The requirements for the caller are:

| Minimum authorization:| Problem state and any PSW key.
| Dispatchable unit mode:| Task
| Cross memory mode:| PASN=SASN=HASN
| AMODE:| 31-bit
| ASC mode:| Primary
| Interrupt status:| Enabled
| Locks:| No locks held.
| Control parameters:| Must be in the primary address space and addressable by the
| caller.

| Programming Requirements
| Either link the calling program's object code with the linkable stub routine (IEACSS from
| SYS1.CSSLIB) or have the calling program LOAD and then CALL the service. The
| high-level language (HLL) definitions for the callable service are:

| HLL Definition| Description

| IEAASM| 390 Assembler declarations

| IEAC| C/390 and C++/390 declarations

| Restrictions
| When the calling program specifies auth_level=IEA_UNAUTHORIZED, the caller must be in
| task mode and can only release another task in its home address space. All pause element
| tokens (PETs) used when auth_level=IEA_UNAUTHORIZED must have been obtained using
| an authorization level of IEA_UNAUTHORIZED.

| Input Register Information
| Before calling Allocate_Pause_Element, the caller must ensure that the following general
| purpose registers (GPRs) contain the specified information:

| Register Contents
| 1 Address of the parameter address list.
| 13 Address of a 72-byte register save area.

 Copyright IBM Corp. 1988, 1999 579

 IEAVAPE Callable Service

| Output Register Information
| When control returns to the caller, the GPRs contain:

| Register Contents
| 0-1 Used as work registers by the system
| 2-13 Unchanged
| 14 Used as work registers by the system
| 15 Return Code

| When control returns to the caller, the ARs contain:

| Register Contents
| 0-1 Used as work registers by the system
| 2-13 Unchanged
| 14-15 Used as work registers by the system

| Some callers depend on register contents remaining the same before and after issuing a
| service. If the system changes the contents of registers on which the caller depends, the
| caller must save them before issuing the service, and restore them after the system returns
| control.

| Performance Implications
| None.

| Syntax
| CALL IEAVAPE|
| (return_code
| ,auth_level
| ,pause_element_token)
|

| Parameters
| The parameters are explained as follows:

| return_code
| Returned parameter

| � Type: Integer
| � Character Set: N/A
| � Length: 4 bytes

| Contains the return code from the Allocate_Pause_Element service.

| ,auth_level
| Supplied parameter

| � Type: Integer
| � Character Set: N/A
| � Length: 4 bytes

| Indicates the caller's authorization level. IEAASM and IEAC define constants
| IEA_UNAUTHORIZED and IEA_AUTHORIZED, which the calling program can use. The
| following levels are supported:

| ,pause_element_token
| Returned parameter

| � Type: Character string

| Variable| Value (hexadecimal)| Meaning

| IEA_UNAUTHORIZED| 0| Caller is not key 0 or not supervisor state.

580 OS/390 V2R8.0 MVS Assembler Services Reference

 IEAVAPE Callable Service

| � Character Set: N/A
| � Length: 16 bytes

| Contains the pause element token that identifies the pause element which you can use
| to synchronize the processing of a task.

| ABEND Codes
| None.

| Return Codes
| When the service returns control to the resource manager, GPR 15 and return_code contain
| a hexadecimal return code.

| Return code in:
| Decimal (Hex)
| Equate symbol

| Meaning and Action

| 00 (0)
| IEA_SUCCESS
| Meaning: Successful completion.

| Action: None.

| 24 (18)
| IEA_LOCK_HELD
| Meaning: Program error. The caller is holding one or more locks;
| no locks must be held. The system rejects the service call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 36 (24)
| IEA_UNSUPPORTED_MVS_RELEASE
| Meaning: Environmental error. The system release does not
| support this service. The system rejects the service call.

| Action: Run the program on a system that supports the service.

| 40 (28)
| IEA_PE_NOT_HOME
| Meaning: Program error. The auth_level value specified in the call
| is not valid. The system rejects the service call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 44 (2C)
| IEA_XFER_TO_SELF
| Meaning: Program error. The calling program is not in primary ASC
| mode, which this service requires. The system rejects the service
| call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 48 (30)
| IEA_XFER_FAILED
| Meaning: Environmental error. The system could not obtain storage
| for a pause element. The system rejects the service call.

| Action: Retry the request later. If the problem persists, consult your
| system programmer.

| 56 (38)
| IEA_NO_PETS_AVAILABLE
| Meaning: There are no pause element tokens available.

| Action: Retry the request later.

| 4095 (FFF)
| IEA_UNEXPECTED_ERROR
| Meaning: This service routine encountered an unexpected error.
| The system rejects this service request.

| Action: Contact IBM support.

 IEAVAPE — Allocate_Pause_Element 581

 IEAVAPE Callable Service

582 OS/390 V2R8.0 MVS Assembler Services Reference

 IEAVDPE Callable Service

| IEAVDPE — Deallocate_Pause_Element

| Description
| Deallocate_Pause_Element frees a pause element that is no longer needed.

| Environment
| The requirements for the caller are:

| Minimum authorization:| Problem state and any PSW key.
| Dispatchable unit mode:| Task
| Cross memory mode:| PASN=SASN=HASN
| AMODE:| 31-bit addressing mode.
| ASC mode:| Primary mode.
| Interrupt status:| Enabled
| Locks:| No locks held.
| Control parameters:| Must in the primary address space and addressable by the caller.

| Programming Requirements
| Either link the calling program's object code with the linkable stub routine (IEACSS from
| SYS1.CSSLIB) or have the calling program LOAD and then CALL the service. The
| high-level language (HLL) definitions for the callable service are:

| HLL Definition| Description

| IEAASM| 390 Assembler declarations

| IEAC| C/390 and C++/390 declarations

| Restrictions
| When the calling program specifies auth_level=IEA_UNAUTHORIZED, the caller must be in
| task mode and can only release another task in its home address space. All pause element
| tokens (PETs) used when auth_level=IEA_UNAUTHORIZED must have been obtained using
| an authorization level of IEA_UNAUTHORIZED.

| Input Register Information
| Before calling Deallocate_Pause_Element, the caller must ensure that the following general
| purpose registers (GPRs) contain the specified information:

| Register Contents
| 1 Address of the parameter address list.
| 13 Address of a 72-byte register save area.

| Output Register Information
| When control returns to the caller, the GPRs contain:

| Register Contents
| 0-1 Used as work registers by the system
| 2-13 Unchanged
| 14 Used as a work register by the system
| 15 Return code

| When control returns to the caller, the access registers (ARs) contain:

| Register Contents
| 0-1 Used as work registers by the system
| 2-13 Unchanged

 Copyright IBM Corp. 1988, 1999 583

 IEAVDPE Callable Service

| 14-15 Used as a work register by the system

| Some callers depend on register contents remaining the same before and after issuing a
| service. If the system changes the contents of registers on which the caller depends, the
| caller must save them before issuing the service, and restore them after the system returns
| control.

| Performance Implications
| None.

| Syntax
| Write the call as shown on the syntax diagram. You must code all parameters on the CALL
| statement in the order shown.

| CALL IEAVDPE|
| (return_code
| ,auth_level
| ,pause_element_token)
|

| Parameters
| The parameters are explained as follows:

| return_code
| Returned parameter

| � Type: Integer
| � Character Set: N/A
| � Length: 4 bytes

| Contains the return code from the Deallocate_Pause_Element service.

| ,auth_level
| Supplied parameter

| � Type: Integer
| � Character Set: N/A
| � Length: 4 bytes

| Indicates the caller's authorization level. IEAASM and IEAC define constants
| IEA_UNAUTHORIZED and IEA_AUTHORIZED, which the calling program can use. The
| following levels are supported:

| ,pause_element_token
| Supplied parameter

| � Type: Character string
| � Character Set: N/A
| � Length: 16 bytes

| Contains the pause element token that identifies the pause element that is no longer
| needed.

| Variable| Value (hexadecimal)| Meaning

| IEA_UNAUTHORIZED| 0| Caller is not key 0 or not supervisor state.

584 OS/390 V2R8.0 MVS Assembler Services Reference

 IEAVDPE Callable Service

| ABEND Codes
| None.

 IEAVDPE — Deallocate_Pause_Element 585

 IEAVDPE Callable Service

| Return Codes
| When the service returns control to the resource manager, GPR 15 and return_code contain
| a hexadecimal return code.

| Return code in:
| Decimal (Hex)
| Equate symbol

| Meaning and Action

| 00 (00)
| IEA_SUCCESS
| Meaning: Successful completion

| Action: None.

| 04 (04)| Meaning: Program error. The specified pause element token is not
| valid. The system rejects the service call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 08 (08)
| IEA_PE_TOKEN_STALE
| Meaning: The specified pause element token is stale; that is, it was
| valid but has been used on the Pause or Transfer service. This
| service requires the updated PET returned on Pause or Transfer.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 24 (18)
| IEA_LOCK_HELD
| Meaning: Program error. The caller is holding one or more locks;
| no locks must be held. The system rejects the service call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 32 (20)
| IEA_PE_BAD_STATE
| Meaning: Program error. The pause element associated with the
| specified pause element token specified is invalid or has already
| been paused. A paused PE must be released before it is
| deallocated.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 36 (24)
| IEA_UNSUPPORTED_MVS_RELEASE
| Meaning: Environmental error. The system release does not
| support this service. The system rejects the service call.

| Action: Run the program on a system that supports the service.

| 40 (28)
| IEA_INVALID_AUTHCODE
| Meaning: Program error. The auth_level value specified in the call
| is not valid. The system rejects the service call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 44 (2C)
| IEA_INVALID_MODE
| Meaning: Program error. The calling program is not in primary ASC
| mode, which this service requires. The system rejects the service
| call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 60 (3C)
| IEA_AUTH_TOKEN
| Meaning: Program error. An unauthorized caller specified a pause
| element token allocated by an authorized caller. The system rejects
| the service call.

| Action: Program error. The specified pause element token is not
| valid. The system rejects the service call.

| 64 (40)
| IEA_PE_NOT_HOME
| Meaning: Program error. An unauthorized caller specified the token
| of a pause element allocated to another address space.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 4095 (FFF)
| IEA_UNEXPECTED_ERROR
| Meaning: This service routine encountered an unexpected error.
| The system rejects this service request.

| Action: Contact IBM support.

586 OS/390 V2R8.0 MVS Assembler Services Reference

 IEAVPSE Callable Service

| IEAVPSE — Pause Service

| Description
| Call Pause to make the current task nondispatchable. Once you pause a task, it remains
| nondispatchable until a Release service specifying the same PET is called. That is, the
| program issuing the Pause does not receive control back until after the Release occurs.

| If a Release service specifying the same PET is called before Pause, the system returns
| control immediately to the calling program, and the task is not paused.

| When you use Pause, it returns an updated PET; you use this updated PET to either
| deallocate or reuse the PE.

| Environment
| The requirements for the caller are:

| Minimum authorization:| Problem state and any PSW key.
| Dispatchable unit mode:| Task
| Cross memory mode:| PASN=SASN=HASN
| AMODE:| 31-bit addressing mode.
| ASC mode:| Primary mode.
| Interrupt status:| Enabled
| Locks:| No locks held.
| Control parameters:| Must be in the primary address space and addressable by the
| caller.

| Programming Requirements
| Either link the calling program's object code with the linkable stub routine (IEACSS from
| SYS1.CSSLIB) or have the calling program LOAD and then CALL the service. The
| high-level language (HLL) definitions for the callable service are:

| HLL Definition| Description

| IEAASM| 390 Assembler declarations

| IEAC| C/390 and C++/390 declarations

| Restrictions
| When the calling program is running auth_level=IEA_UNAUTHORIZED, the caller must be in
| task mode and can only pause another task in its home address space. All pause element
| tokens (PETs) used when auth_level=IEA_UNAUTHORIZED must have been obtained using
| an authorization level of IEA_UNAUTHORIZED.

| Input Register Information
| Before calling the Pause service, the caller must ensure that the following general purpose
| registers (GPRs) contain the specified information:

| Register Contents
| 1 Address of the parameter address list.
| 13 Address of a 72-byte register save area.

 Copyright IBM Corp. 1988, 1999 587

 IEAVPSE Callable Service

| Output Register Information
| When control returns to the caller, the GPRs contain:

| Register Contents
| 0-1 Used as work registers by the system
| 2-13 Unchanged
| 14 Used as work registers by the system
| 15 Return code

| When control returns to the caller, the access registers (ARs) contain:

| Register Contents
| 0-1 Used as work registers by the system
| 2-13 Unchanged
| 14-15 Used as a work register by the system

| Some callers depend on register contents remaining the same before and after issuing a
| service. If the system changes the contents of registers on which the caller depends, the
| caller must save them before issuing the service, and restore them after the system returns
| control.

| Performance Implications
| None.

| Syntax
| CALL IEAVPSE|
| (return_code
| ,auth_level
| ,pause_element_token
| ,updated_pause_element_token
| ,release_code)
|

| Parameters
| The parameters are explained as follows:

| return_code
| Returned parameter

| � Type: Integer
| � Character Set: N/A
| � Length: 4 bytes

| Contains the return code from the Pause service.

| ,auth_level
| Supplied parameter

| � Type: Integer
| � Character Set: N/A
| � Length: 4 bytes

| Indicates the caller's authorization level. IEAASM and IEAC define constants
| IEA_UNAUTHORIZED and IEA_AUTHORIZED, which the calling program can use. The
| following levels are supported:

| Variable| Value (hexadecimal)| Meaning

| IEA_UNAUTHORIZED| 0| Caller is not key 0 or not supervisor state.

588 OS/390 V2R8.0 MVS Assembler Services Reference

 IEAVPSE Callable Service

| ,pause_element_token
| Supplied parameter

| � Type: Character string
| � Character Set: N/A
| � Length: 16 bytes

| A pause element token that identifies the pause element being used to pause the
| current task. You obtain the PET from the Allocate_Pause_Element service.

| Once you use a PET in a call to the Pause service, you cannot reuse the PET on a
| second call to Pause or on a call to Transfer. The Pause service returns a new PET in
| updated_pause_element_token. The new PET now identifies the pause element used
| to Pause the task; use the new PET the next time you make a Pause request using the
| same Pause element.

| ,updated_pause_element_token
| Returned parameter

| � Type: Character string
| � Character Set: N/A
| � Length: 16 bytes

| A new pause element token that identifies the pause element originally identified by the
| PET specified in pause_element_token, which cannot be reused after a successful call
| to Pause.

| ,release_code
| Returned parameter

| � Type: Character string
| � Character Set: N/A
| � Length: 3 bytes

| The release code, specified by the issuer of the Release service. A Release that
| specified this code released the task from its paused condition.

| ABEND Codes
| Abend Code| Reason Code| Description

| AC7| 001A0001| This is an internal error.
| Contact IBM support.

| Return Codes
| When the service returns control to your program, GPR 15 contains one of the following
| return codes:

| Return code in:
| Decimal (Hex)
| Equate symbol

| Meaning and Action

| 00 (00)
| IEA_SUCCESS
| Meaning: Successful completion.

| Action: None

| 04 (04)| Meaning: Program error. The specified pause element token is not
| valid. The system rejects the service call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 08 (08)
| IEA_PE_TOKEN_STALE
| Meaning: The specified pause element token is stale; that is, it was
| valid but has been used on the Pause or Transfer service. This
| service requires the updated PET returned on Pause or Transfer.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

 IEAVPSE — Pause Service 589

 IEAVPSE Callable Service

| Return code in:
| Decimal (Hex)
| Equate symbol

| Meaning and Action

| 12 (0C)
| IEA_DUPLICATE_PAUSE
| Meaning: The work unit has already been paused using the
| specified pause element token. The system rejects the service call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 24 (18)
| IEA_LOCK_HELD
| Meaning: Program error. The caller is holding one or more locks; no
| locks must be held. The system rejects the service call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 36 (24)
| IEA_UNSUPPORTED_MVS_RELEASE
| Meaning: Environmental error. The system release does not
| support this service. The system rejects the service call.

| Action: Run the program on a system that supports the service.

| 40 (28)
| IEA_INVALID_AUTHCODE
| Meaning: Program error. The auth_level value specified in the call
| is not valid. The system rejects the service call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 44 (2C)
| IEA_INVALID_MODE
| Meaning: Program error. The calling program is not in primary ASC
| mode, which this service requires. The system rejects the service
| call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 52 (34)
| IEA_ALREADY_SUSPENDED
| Meaning: The pause element was already paused.

| Action: Check the calling program for a probable coding error and
| correct the program and rerun it.

| 60 (3C)
| IEA_AUTH_TOKEN
| Meaning: Program error. An unauthorized caller specified a pause
| element token allocated by an authorized caller. The system rejects
| the service call.

| Action: Program error. The specified pause element token is not
| valid. The system rejects the service call.

| 64 (40)
| IEA_PE_NOT_HOME
| Meaning: Program error. An authorized caller specified the token of
| a pause element allocated to another address space.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 4095 (FFF)
| IEA_UNEXPECTED_ERROR
| Meaning: This service routine encountered an unexpected error.
| The system rejects this service request.

| Action: Contact IBM support.

590 OS/390 V2R8.0 MVS Assembler Services Reference

 IEAVRLS Callable Service

| IEAVRLS — Release

| Description
| Call Release to remove a task that has been paused, or to keep a task from being paused.
| Although a pause element can be used multiple times to pause a task, a pause element
| token can be used to successfully pause and release a task only once. Each time a pause
| element is used, the system generates a new PET to identify the pause element. The
| system returns the new updated PET on calls to the Pause and Transfer services.

| Environment
| The requirements for the caller are:

| Minimum authorization:| Problem state and any PSW key.
| Dispatchable unit mode:| Task
| Cross memory mode:| PASN=SASN=HASN
| AMODE:| 31-bit addressing mode.
| ASC mode:| Primary mode.
| Interrupt status:| Enabled or disabled for I/O and external interrupts.
| Locks:| No locks held.
| Control parameters:| Must be in the primary address space and addressable by the
| caller.

| Programming Requirements
| Either link the calling program's object code with the linkable stub routine (IEACSS from
| SYS1.CSSLIB) or have the calling program LOAD and then CALL the service. The
| high-level language (HLL) definitions for the callable service are:

| HLL Definition| Description

| IEAASM| 390 Assembler declarations

| IEAC| C/390 and C++/390 declarations

| Restrictions
| When the calling program specifies auth_level=IEA_UNAUTHORIZED, the caller must be in
| task mode and can only release another task in its home address space. All pause element
| tokens (PETs) used when auth_level=IEA_UNAUTHORIZED must have been obtained using
| an authorization level of IEA_UNAUTHORIZED.

| Input Register Information
| Before calling the Release service, the caller must ensure that the following general purpose
| (GPRs) contain the specified information:

| Register Contents
| 1 Address of the parameter address list.
| 13 Address of a 72-byte register save area.

| Output Register Information
| When control returns to the caller, the general purpose registers (GPRs) contain:

| Register Contents
| 0-1 Used as work registers by the system
| 2-13 Unchanged
| 14 Used as a work register by the system
| 15 Return code

 Copyright IBM Corp. 1988, 1999 591

 IEAVRLS Callable Service

| When control returns to the caller, the access registers (ARs) contain:

| Register Contents
| 0-1 Used as work registers by the system
| 2-13 Unchanged
| 14-15 Used as a work register by the system

| Some callers depend on register contents remaining the same before and after issuing a
| service. If the system changes the contents of registers on which the caller depends, the
| caller must save them before issuing the service, and restore them after the system returns
| control.

| Performance Implications
| None.

| Syntax
| CALL IEAVRLS|
| (return_code
| ,auth_level
| ,target_du_pause_element_token
| ,target_du_release_code)
|

| Parameters
| The parameters are explained as follows:

| return_code
| Returned parameter

| � Type: Integer
| � Character Set: N/A
| � Length: 4 bytes

| Contains the return from the Release service.

| ,auth_level
| Supplied Parameter

| � Type: Integer
| � Character Set: N/A
| � Length: 4 bytes

| Indicates the caller's authorization level. IEAASM and IEAC define constants
| IEA_UNAUTHORIZED and IEA_AUTHORIZED, which the calling program can use. The
| following levels are supported:

| ,target_du_pause_element_token
| Supplied parameter

| � Type: Character string
| � Character Set: N/A
| � Length: 16 bytes

| Contains the pause element token that identifies the pause element used to pause the
| task. If the PET identifies a pause element that has not been paused (that is, the task
| has not been paused), the task will not be paused. However, the value specified in
| target_du_release_code will be returned to the caller of Pause.

| Variable| Value (hexadecimal)| Meaning

| IEA&UNAUTHORIZED| 0| Caller is not key 0 or not supervisor state.

592 OS/390 V2R8.0 MVS Assembler Services Reference

 IEAVRLS Callable Service

| ,target_du_release_code
| Supplied parameter

| � Type: Character string
| � Character Set: N/A
| � Length: 3 bytes

| Contains the release code returned to the caller of Pause or Transfer service that used
| (or will use) the same PET to pause a task. If your program is not using this code for
| communication, set this field to zero.

| ABEND Codes
| None.

| Return Codes
| When the service returns control to the resource manager, GPR 15 and return_code contain
| a hexadecimal return code.

| Return code in:
| Decimal (Hex)
| Equate symbol

| Meaning and Action

| 00 (00)
| IEA_SUCCESS
| Meaning: Successful completion.

| Action: None.

| 04 (04)
| IEA_PE_TOKEN_BAD
| Meaning: The specified pause element token is not valid. The
| system rejects the service call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 08 (08)
| IEA_PE_TOKEN_STALE
| Meaning: The specified pause element token is stale; that is, it was
| valid but has been used on the Pause or Transfer service. This
| service requires the updated PET returned on Pause or Transfer.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 16 (10)
| IEA_SLEEP_DISRUPTED
| Meaning: RTM has terminated the task; no release is necessary.

| Action: None

| 20 (14)
| IEA_SPACE_TERMINATING
| Meaning: The address space that contains the task that is
| terminating; no release is necessary.

| Action: None

| 24 (18)
| IEA_LOCK_HELD
| Meaning: Program error. The caller is holding one or more locks;
| no locks must be held. The system rejects the service call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 32 (20)
| IEA_PE_BAD_STATE
| Meaning: Program error. The pause element associated with the
| pause element token specified is invalid or has already been
| prereleased.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 36 (24)
| IEA_UNSUPPORTED_MVS_RELEASE
| Meaning: Environmental error. The system release does not
| support this service. The system rejects the service call.

| Action: Run the program on a system that supports the service.

| 40 (28)
| IEA_INVALID_AUTHCODE
| Meaning: Program error. The auth_level value specified in the call
| is not valid. The system rejects the service call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 44 (2C)
| IEA_INVALID_MODE
| Meaning: Program error. The calling program is not in primary ASC
| mode, which this service requires. The system rejects the service
| call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

 IEAVRLS — Release 593

 IEAVRLS Callable Service

| Return code in:
| Decimal (Hex)
| Equate symbol

| Meaning and Action

| 60 (3C)
| IEA_AUTH_TOKEN
| Meaning: Program error. An unauthorized caller specified a pause
| element token allocated by an authorized caller. The system rejects
| the service call.

| Action: Program error. The specified pause element token is not
| valid. The system rejects the service call.

| 64 (40)
| IEA_PE_NOT_HOME
| Meaning: Program error. An unauthorized caller specified the token
| of a pause element allocated to another address space.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 4095 (FFF)
| IEA_UNEXPECTED_ERROR
| Meaning: This service routine encountered an unexpected error.
| The system rejects this service request.

| Action: Contact IBM support.

594 OS/390 V2R8.0 MVS Assembler Services Reference

 IEAVXFR Callable Service

| IEAVXFR — Transfer Service

| Description
| Call the Transfer service to release a paused task, and when possible, give it immediate
| control. This service can also, optionally, pause the task under which the Transfer request is
| made. If the caller does not request that its task be paused, the caller's task remains
| dispatchable.

| Environment
| The requirements for the caller are:

| Minimum authorization:| Problem state and any PSW key.
| Dispatchable unit mode:| Task
| Cross memory mode:| PASN=SASN=HASN
| AMODE:| 31-bit addressing mode.
| ASC mode:| Primary mode.
| Interrupt status:| Enabled
| Locks:| No Locks held.
| Control parameters:| Must be in the primary address space and addressable by the
| caller.

| Programming Requirements
| Either link the calling program's object code with the linkable stub routine (IEACSS from
| SYS1.CSSLIB) or have the calling program LOAD and then CALL the service. The
| high-level language (HLL) definitions for the callable service are:

| HLL Definition| Description

| IEAASM| 390 Assembler declarations

| IEAC| C/390 and C++/390 declarations

| Restrictions
| When the calling program specifies auth_level=IEA_UNAUTHORIZED, the caller must be in
| task mode and can only transfer to another task in its home address space. All pause
| element tokens (PETs) used when auth_level=IEA_UNAUTHORIZED must have been
| obtained using an authorization level of IEA_UNAUTHORIZED.

| Input Register Information
| Before calling the Transfer service, the caller must ensure that the following general purpose
| registers (GPRs) contain the specified information:

| Register Contents
| 1 Address of the parameter address list.
| 13 Address of a 72-byte register save area.

| Output Register Information
| When control returns to the caller, the general purpose registers (GPRs) contain:

| Register Contents
| 0-1 Used as work registers by the system
| 2-13 Unchanged
| 14 Used as a work register by the system
| 15 Return code

| When control returns to the caller, the access registers (ARs) contain:

 Copyright IBM Corp. 1988, 1999 595

 IEAVXFR Callable Service

| Register Contents
| 0-1 Used as work registers by the system
| 2-14 Unchanged
| 15 Used as a work register by the system

| Some callers depend on register contents remaining the same before and after issuing a
| service. If the system changes the contents of registers on which the caller depends, the
| caller must save them before issuing the service, and restore them after the system returns
| control.

| Performance Implications
| None.

| Syntax
| CALL IEAVXFR|
| (return_code
| ,auth_level
| ,current_du_pause_element_token
| ,updated_pause_element_token
| ,current_du_release_code
| ,target_du_pause_element_token
| ,target_du_release_code)
|

| Parameters
| The parameters are explained as follows:

| return_code
| Returned parameter

| � Type: Integer
| � Character Set: N/A
| � Length: 4 bytes

| Contains the return code from the Transfer service.

| ,auth_level
| Supplied parameter

| � Type: Integer
| � Character Set: N/A
| � Length: 4 bytes

| Indicates the caller's authorization level. IEAASM and IEAC define constants
| IEA_UNAUTHORIZED and IEA_AUTHORIZED, which the calling program can use. The
| following levels are supported:

| ,current_du_pause_element_token
| Supplied parameter

| � Type: Character string
| � Character Set: N/A
| � Length: 16 bytes

| Contains a pause element token that identifies the pause element used to pause the
| current task. Once a PET is used on a call to the Pause service, it cannot be reused on
| a second call to Pause or as a current_du_pause_element_token on Transfer. A new
| PET is returned to updated_pause_element_token. The new PET now properly defines

| Variable| Value (hexadecimal)| Meaning

| IEA_UNAUTHORIZED| 0| Caller is not key 0 or not supervisor state.

596 OS/390 V2R8.0 MVS Assembler Services Reference

 IEAVXFR Callable Service

| the pause element and should be used the next time a pause, transfer, release, or
| deallocate_pause_element request is made using the same pause element.

| If the value specified is 16-bytes of binary zeros, the current task will not be paused.
| The updated_pause_element_token and current_du_release_code will be unpredictable.

| CAUTION:
| Do not specify the same PET for both current_du_pause_element_token and
| target_pause_element_token.

| ,updated_pause_element_token
| Returned parameter

| � Type: Character string
| � Character Set: N/A
| � Length: 16 bytes

| Contains a new pause element token that identifies the pause element originally
| identified by the PET specified in current_du_pause_element_token. The PET originally
| specified in current_du_pause_element_token cannot be reused after a successful call
| to Pause or Transfer.

| If you set the current_du_pause_element_token to zeros, the contents of
| updated_pause_element_token are unpredictable.

| ,current_du_release_code
| Returned parameter

| � Type: Character string
| � Character Set: N/A
| � Length: 3 bytes

| Contains the release code set by the issuer of the Release or Transfer service that
| released the current task from its paused condition.

| If you set the current_du_pause_element_token to zero, the contents are unpredictable.

| ,target_du_pause_element_token
| Supplied parameter

| � Type: Character string
| � Character Set: N/A
| � Length: 16 bytes

| Contains a pause element token that identifies the pause element to release the target
| task. Any PET that specifies a pause element not currently being used to pause a task
| is valid. When a PET for a previously released pause element is used to try to pause a
| task, the task is not paused; however, the value specified in target_du_release_code will
| still be returned to the caller of Pause or Transfer.

| If the task was paused and is now dispatchable, the task will immediately be given
| control on the current processor.

| CAUTION:
| Do not use the same PET for both current_du_pause_element_token and
| target_du_pause_element_token.

| ,target_du_release_code
| Supplied parameter

| � Type: Character string
| � Character Set: N/A
| � Length: 3 bytes

| Contains the release code returned to the issuer of the Pause or Transfer service that is
| used (or will use) the same PET to pause a task.

 IEAVXFR — Transfer Service 597

 IEAVXFR Callable Service

| ABEND Codes
| None.

598 OS/390 V2R8.0 MVS Assembler Services Reference

 IEAVXFR Callable Service

| Return Codes
| When the service returns control to the resource manager, GPR 15 and return_code contain
| a hexadecimal return code.

| Return Code in:
| Decimal (Hex)
| Equate symbol

| Meaning and Action

| 00 (00)
| IEA_SUCCESS
| Meaning: Successful completion.

| Action: None

| 04 (04)| Meaning: Program error. The specified pause element token is not
| valid. The system rejects the service call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 24 (18)
| IEA_LOCK_HELD
| Meaning: Program error. The caller is holding one or more locks;
| no locks must be held. The system rejects the service call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 32 (20)
| IEA_PE_BAD_STATE
| Meaning: Program error. The pause element associated with the
| pause element token specified in the call is not in a valid state. The
| system rejects the service call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 36 (24)
| IEA_UNSUPPORTED_MVS_RELEASE
| Meaning: Environmental error. The system release does not
| support this service. The system rejects the service call.

| Action: Run the program on a system that supports the service.

| 40 (28)
| IEA_INVALID_AUTHCODE
| Meaning : Program error. The auth_level value specified in the call
| is not valid. The system rejects the service call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 44 (2C)
| IEA_INVALID_MODE
| Meaning: Program error. The calling program is not in primary ASC
| mode, which this service requires. The system rejects the service
| call.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 68 (44)
| IEA_XFER_TO_SELF
| Meaning: Program error. The specified
| current_du_pause_element_token and
| target_du_pause_element_token are the same.

| Action: Check the calling program for a probable coding error.
| Correct the program and rerun it.

| 72 (48)
| IEA_XFER_FAILED
| Meaning: The transfer failed, and the
| current_du_pause_element_token is no longer useable.

| Action: Reissue the transfer request using the
| updated_du_pause_element_token. Deallocate the
| current_du_pause_element_token.

| 4095 (FFF)
| IEA_UNEXPECTED_ERROR
| Meaning: This service routine encountered an unexpected error.
| The system rejects this service request.

| Action: Contact IBM support.

 IEAVXFR — Transfer Service 599

 IEAVXFR Callable Service

600 OS/390 V2R8.0 MVS Assembler Services Reference

 IEFDDSRV Macro

IEFDDSRV — Receive Device Information For an Allocation Request

 Description
Use the IEFDDSRV macro to obtain the unit control block (UCB) addresses of the devices
that were allocated for an allocation request. When you specify that an above 16 megabyte
UCB not be captured during dynamic allocation, use the IEFDDSRV macro to retrieve the
UCB address. When you invoke IEFDDSRV, you can identify the DD request by specifying
the ddname, data control block (DCB) pointer, data set association block (DSAB) pointer, or
access method control block (ACB) pointer.

For guidance about obtaining UCB information, see OS/390 MVS Programming: Assembler
Services Guide.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or Access register (AR)
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space.

 Programming Requirements
An authorized caller must provide or inherit serialization on the SYSZTIOT resource before
calling the IEFDDSRV macro and while using its output addresses. For unauthorized callers,
the IEFDDSRV service will obtain and release the necessary SYSZTIOT serialization on
behalf of the caller.

The caller must include the IEFDISMP and IEFDISRC mapping macros.

 Restrictions
The returned UCB addresses are only valid while the devices remain allocated after the
invocation of IEFDDSRV.

Input Register Information
Before issuing the IEFDDSRV macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

 Copyright IBM Corp. 1988, 1999 601

 IEFDDSRV Macro

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
 None.

 Syntax
The standard form of the IEFDDSRV macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IEFDDSRV.

IEFDDSRV

␣ One or more blanks must follow IEFDDSRV.

RETRIEVE

,DEVENTRY

,DDNAME=ddname ddname: RS-type or address in register (2) - (12).

,DSABPTR=dsabptr dsabptr: RS-type or address in register (2) - (12).

,DCBPTR=dcbptr dcbptr: RS-type or address in register (2) - (12).

,ACBPTR=acbptr acbptr: RS-type or address in register (2) - (12).
 ,SUBPOOL=subpool subpool: RS-type or address in register (2) - (12).

Default: SUBPOOL=0

,DEVAREA=devarea devarea: RS-type or address in register (2) - (12).
 ,TCBPTR=tcbptr tcbptr: RS-type or address in register (2) - (12).

 ,RETCODE=retcode addr retcode addr: RS-type address or address in register (2) - (12) of

fullword output variable.

 ,RSNCODE=rsncode addr rsncode addr: RS-type address or address in register (2) - (12) of

fullword output variable.

MF=(S) Default: S

 Parameters
The parameters are explained as follows:

RETRIEVE
Specifies that you want to retrieve DD related information.

,DEVENTRY
Specifies that you want to obtain the UCB address for the devices allocated to the
request.

602 OS/390 V2R8.0 MVS Assembler Services Reference

 IEFDDSRV Macro

,DDNAME=ddname
Specifies the ddname of the DD statement.

,DSABPTR=dsabptr
Specifies the address of the DSAB associated with a DD name.

,DCBPTR=dcbptr
Specifies the address of the DCB associated with a DD name. When the data set
associated with the DCB is open, the DD information is provided for the current task.
Therefore, anything you specify on the TCBPTR parameter is ignored. When the data
set is closed, you could be requesting the DD information for any task; therefore, use
the TCBPTR parameter to indicate the task control block (TCB).

,ACBPTR=acbptr
Specifies the address of the ACB associated with a DD name. When the data set
associated with the ACB is open, the DD information is provided for the current task.
Therefore, anything you specify on the TCBPTR parameter is ignored. When the data
set is closed, you could be requesting the DD information for any task; therefore, use
the TCBPTR parameter to indicate the TCB.

,SUBPOOL=subpool
Specifies the subpool for the device output area.

If your program's PSW key is different than the TCB key, specify a subpool that enables
the IEFDDSRV macro to obtain storage in the same key as your program. See OS/390
MVS Programming: Authorized Assembler Services Guide for information about how to
select the right subpool.

,DEVAREA=devarea
Specifies the address of the area of storage to contain the output from the macro. The
output is an array of device entry lists. The array contains information about the devices
allocated for an allocation request. Each device entry list contains the number of
devices and the UCB addresses of those devices. The output is mapped by the
IEFDISMP mapping macro. The caller is responsible for releasing this storage.

If you specify the DD name of a concatenation of data sets, the output area contains a
device entry list for each data set in the concatenation. This situation is also true if you
specified a DCB pointer or ACB pointer for a closed data set in a concatenation of data
sets. If you specify the DSAB pointer, the DCB pointer, or ACB pointer for an open data
set, the device output area contains information about just the specific single data set,
even if the data set is in a concatenation.

,TCBPTR=tcbptr
Specifies the address of the TCB associated with the task for which the devices were
allocated. When the data set associated with the DCB is open, IEFDDSRV provides the
DD information for the current task.

,RETCODE=retcode addr
Specifies the location where the system is to store the return code. The return code is
also in GPR 15.

,RSNCODE=rsncode addr
Specifies the location where the system is to store the reason code. The reason code is
also in GPR 0.

 ABEND Codes
None.

 IEFDDSRV — Receive Device Information For an Allocation Request 603

 IEFDDSRV Macro

Return and Reason Codes
When the IEFDDSRV macro returns control to your program, GPR 15 (and retcode if you
coded RETCODE) contains the return code. If the return code is not 0, GPR0 (and rsncode
if you coded RSNCODE) contains the reason code. Return and reason codes are mapped
in macro IEFDISRC. The hexadecimal return and reason codes from the IEFDDSRV macro
are as follows:

Figure 39. Return and Reason Codes for the IEFDDSRV Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None Meaning : Successful completion.

Action : None.

08 04 Meaning : Program error: incorrect input parameter. The specified or
obtained DD name is blank.

Action : Check the value you specified on the DDNAME parameter.

08 08 Meaning : Program error: incorrect input parameter. The specified or
obtained DSAB pointer is zero.

Action : Check the value you specified on the DSABPTR parameter.

08 0C Meaning : Program error: incorrect input parameter. The specified
DCB pointer is zero.

Action : Check the value you specified on the DCBPTR parameter.

08 10 Meaning : Program error: incorrect input parameter. An incorrect
subpool was specified.

Action : Check the value you specified on the SUBPOOL parameter.

08 14 Meaning : Program error: incorrect input parameter. The specified
ACB pointer is zero.

Action : Check the value you specified on the ACBPTR parameter.

0C 04 Meaning : Program error: The specified or obtained DD name is
incorrect.

Action : Check the value you specified on the DDNAME parameter.

0C 08 Meaning : Program error: The specified or obtained DSAB pointer is
incorrect.

Action : Check the value you specified on the DSABPTR parameter.

0C 0C Meaning : System error: This return code is for IBM diagnostic
purposes only. Most likely, the system could not obtain a resource
that is required.

Action : Record the return code and supply it to the appropriate IBM
support personnel.

0C 10 Meaning : System error: This return code is for IBM diagnostic
purposes only. Most likely, the system could not obtain a lock that is
required.

Action : Record the return code and supply it to the appropriate IBM
support personnel.

0C 14 Meaning : Program error: The specified TCB pointer is incorrect.

Action : Check the value you specified on the TCBPTR parameter.

10 None Meaning : System error: Recovery entered.

Action : Check the dump produced by the abend and supply it to the
appropriate IBM support personnel.

604 OS/390 V2R8.0 MVS Assembler Services Reference

 IEFDDSRV Macro

 IEFDDSRV—List Form
Use the list form of the IEFDDSRV macro together with the execute form of the macro for
applications that require reentrant code. The list form of the macro defines an area of
storage, which the execute form of the macro uses to contain the parameters.

The list form of the IEFDDSRV macro is written as follows:

The parameters are explained under the standard form of the IEFDDSRV macro with the
following exception:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the IEFDDSRV macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
X'0D', which forces the parameter list to a doubleword boundary.

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IEFDDSRV.

IEFDDSRV

␣ One or more blanks must follow IEFDDSRV.

MF=(L,list addr) list addr: symbol.
MF=(L,list addr,attr) attr: 1- to 60-character input string.
MF=(L,list addr,0D) Default: 0D

 IEFDDSRV — Receive Device Information For an Allocation Request 605

 IEFDDSRV Macro

 IEFDDSRV—Execute Form
Use the execute form of the IEFDDSRV macro together with the list form of the macro for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

The execute form of the IEFDDSRV macro is written as follows:

The parameters are explained under the standard form of the IEFDDSRV macro with the
following exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

Specifies the execute form of the IEFDDSRV macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the system is to check for required
parameters and supply defaults for omitted optional parameters.

NOCHECK specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IEFDDSRV.

IEFDDSRV

␣ One or more blanks must follow IEFDDSRV.

RETRIEVE

,DEVENTRY

,DDNAME=ddname ddname: RS-type or address in register (2) - (12).
,DSABPTR=dsabptr dsabptr: RS-type or address in register (2) - (12).
,DCBPTR=dcbptr dcbptr: RS-type or address in register (2) - (12).
,ACBPTR=acbptr acbptr: RS-type or address in register (2) - (12).

subpool: RS-type or address in register (2) - (12).
Default: SUBPOOL=0

 ,SUBPOOL=subpool

,DEVAREA=devarea devarea: RS-type or address in register (2) - (12).

 ,TCBPTR=tcbptr tcbptr: RS-type or address in register (2) - (12).

 ,RETCODE=retcode addr retcode addr: RS-type address or address in register (2) - (12) of

fullword output variable

 ,RSNCODE=rsncode addr rsncode addr: RS-type address or address in register (2) - (12) of

fullword output variable

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).
,MF=(E,list addr,COMPLETE) Default: COMPLETE
,MF=(E,list addr,NOCHECK)

606 OS/390 V2R8.0 MVS Assembler Services Reference

 IEFPRMLB Macro

IEFPRMLB — Logical Parmlib Support

 Description
The Logical Parmlib Concatenation is a set of up to 10 partitioned data sets defined by
PARMLIB statements in the LOADxx member of either SYSn.IPLPARM or SYS1.PARMLIB
which contains many initialization parameters in a pre-specified form in a single logical data
set, thus minimizing the need for the operator to enter parameters. SYS1.PARMLIB makes
the 11th or last data set in the concatenation and is the default logical parmlib if no
PARMLIB statements exist in LOADxx.

The objective of this support is to allow installations to partition access to parmlib and isolate
members customized by an installation from IBM maintenance and product level upgrades.
The logical parmlib is established during IPL and is used by Master Scheduler Initialization
and IEFPRMLB. There is a new SETLOAD command that allows you to switch from one
logical parmlib to another without an IPL. The IEFPRMLB macro allows you to access the
logical parmlib.

Use the IEFPRMLB macro to:

� Allocate the logical parmlib data set concatenation
� Unallocate the logical parmlib data set concatenation
� Read a logical parmlib data set
� Retrieve information about which data sets make up the logical parmlib

The four functions for the macro are:

� IEFPRMLB REQUEST=ALLOCATE allocates the logical parmlib via DDname.

� IEFPRMLB REQUEST=FREE unallocates the logical parmlib via DDname.

� IEFPRMLB REQUEST=LIST retrieves information about the logical parmlib data set
concatenation.

� IEFPRMLB REQUEST=READMEMBER reads a specified member of an already
allocated logical parmlib and returns its contents in an input buffer.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts will result.
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space.

 Programming Requirements
The caller should include the IEFZPRC mapping macro to get return and reason code
equates for all the functions.

If you are going to use the read, message or list buffers, then you should include the
IEFZPMAP mapping macro to get their mappings.

 Copyright IBM Corp. 1988, 1999 607

 IEFPRMLB Macro

 Restrictions
The caller may not have an EUT FRR established.

Input Register Information
Before issuing the IEFPRMLB macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code when GPR15 is not 0
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

608 OS/390 V2R8.0 MVS Assembler Services Reference

 IEFPRMLB Macro

REQUEST=ALLOCATE Option of IEFPRMLB

 Syntax
The IEFPRMLB macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IEFPRMLB.

IEFPRMLB

␣ One or more blanks must follow IEFPRMLB.

REQUEST=ALLOCATE

 ,S99RB=NO Default: S99RB=NO
 ,S99RB=YES

 ,WAITDSN=NO Default: WAITDSN=NO
 ,WAITDSN=YES

 ,MOUNT=YES Default: MOUNT=YES
 ,MOUNT=NO

 ,RETMSG=NO Default: RETMSG=NO
 ,RETMSG=YES

 ,CONSOLID=consolid consolid: RS-type address or address in register (2) - (12).
 ,CONSOLID=NOCONSID Default: CONSOLID=NOCONSID

 ,CART=cart cart: RS-type address or address in register (2) - (12).
 ,CART=NOCART Default: CART=NOCART

 ,MSGBUF=msgbuf msgbuf: RS-type address or address in register (2) - (12).
 ,MSGBUF=NOMSGBUF Default: MSGBUF=NOMSGBUF

 ,S99RBPTR=s99rbptr s99rbptr: RS-type address or address in register (2) - (12).

 ,ALLOCDDNAME=allocddname allocddname: RS-type address or address in register (2) - (12).

 ,READ=NO Default: READ=NO
 ,READ=YES

 ,MEMNAME=memname memname: RS-type address or address in register (2) - (12).

 ,READBUF=readbuf readbuf: RS-type address or address in register (2) - (12).

 ,BLANK72=YES Default: BLANK72=YES
 ,BLANK72=NO

,CALLERNAME=callername callername: RS-type address or address in register (2) - (12).

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 Default: PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX
 ,PLISTVER=plistver

 ,MF=S Default: MF=S

 IEFPRMLB — Logical Parmlib Support 609

 IEFPRMLB Macro

 ,MF=(L,list addr) list addr: RS-type address or register (1) - (12).
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)

 Parameters
The parameters are explained as follows:

REQUEST=ALLOCATE
A required parameter. REQUEST=ALLOCATE allocates the logical parmlib data set
concatenation. The allocation uses the data set name(s) and volume serial number(s)
provided on the PARMLIB statements in the LOADxx member of SYSn.IPLPARM or
SYS1.PARMLIB that is used during IPL processing or as specified by a SETLOAD
command. If a volume serial number(s) isn't specified, IEFPRMLB searches the catalog
for it. The allocation uses DISP=SHR and UNIT=SYSALLDA. If no PARMLIB
statements are provided in the LOADxx member, the allocation uses only
SYS1.PARMLIB.

,S99RB=NO
,S99RB=YES

An optional parameter, that specifies whether or not an SVC99 request block is input.
The default is S99RB=NO.

,S99RB=NO
specifies that no S99RB is input.

,S99RB=YES
specifies that an SVC99RB (and optionally an SVC99RBX) is input. The SVC99
request block is only required when the caller requires S99FLAG1/S99FLAG2
options not automatically provided by the ALLOCATE function. If the caller requires
that the allocation wait for data sets to become available or allow mounting of
volumes, the caller must set the appropriate bits in the S99FLAG1/S99FLAG2 fields
to request those options. The address of the list of text unit pointers (S99TXTPP)
must be zero. If an SVC99 request block is passed and the caller wishes
messages issued or returned, the caller must also provide an SVC99 request block
extension. The SVC99 request block and SVC99 request block extension are
mapped by mapping macro IEFZB4D0.

,WAITDSN=NO
,WAITDSN=YES

An optional parameter when S99RB=YES is not specified, that indicates whether waiting
should be allowed for one or more of the data sets in the logical parmlib data set
concatenation if they are not readily available (for example, enqueued exclusive by
another job). The default is WAITDSN=NO.

,WAITDSN=NO
If one or more of the data sets in the logical parmlib data set concatenation is not
readily available (e.g., enqueued exclusive by another job), waiting should not be
allowed. In this case upon return from the IEFPRMLB service the logical parmlib
data set concatenation will not have been allocated.

,WAITDSN=YES
If one or more of the data sets in the logical parmlib data set concatenation is not
readily available (for example, enqueued exclusive by another job), waiting should
be allowed. In this case the service will wait for the data set(s) to become available
before proceeding with the allocation. Upon return from the IEFPRMLB service the
logical parmlib data set concatenation will have been allocated barring other errors.

610 OS/390 V2R8.0 MVS Assembler Services Reference

 IEFPRMLB Macro

,MOUNT=YES
,MOUNT=NO

An optional parameter when S99RB=YES is not specified, that indicates whether the
service should allow mounting of volumes or consideration of offline or pending offline
devices for one or more of the data sets in the logical parmlib data set concatenation.
The default is MOUNT=YES.

,MOUNT=YES
If one or more of the volumes on which one or more of the data sets in the logical
parmlib reside is not currently mounted, mounting of that volume(s) should be
allowed. If one or more of the devices on which one or more of the data sets in the
logical parmlib reside is not currently online or is pending offline, consideration of
the offline or pending offline device should be allowed. Upon return from the
IEFPRMLB service the logical parmlib data set concatenation will have been
allocated barring other errors.

,MOUNT=NO
If one or more of the volumes on which one or more of the data sets in the logical
parmlib reside is not currently mounted, mounting of that volume(s) should not be
allowed. If one or more of the devices on which one or more of the data sets in the
logical parmlib reside is not currently online, consideration of the offline device
should not be allowed. Upon return from the IEFPRMLB service the logical parmlib
data set concatenation will not have been allocated.

,RETMSG=NO
,RETMSG=YES

An optional parameter when S99RB=YES is not specified, that specifies whether or not
messages are to be returned to the caller in an input message buffer. The default is
RETMSG=NO.

,RETMSG=NO
specifies that messages generated during IEFPRMLB processing should not be
returned to the caller in the input message buffer (MSGBUF). Messages generated
during IEFPRMLB processing will be issued to the console specified by the input
console id or will be issued with Route Code 11 (Programmer Information) and
descriptor code 4 (System Status) if no console id is input.

,RETMSG=YES
specifies that messages generated during IEFPRMLB processing should be
returned to the caller in the input message buffer (MSGBUF).

,CONSOLID=consolid
,CONSOLID=NOCONSID

An optional input parameter when RETMSG=YES and S99RB=YES are not specified. It
contains the id of the console that originated this request and may be provided if
messages are to be issued. The default is NOCONSID.

To code: Specify the RS-type address, or address in register (2)-(12), of a 4-character
field.

,CART=cart
,CART=NOCART

An optional input parameter when RETMSG=YES and S99RB=YES are not specified,
that contains the command and response token. The default is NOCART.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

,MSGBUF=msgbuf
,MSGBUF=NOMSGBUF

A required input parameter when RETMSG=YES is specified and S99RB=YES is not
specified, that is the area into which all messages generated during IEFPRMLB
processing are to be placed. The format of each message returned in the buffer is
mapped by IEFZPMAP and is compatible with WTO format requirements for the TEXT

 IEFPRMLB — Logical Parmlib Support 611

 IEFPRMLB Macro

keyword. There may be more than one message in the buffer. A 4K buffer is
recommended. Messages are placed contiguously into the buffer in 256-byte message
elements. If the input buffer is not large enough to contain all the generated messages,
those messages that will fit are returned in the buffer in the order they are generated. If
the message buffer is filled, an indicator (PRM_Msg_Buffer_Full) will be returned to
indicate the buffer is full and, therefore, may not contain all messages.
PRM_Message_Count will contain the number of messages in the buffer. See DSECT
PRM_Message_Buffer in IEFZPMAP for a complete mapping of the message buffer.

The caller must fill in the following fields in the message buffer (DSECT
PRM_Message_Buffer):

� PRM_Msg_Buffer_Size set to the size of the buffer (including the header)
� All other fields set to zero

The default is NOMSGBUF.

To code: Specify the RS-type address, or address in register (2)-(12), of a character
field.

,S99RBPTR=s99rbptr
A required input parameter when S99RB=YES is specified that contains the address of
the SVC99 request block to be used to process the allocation request.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

,ALLOCDDNAME= allocddname
A required input output parameter, that is the DDname associated with the logical
parmlib. If a non-blank/non-zero DDname is input, the service will examine the active
task's TIOT to determine if the DDname is currently allocated. If it is currently allocated,
the service will return to its caller without further processing. The service will set return
code x'04' (PRMLB_WARNING) and reason code x'01'
(PRMLB_DD_ALREADY_ALLOC) to indicate the DDname is currently allocated. If the
DDname is not currently allocated, the service will allocate the logical parmlib data set
concatenation using the input DDname.

If a blank or zero DDname is input, the service will allocate the logical parmlib data set
concatenation and return the system-generated DDname to the caller.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

,READ=NO
,READ=YES

An optional parameter, that specifies whether or not a specified member is to be read
from the logical parmlib. The default is READ=NO.

,READ=NO
indicates that no read is to be performed.

,READ=YES
indicates that the specified member of the logical parmlib data set concatenation is
to be read and placed into the input buffer. If READ is requested, the member to
be read (specified by MEMNAME) and the buffer in which to place the member
contents (specified by READBUF) must be provided.

,MEMNAME=memname
A required input parameter when READ=YES is specified, that is the name of the
member which is to be read from the logical parmlib data set concatenation. The entire
contents of the specified member will be read from the logical parmlib data set
concatenation and returned in the input buffer specified on the READBUF keyword.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

612 OS/390 V2R8.0 MVS Assembler Services Reference

 IEFPRMLB Macro

,READBUF= readbuf
A required input output parameter when READ=YES is specified, that is the area into
which the contents of the member of the logical parmlib data set concatenation
(specified by MEMNAME) are to be placed. The format of the buffer is mapped by
IEFZPMAP. If the member is too large to fit into the buffer, records will be read into the
buffer until the buffer is full. The service will terminate with return code x'0C'
(PRMLB_Request_Failed) and reason code x'0A' (PRMLB_Read_Buffer_Full) and upon
return, the buffer header will contain the buffer size needed to contain the entire
member contents. The caller may obtain a larger buffer and invoke IEFPRMLB to read
the member again from the beginning. The read buffer header will also contain the
number of records that were successfully read the placed into the input buffer and the
total number of records contained in the specified member.

For each record read, columns 73 - 80 will be blanked. Unless requested by the
Blank72 parameter, column 72 will also be blanked. Symbolic substitution will be
performed.

The caller must fill in the following fields in the READ buffer (DSECT
PRM_Read_Buffer):

� PRM_Read_BuffSize - set to the size of the buffer
� All other fields set to zero

To code: Specify the RS-type address, or address in register (2)-(12), of a character
field.

,BLANK72=YES
,BLANK72=NO

An optional parameter when READ=YES is specified, that indicates whether or not to
blank out column 72. Most parmlib processing is defined to ignore column 72. The
default is BLANK72=YES.

,BLANK72=YES
Do blank out column 72.

,BLANK72=NO
Do not blank out column 72.

,CALLERNAME= callername
A required input parameter, that is the EBCDIC caller's name which is to be used in
messages, symptom records and other diagnostic areas as necessary during
IEFPRMLB processing. Initial characters A-I and SYS are reserved for IBM use.

The suggested callername definition is 'ProgramName || ServiceLevel'

Example:

IEF761I jjobname [procstep] stepname ddname callername
DD IS ALREADY ALLOCATED AND WILL BE USED BY

 THIS TASK

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character
field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

 IEFPRMLB — Logical Parmlib Support 613

 IEFPRMLB Macro

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an optional input
parameter on all forms of the macro, including the list form. When using PLISTVER,
specify it on all macro forms used for a request and with the same value on all of the
macro forms. The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form; in this way, MAX ensures that the parameter list does
not overwrite nearby storage.

� 0, if you use the currently available parameters.

To code: Specify one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with
the list form of the macro for applications that require reentrant code. The execute form
of the macro stores the parameters into the storage area defined by the list form, and
generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E, and
MF=M, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string, which can contain any value that is valid
on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

614 OS/390 V2R8.0 MVS Assembler Services Reference

 IEFPRMLB Macro

 ABEND Codes
None.

Return and Reason Codes
When the IEFPRMLB macro returns control to your program:

� GPR 15 (and retcode, if you coded RETCODE) contains a return code.
� When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE)

contains reason code.

Return and reason code constants are defined in macro IEFZPRC.

The following table identifies the hexadecimal return and reason codes and the equate
symbol associated with each reason code.

Figure 40 (Page 1 of 3). Return and Reason Codes for the IEFPRMLB Macro

Return Code Reason Code Equate Symbol
Meaning and Action

X'00' — Equate Symbol : PRMLB_Success

Meaning : Return Code - function completed successfully

Action : None required.

X'04' — Equate Symbol : PRMLB_Warning

Meaning : Return Code - Warning

X'04' X'01' Equate Symbol : PRMLB_DD_Already_ALLOC

Meaning : The specified DDname is already allocated to this task.

Action : None required.

X'08' — Equate Symbol : PRMLB_Locks_Held

Meaning : Return Code - the caller of IEFPRMLB holds a lock.

Action : Change the caller's code to release locks prior to invoking
IEFPRMLB.

X'0C' — Equate Symbol : PRMLB_Request_Failed

Meaning : Return Code - request failed.

X'0C' X'01' Equate Symbol : PRMLB_Member_Not_Found

Meaning : The specified member name was not found.

Action : Ensure the specified member name exists. If so, contact the
system programmer.

X'0C' X'02' Equate Symbol : PRMLB_Read_IO_Error

Meaning : An I/O error was encountered while attempting to read the
specified member.

Action : Contact the system programmer.

X'0C' X'03' Equate Symbol : PRMLB_Open_Error

Meaning : An error was encountered while attempting to open the
logical parmlib.

Action : Contact the system programmer.

X'0C' X'04' Equate Symbol : PRMLB_ALLOC_Failed

Meaning : Allocation of one of the logical parmlib data sets failed

Action : Contact the system programmer.

X'0C' X'05' Equate Symbol : PRMLB_CONCAT_Failed

Meaning : Concatenation of the logical parmlib data sets failed

Action : Contact the system programmer.

X'0C' X'06' Equate Symbol : PRMLB_Reader_Load_Failed

Meaning : Load of the parmlib read routine failed.

Action : Contact the system programmer.

 IEFPRMLB — Logical Parmlib Support 615

 IEFPRMLB Macro

Figure 40 (Page 2 of 3). Return and Reason Codes for the IEFPRMLB Macro

Return Code Reason Code Equate Symbol
Meaning and Action

X'0C' X'07' Equate Symbol : PRMLB_Unable_To_Access_DS

Meaning : The parmlib read routine was unable to access the logical
parmlib

Action : Contact the system programmer.

X'0C' X'08' Equate Symbol : PRMLB_Parmlib_Still_Open

Meaning : REQUEST=FREE was requested but the logical parmlib is
still open.

Action : Close the data set prior to issuing the REQUEST=FREE.

X'0C' X'09' Equate Symbol : PRMLB_UNALLOC_Failed

Meaning : Unallocation of the logical parmlib data sets failed.

Action : Contact the system programmer.

X'0C' X'0A' Equate Symbol : PRMLB_Read_Buffer_Full

Meaning : The input READ buffer is full and READ processing could
not continue

Action : The caller may obtain a buffer large enough to contain the
entire member contents (PRM_Buff_Size_Needed in DSECT
PRM_Read_Buffer which is mapped by IEFZPMAP contains the
required size) and re-invoke IEFPRMLB to begin reading the
specified member again.

X'0C' X'0B' Equate Symbol : PRMLB_Putline_Error

Meaning : Putline processing abended. This could be due to an error
in the user-provided CPPL (pointed to by S99ECPPL when the user
provides an S99RB).

Action : Verify that the CPPL is valid.

X'10' — Equate Symbol : PRMLB_Internal_Error

Meaning : Return Code - an internal error occurred.

X'10' X'01' Equate Symbol : PRMLB_Bad_Parameter

Meaning : A bad parameter list was passed to the parmlib read
routine.

Action : Contact the system programmer.

X'10' X'02' Equate Symbol : PRMLB_Unknown_Reason

Meaning : Return Code - Reason for failure is unknown.

Action : Contact the system programmer.

X'14' — Equate Symbol : PRMLB_Not_Task_Mode

Meaning : Return Code - the caller is not in Task mode.

Action : Contact the system programmer.

X'1C' — Equate Symbol : PRMLB_Invalid_Parameter_List

Meaning : Return Code - the input parameter list is invalid.

X'1C' X'01' Equate Symbol : PRMLB_Plist_Unaccessible

Meaning : The IEFPRMLB service was unable to access the input
parameter list.

Action : Ensure the parameter list resides in storage belonging to the
caller. If so, contact the system programmer.

X'1C' X'02' Equate Symbol : PRMLB_ListBuff_Unaccessible

Meaning : The IEFPRMLB service was unable to access the input
LIST buffer.

Action : Ensure the list buffer resides in storage belonging to the
caller. If so, contact the system programmer.

X'1C' X'03' Equate Symbol : PRMLB_MsgBuff_Unaccessible

Meaning : The IEFPRMLB service was unable to access the input
message buffer.

Action : Ensure the message buffer resides in storage belonging to
the caller. If so, contact the system programmer.

616 OS/390 V2R8.0 MVS Assembler Services Reference

 IEFPRMLB Macro

Figure 40 (Page 3 of 3). Return and Reason Codes for the IEFPRMLB Macro

Return Code Reason Code Equate Symbol
Meaning and Action

X'1C' X'04' Equate Symbol : PRMLB_ReadBuff_Unaccessible

Meaning : The IEFPRMLB service was unable to access the input
read buffer.

Action : Ensure the read buffer resides in storage belonging to the
caller. If so, contact the system programmer.

X'1C' X'05' Equate Symbol : PRMLB_Plist_S99TXTPP_NOT0

Meaning : The S99RB provided to the IEFPRMLB service contains a
non-zero S99TXTPP field.

Action : Change the caller's code to zero the S99TXTPP prior to the
call to IEFPRMLB.

X'1C' X'06' Equate Symbol : PRMLB_MsgBuff_Format_Error

Meaning : The format of the message buffer provided to the
IEFPRMLB service is invalid.

Action : Correct the message buffer format.

X'1C' X'07' Equate Symbol : PRMLB_ReadBuff_Format_Error

Meaning : The format of the read buffer provided to the IEFPRMLB
service is invalid.

Action : Correct the read buffer format.

X'1C' X'08' Equate Symbol : PRMLB_ListBuff_Format_Error

Meaning : The format of the list buffer provided to the IEFPRMLB
service is invalid.

Action : Correct the list buffer format.

X'1C' X'09' Equate Symbol : PRMLB_S99RB_Unaccessible

Meaning : The IEFPRMLB service was unable to access the input
read buffer.

Action : Ensure the S99RB resides in storage belonging to the caller.
If so, contact the system programmer.

X'20' — Equate Symbol : PRMLB_Cross_Memory

Meaning : Return Code - the caller is in cross memory mode.

Action : Change the caller's code so it is not in cross memory mode
when invoking IEFPRMLB.

X'24' — Equate Symbol : PRMLB_ESTAE_Setup_Failed

Meaning : Return Code - a failure occurred when IEFPRMLB
processing attempted to set up an ESTAE environment.

Action : Contact the system programmer.

X'28' — Equate Symbol : PRMLB_Notauth_To_Subpool

Meaning : Return Code - an unauthorized caller requested messages
in an authorized subpool.

Action : Only specify subpools to which the program is authorized.

 IEFPRMLB — Logical Parmlib Support 617

 IEFPRMLB Macro

REQUEST=FREE Option of IEFPRMLB

 Syntax
The IEFPRMLB macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IEFPRMLB.

IEFPRMLB

␣ One or more blanks must follow IEFPRMLB.

REQUEST=FREE

 ,RETMSG=NO Default: RETMSG=NO
 ,RETMSG=YES

 ,CONSOLID=consolid consolid: RS-type address or address in register (2) - (12).
 ,CONSOLID=NOCONSID Default: CONSOLID=NOCONSID

 ,CART=cart cart: RS-type address or address in register (2) - (12).
 ,CART=NOCART Default: CART=NOCART

 ,MSGBUF=msgbuf msgbuf: RS-type address or address in register (2) - (12).
 ,MSGBUF=NOMSGBUF Default: MSGBUF=NOMSGBUF

 ,DDNAME=ddname ddname: RS-type address or address in register (2) - (12).

,CALLERNAME=callername callername: RS-type address or address in register (2) - (12),

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 Default: PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX
 ,PLISTVER=plistver

 ,MF=S Default: MF=S
 ,MF=(L,list addr) list addr: RS-type address or register (1) - (12).
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)

 Parameters
The parameters are explained as follows:

REQUEST=FREE
A required parameter. REQUEST=FREE unallocates the logical parmlib data set
concatenation.

,RETMSG=NO
,RETMSG=YES

An optional parameter, that indicates whether or not messages are to be returned to the
caller in an input message buffer. The default is RETMSG=NO.

618 OS/390 V2R8.0 MVS Assembler Services Reference

 IEFPRMLB Macro

,RETMSG=NO
specifies that messages generated during IEFPRMLB processing should not be
returned to the caller in the input message buffer (MSGBUF). Messages generated
during IEFPRMLB processing will be issued to the console specified by the input
console id or will be issued with Route Code 11 (Programmer Information) and
descriptor code 4 (System Status) if no console id is input.

,RETMSG=YES
specifies that messages generated during IEFPRMLB processing should be
returned to the caller in the input message buffer (MSGBUF).

,CONSOLID=consolid
,CONSOLID=NOCONSID

An optional input parameter when RETMSG=YES is not specified, that contains the id of
the console which originated this request and may be provided if messages are to be
issued. The default is NOCONSID.

To code: Specify the RS-type address, or address in register (2)-(12), of a 4-character
field.

,CART=cart
,CART=NOCART

An optional input parameter when RETMSG=YES is not specified, that contains the
Command And Response Token. The default is NOCART.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

,MSGBUF=msgbuf
,MSGBUF=NOMSGBUF

A required input parameter when RETMSG=YES is specified, that is the area into which
all messages generated during IEFPRMLB processing are to be placed. The format of
each message returned in the buffer is mapped by IEFZPMAP and is compatible with
WTO format requirements for the TEXT keyword. There may be more than one
message in the buffer. A 4K buffer is recommended. Messages are placed
contiguously into the buffer in 256-byte message elements. If the input buffer is not
large enough to contain all the generated messages, those messages that will fit are
returned in the buffer in the order they are generated. If the message buffer is filled, an
indicator (PRM_Msg_Buffer_Full) will be returned to indicate the buffer is full and,
therefore, may not contain all messages. PRM_Message_Count will contain the number
of messages in the buffer. See DSECT PRM_Message_Buffer in IEFZPMAP for a
complete mapping of the message buffer.

The caller must fill in the following fields in the message buffer (DSECT
PRM_Message_Buffer):

� PRM_Msg_Buffer_Size set to the size of the buffer (including the header)
� All other fields set to zero

The default is NOMSGBUF.

To code: Specify the RS-type address, or address in register (2)-(12), of a character
field.

,DDNAME=ddname
A required input parameter, that is the DDname associated with the logical parmlib. The
logical parmlib data set concatenation will be unallocated. The DDname originally input
to or returned by the invocation of IEFPRMLB REQUEST=ALLOCATE should be input.
If the logical parmlib is open when IEFPRMLB is invoked with REQUEST=FREE, the
unallocation will fail.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

 IEFPRMLB — Logical Parmlib Support 619

 IEFPRMLB Macro

,CALLERNAME= callername
A required input parameter, that is the EBCDIC caller's name which is to be used in
messages, symptom records and other diagnostic areas as necessary during
IEFPRMLB processing. Initial characters A-I and SYS are reserved for IBM use.

The suggested callername definition is 'ProgramName || ServiceLevel'

Example:

IEF761I jjobname [procstep] stepname ddname callername
DD IS ALREADY ALLOCATED AND WILL BE USED BY

 THIS TASK

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character
field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an optional input
parameter on all forms of the macro, including the list form. When using PLISTVER,
specify it on all macro forms used for a request and with the same value on all of the
macro forms. The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form; in this way, MAX ensures that the parameter list does
not overwrite nearby storage.

� 0, if you use the currently available parameters.

To code: Specify one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

620 OS/390 V2R8.0 MVS Assembler Services Reference

 IEFPRMLB Macro

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with
the list form of the macro for applications that require reentrant code. The execute form
of the macro stores the parameters into the storage area defined by the list form, and
generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E, and
MF=M, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string, which can contain any value that is valid
on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

 ABEND Codes
None.

Return and Reason Codes
When the IEFPRMLB macro returns control to your program:

� GPR 15 (and retcode, if you coded RETCODE) contains a return code.
� When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE)

contains reason code.

See the return codes in under REQUEST=ALLOCATE option of IEFPRMLB.

 Examples
None.

 IEFPRMLB — Logical Parmlib Support 621

 IEFPRMLB Macro

REQUEST=LIST Option of IEFPRMLB

 Syntax
The IEFPRMLB macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IEFPRMLB.

IEFPRMLB

␣ One or more blanks must follow IEFPRMLB.

REQUEST=LIST

 ,BUFFER=buffer buffer: RS-type address or address in register (2) - (12).

,CALLERNAME=callername callername: RS-type address or address in register (2) - (12).

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 Default: PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX
 ,PLISTVER=plistver

 ,MF=S Default: MF=S
 ,MF=(L,list addr) list addr: RS-type address or register (1) - (12),
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)

 Parameters
The parameters are explained as follows:

REQUEST=LIST
A required parameter. REQUEST=LIST requests information about the logical parmlib
data set concatenation. For each data set included in the logical parmlib, for which
there is room in the provided buffer, the following information is returned:

� Data set name (either specified on a PARMLIB statement in LOADxx or
SYS1.PARMLIB (if no PARMLIB statements are provided in LOADxx)).

� Volume serial number where the data set resides (if a volume serial number is
provided on the PARMLIB statement).

The number of data sets which make up the logical parmlib data set concatenation is
also returned. If this number is larger than the number of 60-byte entries for which room
was provided, then the system did not return all of the available information. In that
case, you should allocate a larger buffer based on the returned number and call the
service again, in order to retrieve all of the information.

NOTE: The LIST function only returns information on those data sets which are currently
being used by the system. If a data set was found unusable during LOADxx processing,
that data set is not being used as part of the logical parmlib concatenation and its
information will not be returned by the LIST function. Exclusion of unusable data sets is

622 OS/390 V2R8.0 MVS Assembler Services Reference

 IEFPRMLB Macro

only possible when no SETLOAD command was issued after IPL since an unusable
data set encountered during SETLOAD processing causes SETLOAD to fail.

,BUFFER=buffer
A required input parameter, that is the area where the information about the logical
parmlib data set concatenation is to be placed. The buffer is mapped by IEFZPMAP.
The caller must fill in the following fields in the list buffer (DSECT PRM_List_Buffer):

 � PRM_List_Version

– Set this using either equate symbol PRM_List_VER1 or
PRM_List_Current_Version.

 � PRM_List_Buff_Size

– Set this to the size of the provided area. It must be at least the size of
PRM_List_Header. It should contain room for at least 11 60-byte entries as
well.

� All other fields set to zero

To code: Specify the RS-type address, or address in register (2)-(12), of a character
field.

,CALLERNAME= callername
A required input parameter, that is the EBCDIC caller's name which is to be used in
messages, symptom records and other diagnostic areas as necessary during
IEFPRMLB processing. Initial characters A-I and SYS are reserved for IBM use.

The suggested callername definition is 'ProgramName || ServiceLevel'

Example:

IEF761I jjobname [procstep] stepname ddname callername
DD IS ALREADY ALLOCATED AND WILL BE USED BY

 THIS TASK

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character
field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an optional input
parameter on all forms of the macro, including the list form. When using PLISTVER,
specify it on all macro forms used for a request and with the same value on all of the
macro forms. The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might

 IEFPRMLB — Logical Parmlib Support 623

 IEFPRMLB Macro

specify on the execute form; in this way, MAX ensures that the parameter list does
not overwrite nearby storage.

� 0, if you use the currently available parameters.

To code: Specify one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with
the list form of the macro for applications that require reentrant code. The execute form
of the macro stores the parameters into the storage area defined by the list form, and
generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E, and
MF=M, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string, which can contain any value that is valid
on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

 ABEND Codes
None.

Return and Reason Codes
When the IEFPRMLB macro returns control to your program:

� GPR 15 (and retcode, if you coded RETCODE) contains a return code.
� When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE)

contains reason code.

See return codes under REQUEST=ALLOCATE option of IEFPRMLB.

624 OS/390 V2R8.0 MVS Assembler Services Reference

 IEFPRMLB Macro

 Examples
None.

 IEFPRMLB — Logical Parmlib Support 625

 IEFPRMLB Macro

REQUEST=READMEMBER Option of IEFPRMLB

 Syntax
The IEFPRMLB macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IEFPRMLB.

IEFPRMLB

␣ One or more blanks must follow IEFPRMLB.

REQUEST=READMEMBER

 ,DDNAME=ddname ddname: RS-type address or address in register (2) - (12).

 ,MEMNAME=memname memname: RS-type address or address in register (2) - (12).

 ,READBUF=readbuf readbuf: RS-type address or address in register (2) - (12).

 ,BLANK72=YES Default: BLANK72=YES
 ,BLANK72=NO

 ,MSG=YES Default: MSG=YES
 ,MSG=NO

 ,RETMSG=NO Default: RETMSG=NO
 ,RETMSG=YES

 ,CONSOLID=consolid consolid: RS-type address or address in register (2) - (12).
 ,CONSOLID=NOCONSID Default: CONSOLID=NOCONSID

 ,CART=cart cart: RS-type address or address in register (2) - (12).
 ,CART=NOCART Default: CART=NOCART

 ,MSGBUF=msgbuf msgbuf: RS-type address or address in register (2) - (12).
 ,MSGBUF=NOMSGBUF Default: MSGBUF=NOMSGBUF

,CALLERNAME=callername callername: RS-type address or address in register (2) - (12).

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 Default: PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX
 ,PLISTVER=plistver

 ,MF=S Default: MF=S
 ,MF=(L,list addr) list addr: RS-type address or register (1) - (12).
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)

626 OS/390 V2R8.0 MVS Assembler Services Reference

 IEFPRMLB Macro

 Parameters
The parameters are explained as follows:

REQUEST=READMEMBER
A required parameter. REQUEST=READMEMBER indicates to read the specified
member of the logical parmlib data set concatenation and place the contents into the
input buffer.

,DDNAME=ddname
A required input parameter, that is the DDname associated with the allocated logical
parmlib.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

,MEMNAME=memname
A required input parameter, that is the name of the member which is to be read from the
logical parmlib data set concatenation. The entire contents of the specified member will
be read from the logical parmlib data set concatenation and returned in the input buffer
specified on the READBUF keyword.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

,READBUF= readbuf
A required input output parameter, that is the area into which the contents of the
member of the logical parmlib data set concatenation (specified by MEMNAME) are to
be placed. The format of the buffer is mapped by IEFZPMAP. If the member is too
large to fit into the buffer, records will be read into the buffer until the buffer is full. The
service will terminate with return code x'0C' (PRMLB_Request_Failed), reason code
x'0A' (PRMLB_Read_Buffer_Full) and upon return, the buffer header will contain the
buffer size needed to contain the entire member contents. The caller may obtain a larger
buffer and invoke IEFPRMLB to read the member again from the beginning. The read
buffer header will also contain the number of records that were successfully read the
placed into the input buffer and the total number of records contained in the specified
member.

For each record read, columns 73 - 80 will be blanked. Unless requested by the
Blank72 parameter, column 72 will also be blanked. Symbolic substitution will be
performed.

The caller must fill in the following fields in the READ buffer (DSECT
PRM_Read_Buffer):

� PRM_Read_BuffSize - set to the size of the buffer
� All other fields set to zero

To code: Specify the RS-type address, or address in register (2)-(12), of a character
field.

,BLANK72=YES
,BLANK72=NO

An optional parameter, that indicates whether or not to blank out column 72. Most
parmlib processing is defined to ignore column 72. The default is BLANK72=YES.

,BLANK72=YES
Do blank out column 72.

,BLANK72=NO
Do not blank out column 72.

,MSG=YES
,MSG=NO

An optional parameter, that indicates whether or not message processing is to be
performed. The default is MSG=YES.

 IEFPRMLB — Logical Parmlib Support 627

 IEFPRMLB Macro

,MSG=YES
specifies that message processing is to be performed.

,MSG=NO
specifies that no message processing is to be performed. If MSG=NO is coded, no
messages generated by the logical parmlib service will be issued to the console or
hardcopy log and no messages will be returned to the caller.

,RETMSG=NO
,RETMSG=YES

An optional parameter when MSG=YES is specified, that indicates whether or not
messages are to be returned to the caller in an input message buffer. The default is
RETMSG=NO.

,RETMSG=NO
specifies that messages generated during IEFPRMLB processing should not be
returned to the caller in the input message buffer (MSGBUF). Messages generated
during IEFPRMLB processing will be issued to the console specified by the input
console id or will be issued with Route Code 11 (Programmer Information) and
descriptor code 4 (System Status) if no console id is input.

,RETMSG=YES
specifies that messages generated during IEFPRMLB processing should be
returned to the caller in the input message buffer (MSGBUF).

,CONSOLID=consolid
,CONSOLID=NOCONSID

An optional input parameter when RETMSG=YES is not specified and MSG=YES is
specified, that contains the id of the console which originated this request and may be
provided if messages are to be issued. The default is NOCONSID.

To code: Specify the RS-type address, or address in register (2)-(12), of a 4-character
field.

,CART=cart
,CART=NOCART

An optional input parameter when RETMSG=YES is not specified and MSG=YES is
specified, that contains the Command And Response Token. The default is NOCART.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

,MSGBUF=msgbuf
,MSGBUF=NOMSGBUF

A required input parameter when RETMSG=YES and MSG=YES are specified, that is
the area into which all messages generated during IEFPRMLB processing are to be
placed. The format of each message returned in the buffer is mapped by IEFZPMAP
and is compatible with WTO format requirements for the TEXT keyword. There may be
more than one message in the buffer. A 4K buffer is recommended. Messages are
placed contiguously into the buffer in 256-byte message elements. If the input buffer is
not large enough to contain all the generated messages, those messages that will fit are
returned in the buffer in the order they are generated. If the message buffer is filled, an
indicator (PRM_Msg_Buffer_Full) will be returned to indicate the buffer is full and,
therefore, may not contain all messages. PRM_Message_Count will contain the number
of messages in the buffer. See DSECT PRM_Message_Buffer in IEFZPMAP for a
complete mapping of the message buffer.

The caller must fill in the following fields in the message buffer (DSECT
PRM_Message_Buffer):

� PRM_Msg_Buffer_Size set to the size of the buffer (including the header)
� All other fields set to zero

The default is NOMSGBUF.

628 OS/390 V2R8.0 MVS Assembler Services Reference

 IEFPRMLB Macro

To code: Specify the RS-type address, or address in register (2)-(12), of a character
field.

,CALLERNAME= callername
A required input parameter, that is the EBCDIC caller's name which is to be used in
messages, symptom records and other diagnostic areas as necessary during
IEFPRMLB processing. Initial characters A-I and SYS are reserved for IBM use.

The suggested callername definition is 'ProgramName || ServiceLevel'

Example:

IEF761I jjobname [procstep] stepname ddname callername
DD IS ALREADY ALLOCATED AND WILL BE USED BY

 THIS TASK

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character
field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an optional input
parameter on all forms of the macro, including the list form. When using PLISTVER,
specify it on all macro forms used for a request and with the same value on all of the
macro forms. The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form; in this way, MAX ensures that the parameter list does
not overwrite nearby storage.

� 0, if you use the currently available parameters.

To code: Specify one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter

 IEFPRMLB — Logical Parmlib Support 629

 IEFPRMLB Macro

list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with
the list form of the macro for applications that require reentrant code. The execute form
of the macro stores the parameters into the storage area defined by the list form, and
generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E, and
MF=M, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string, which can contain any value that is valid
on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

 ABEND Codes
None.

Return and Reason Codes
When the IEFPRMLB macro returns control to your program:

� GPR 15 (and retcode, if you coded RETCODE) contains a return code.
� When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE)

contains reason code.

See return codes under REQUEST=ALLOCATE option of IEFPRMLB.

 Examples
None.

630 OS/390 V2R8.0 MVS Assembler Services Reference

 IEFSSI Macro

IEFSSI — Dynamically Query a Subsystem

 Description
Use the IEFSSI macro to dynamically query a subsystem. The REQUEST=QUERY
parameter allows an application to query the following information for all subsystems defined
to the SSI:

� The subsystem name
� If the subsystem is dynamic or not dynamic
� If the subsystem is the primary subsystem
� If the subsystem is active or inactive
� If the subsystem is dynamic, whether it accepts or rejects the SETSSI command
� If the subsystem is active, which function codes it supports.
� The number of vector tables associated with the subsystem, with a maximum of two

vector tables.
� The following information for each associated vector table:

– If the vector table is managed by the SSI. A vector table managed by the SSI is a
vector table created with the IEFSSVT REQUEST=CREATE macro.

– A locator. This locator is a token if the vector table is is managed by the SSI and is
an address if the vector table is not managed by the SSI.

– If the vector table is active

– The function codes supported by the vector table

This information represents a snapshot of the subsystems defined to the SSI when you
process the query request.

To obtain information about the primary subsystem without knowing its name, use the query
request and specify a subsystem name of '!PRI'.

 Environment
The requirements for the caller are:

Minimum authorization: For the QUERY request, problem state with any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24-bit or 31-bit
ASC mode: Primary or Access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

 Programming Requirements
� Include the CVT (IEAVCVT) and IEFJESCT mapping macros in your program.

� Include the IEFJSRC mapping macro in your program. This macro defines the dynamic
SSI return and reason codes.

� Include the IEFJSQRY macro to map the REQUEST=QUERY output.

 Copyright IBM Corp. 1988, 1999 631

 IEFSSI Macro

 Restrictions
The caller must not have established an EUT FRR.

Input Register Information
Before issuing the IEFSSI macro, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter, or using it as a base
register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code
1 Used as a work register by the system
2 - 13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0 - 1 Used as a work register by the system.
2 - 13 Unchanged
14 - 15 Used as a work register by the system.

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

632 OS/390 V2R8.0 MVS Assembler Services Reference

 IEFSSI Macro

REQUEST=QUERY Parameter of IEFSSI
The IEFSSI macro with the QUERY parameter requests information about subsystems
defined to the system.

Syntax for REQUEST=QUERY
The syntax of the IEFSSI REQUEST=QUERY macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IEFSSI.

IEFSSI

␣ One or more blanks must follow IEFSSI.

SUBNAME=subname subname: RS-type address or address in register (2) - (12).

,REQUEST=QUERY

,WORKAREA=workarea workarea: RS-type address or address in register (2) - (12) of an

output area.

 ,WORKASP=workasp workasp: RS-type address or address in register (2) - (12) of an

input area.

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 1

 ,RETCODE=retcode retcode: RS-type address or address in register (2) - (12). of

fullword output variable

 ,RSNCODE=rsncode rsncode: RS-type address or address in register (2) - (12). of

fullword output variable

 ,COM=com com: comment string
 ,COM=NULL Default: COM=NULL

 ,MF=S Default: MF=S
 ,MF=(L,list addr)
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list
addr,COMPLETE)

Parameters for REQUEST=QUERY
The parameters are explained as follows:

SUBNAME=subname
A required parameter that specifies the field (or an address in a register) containing the
4-character subsystem name. It must be the name of a subsystem that has been
previously defined to the system using SSI services.

This field must be padded to the right with blanks or nulls if it is less than 4 characters
long.

 IEFSSI — Dynamically Query a Subsystem 633

 IEFSSI Macro

For the REQUEST=QUERY parameter, the subsystem name may contain the wildcard
characters '*' and '?' to request information about multiple subsystems. The meanings
for the wildcard characters are:

* Matches 0 or more characters.

Use a SUBNAME parameter value of '*' to indicate that information is to be returned
for all subsystems.

? Matches exactly 1 character

Use a SUBNAME parameter value of '!PRI' to indicate that information is to be returned
for the primary subsystem.

,REQUEST=QUERY
A parameter that specifies the request to obtain information about a currently defined
subsystem named in the SUBNAME parameter.

The output from IEFSSI REQUEST=QUERY is mapped by the IEFJSQRY macro.
Subsystems are listed in broadcast order, that is, the order in which they receive
broadcast SSI requests.

,WORKAREA= workarea
A required parameter that specifies a name (or register containing the address) of a
pointer output field that contains the address of the subsystem information returned by
the QUERY request.

The output area is mapped by the IEFJSQRY macro. The JQRYLEN field contains the
length of the output area.

,WORKASP=workasp
An optional parameter that specifies a name (or register containing the address) of a
one-byte input field that specifies the subpool that the SSI uses to obtain a work area for
the returned subsystem information. The caller is responsible for freeing this work area.

IBM recommends that you use a job-related or task-related subpool. This allows the
system to free the associated storage when the job or task ends, if the caller does not
free the returned area.

If WORKASP is not specified, the caller's subpool zero is used. Storage for the query
information is obtained above 16 megabytes. AMODE 24 callers must switch into
AMODE 31 to address this storage. Unauthorized callers may request storage only in
the following unauthorized subpools:

 � 0-127
 � 131
 � 132

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list the
system generates. PLISTVER is an optional input parameter on all forms of the macro,
including the list form. When using PLISTVER, specify it on all macro forms used for a
request and with the same value on all of the macro forms. The values are:

IMPLIED_VERSION
The lowest version that allows all parameters specified on the request to be
processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the
default.

MAX
The largest size parameter list currently possible. This size might grow from
release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the

634 OS/390 V2R8.0 MVS Assembler Services Reference

 IEFSSI Macro

list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form; in this way, MAX ensures that the parameter list does
not overwrite nearby storage.

1 The currently available parameters.

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 1

,RETCODE=retcode
An optional 4-byte parameter that specifies the name of an output field (or a register)
where the system places the return code. The return code is copied from general
purpose register 15.

,RSNCODE=rsncode
An optional 4-byte parameter that specifies the name of an output field (or a register)
where the system places the reason code. The reason code is copied from general
purpose register 0.

,COM=com
,COM=NULL

An optional parameter that specifies the character input that appears in the block
comment before the macro invocation. Use it to make comments about the macro
invocation. The comment must be enclosed in quotes if it contains any lower case
characters. The default is NULL.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Use MF=S to specify the standard form of the IEFSSI macro, which builds an in-line
parameter list and generates the macro invocation to transfer control to the service.

Use MF=L to specify the list form of the IEFSSI macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. No other
parameters may be coded with the list form of the macro.

Use MF=E together with the list form of the macro for applications that require reentrant
code. The execute form of the IEFSSI macro stores the parameters into the storage
area defined by the list form and generates the macro invocation to transfer control to
the service.

,list addr
A required parameter that specifies the name of a storage area for the parameter
list.

,attr
An optional 1- to 60-character input string that contains any value that is valid on an
assembler DS pseudo-op. You can use this parameter to force boundary alignment
of the parameter list. If you do not code attr, the system provides a value of 0D,
which forces the parameter list to a doubleword boundary.

,COMPLETE
An optional parameter that specifies that the system checks for required parameters
and supply defaults for omitted optional parameters. This is the default parameter.

 IEFSSI — Dynamically Query a Subsystem 635

 IEFSSI Macro

 ABEND Codes
An invocation of the IEFSSI macro may result in an abend code X'8C5'. See OS/390 MVS
System Codes for an explanation of this abend code.

Return and Reason Codes
When the IEFSSI macro returns control to your program, GPR 15 (and retcode, if you coded
RETCODE) contains a return code. When the value in GPR 15 is not 0, GPR 0 (and
rsncode if you coded RSNCODE) contains the reason code.

The IEFJSRC mapping macro provides equate symbols for the return and reason codes.
The equate symbols associated with each return code are:

Return Code
Decimal (Hex) Equate Symbols
00 (00) IEFSSI_SUCCESS
04 (04) IEFSSI_WARNING
08 (08) IEFSSI_INVALID_PARAMETERS
12 (0C) IEFSSI_REQUEST_FAIL
20 (14) IEFSSI_SYSTEM_ERROR
24 (18) IEFSSI_UNAVAILABLE

The following table contains return and reason codes, the equate symbols associated with
each reason code and the meaning and suggested action for each return and reason code.

Figure 41 (Page 1 of 2). Return and Reason Codes for the IEFSSI Macro

Return Code
decimal (hex)

Reason Code
decimal (hex)

Meaning and Action

00 (00) 00 (00) Equate Symbol : IEFSSI_FUNCTIONS_COMPLETE

Meaning : The request completed successfully. The result
depends on the request:

� QUERY — Information for all subsystems defined to the
SSI has been queried

Action : None.

04 (04) 900 (384) Equate Symbol : IEFSSI_QUERY_INCOMPLETE

Meaning : The data returned by the QUERY request may be
incomplete. This is a QUERY request error.

Action : Check the JQRY_INCOMPLETE flag for each
subsystem that was queried.

08 (08) 00 (000) Equate Symbol : IEFSSI_SUBSYSTEM_UNKNOWN

Meaning : The subsystem is not defined to the SSI.

Action : Correct the subsystem name or define a subsystem
with either the IEFSSI macro or the SETSSI command.

08 (08) 12 (00C) Equate Symbol : IEFSSI_INVALID_NAME

Meaning : The subsystem name or the routine name contains
characters that are not valid.

Action : Correct the subsystem name by removing the
characters that are not valid.

12 (0C) 900 (384) Equate Symbol : IEFSSI_QUERY_STORAGE

Meaning : Unable to obtain storage for an output of the QUERY
request.

Action : Check the current use of the system storage to
determine why storage was not available. Retry the request
later in case storage has become available. See OS/390 MVS
Programming: Authorized Assembler Services Reference
ENF-IXG for more information on the IEFSSI macro.

636 OS/390 V2R8.0 MVS Assembler Services Reference

 IEFSSI Macro

Figure 41 (Page 2 of 2). Return and Reason Codes for the IEFSSI Macro

Return Code
decimal (hex)

Reason Code
decimal (hex)

Meaning and Action

20 (14) — Equate Symbol : IEFSSI_SYSTEM_ERROR

Meaning : System error

Action : Investigate the following possible causes:

� Inability to obtain a system resource
� Abnormal task termination

Obtain the system dump, if any, and contact the IBM support
center.

24 (18) — Equate Symbol : IEFSSI_UNAVAILABLE

Meaning : The IEFSSI macro has been invoked too early during
system initialization.

Action : Delay the invocation of the IEFSSI macro to a later
point in the IPL.

 Example
Obtain subsystem information for any subsystem whose name begins with 'JES' and free the
storage returned by the system.

 IEFSSI REQUEST=QUERY,SUBNAME=SNAME, X
 WORKAREA=WAREA, X
 RETCODE=RETURN_CODE,RSNCODE=REASON_CODE
...
 L R5,WAREA
 USING JQRY_HEADER,R5
 LH Rð,JQRYLEN
 STORAGE RELEASE,LENGTH=(Rð),ADDR=(R5)
...
SNAME DC CL4'JES\'
WAREA DS A
 IEFJSQRY

 IEFSSI — Dynamically Query a Subsystem 637

 IEFSSI Macro

638 OS/390 V2R8.0 MVS Assembler Services Reference

 IOCINFO Macro

IOCINFO — Obtain MVS I/O Configuration Information

 Description
Use the IOCINFO macro to obtain the following I/O configuration information:

� I/O configuration token
� The maximum device measurement block index that is currently assigned

 Environment
The requirements for the caller are:

Minimum authorization : Problem state, with any PSW key
Dispatchable unit mode : Task or SRB
Cross memory mode : Any PASN, any HASN, any SASN
AMODE: 24- or 31- bit
ASC mode : Primary or access register (AR)
Interrupt Status : Enabled or disabled for I/O and external interrupts
Locks : The caller may hold locks, but is not required to hold any
Control parameters : Must be in the primary address space or be in an address/data

space that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL)

 Programming Requirements
If in AR mode, specify SYSSTATE ASCENV=AR before invoking the macro.

 Restrictions
None.

Input Register Information
Before issuing the IOCINFO macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Reason code if GPR 15 contains a return code of 08; otherwise, used as a

work register by the system
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

 Copyright IBM Corp. 1988, 1999 639

 IOCINFO Macro

 Performance Implications
None.

 Syntax
The standard form of the IOCINFO macro is written as follows:

 1 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IOCINFO.

IOCINFO

␣ One or more blanks must follow IOCINFO.

IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

 ,MAXMBI=maxmbi addr maxmbi addr: RS-type address or register (2) - (12).

 ,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

 ,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

 Parameters
The parameters are explained as follows:

IOCTOKEN=ioctoken addr
Specifies the address of a 48-character area where the system returns the current MVS
I/O configuration token.

,MAXMBI=maxmbi addr
Specifies the address of a halfword field where the system returns the maximum device
measurement block index that is currently assigned.

,RETCODE=retcode addr
Specifies the fullword location where the system is to store the return code. The return
code is also in GPR 15.

,RSNCODE=rsncode addr
Specifies the fullword location where the system is to store the reason code. The
reason code is also in GPR 0.

 ABEND Codes
None.

640 OS/390 V2R8.0 MVS Assembler Services Reference

 IOCINFO Macro

Return and Reason Codes
When the system returns control to the caller, GPR 15 (and retcode addr, if you coded
RETCODE) contains the return code. For return code X'08', the reason code is in GPR 0
(and rsncode addr, if you coded RSNCODE).

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 Meaning : Successful completion.

Action : None.

08 01 Meaning : Program error. An ALET in the parameter list is
not valid. The caller might have inadvertently written over an
area in the parameter list.

Action : Check to see if your program inadvertently overlaid
the parameter list generated by the macro.

08 02 Meaning : Program error. The system could not access the
caller's parameter list.

Action : Check to see if your program inadvertently overlaid
the parameter list generated by the macro.

08 05 Meaning : Program error. An error occurred when the
system referenced the user-supplied area specified in the
IOCTOKEN parameter.

Action : Check to see if your program correctly specified the
IOCTOKEN area.

08 09 Meaning : System error. This reason code is for IBM
diagnostic purposes only.

Action : Record the reason code and supply it to the
appropriate IBM support personnel.

20 Meaning : System error. This return code is for IBM
diagnostic purposes only.

Action : Record the return code and supply it to the
appropriate IBM support personnel.

24 07 Meaning : Program error. The system does not support the
specified parameter.

Action : Check the parameters on the IOCINFO macro to
make sure they are valid on your release of the system.

 IOCINFO — Obtain MVS I/O Configuration Information 641

 IOCINFO Macro

 IOCINFO—List Form
Use the list form of the IOCINFO macro together with the execute form of the macro for
applications that require reentrant code. The list form of the macro defines an area of
storage, which the execute form of the macro uses to contain the parameters.

The list form of the IOCINFO macro is written as follows:

The parameters are explained under the standard form of the IOCINFO macro with the
following exception:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the IOCINFO macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
0D, which forces the parameter list to a doubleword boundary.

 1 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IOCINFO.

IOCINFO

␣ One or more blanks must follow IOCINFO.

MF=(L,list addr) list addr: Symbol.
MF=(L,list addr,attr) attr: 1- to 60- character input string
MF=(L,list addr,0D) Default : 0D

642 OS/390 V2R8.0 MVS Assembler Services Reference

 IOCINFO Macro

 IOCINFO—Execute Form
Use the execute form of the IOCINFO macro together with the list form of the macro for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

The execute form of the IOCINFO macro is written as follows:

The parameters are explained under the standard form of the IOCINFO macro with the
following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the IOCINFO macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the system is to check for required
parameters and supply defaults for omitted optional parameters.

 1 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IOCINFO.

IOCINFO

␣ One or more blanks must follow IOCINFO.

IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

 ,MAXMBI=maxmbi addr maxmbi addr: RS-type address or register (2) - (12).

 ,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

 ,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).
,MF=(E,list addr,COMPLETE) Default : COMPLETE

 IOCINFO — Obtain MVS I/O Configuration Information 643

 IOCINFO Macro

644 OS/390 V2R8.0 MVS Assembler Services Reference

 IOSCHPD Macro

IOSCHPD — IOS CHPID Description Service

 Description
The IOSCHPD macro returns the acronym and/or description of a channel path (CHP) type.

 Environment
The requirements for the caller are:

Minimum authorization : Problem or Supervisor state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode : Primary or access register (AR).
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: No locks may be held.
Control parameters: Must be in the primary address space or be in an address/data

space that is addressable through a public entry on the callers
dispatchable unit access list (DU-AL).

 Programming Requirements
None

 Restrictions
The parameter list must be in the caller's primary address space or be addressable via the
dispatchable unit access list.

The LINKAGE=BRANCH option is limited to callers which meet the following criteria:

� supervisor state and key 0
� 31 bit addressing mode
� primary ASC mode
� the parameter list resides in fixed or DREF storage

Input Register Information
Before issuing the IOSCHPD macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
The contents of registers 14 through 1 are altered during processing.

When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code
1 Unpredictable (Used as a work register by the system)
2-13 Unchanged
14 Unpredictable (Used as a work register by the system)
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Unpredictable (Used as work registers by the system)
2-13 Unchanged
14-15 Unpredictable (Used as work registers by the system)

 Copyright IBM Corp. 1988, 1999 645

 IOSCHPD Macro

 Performance Implications
None.

 Syntax
The IOSCHPD macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IOSCHPD.

IOSCHPD

␣ One or more blanks must follow IOSCHPD.

CHPID=chpid chpid: RS-type address or address in register (2) - (12).
CHP_TYPE=chp_type chp_type: RS-type address or address in register (2) - (12).

,ACRONYM=acronym acronym: RS-type address or address in register (2) - (12).
,DESC=desc desc: RS-type address or address in register (2) - (12).

 ,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM
 ,LINKAGE=BRANCH

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX
 ,PLISTVER=1

 ,MF=S Default: MF=S
 ,MF=(L,list addr) list addr: RS-type address or register (1) - (12).
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)

 Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IOSCHPD macro
invocation. The name must conform to the rules for an ordinary assembler language
symbol.

CHPID=chpid
CHP_TYPE=chp_type

A required input parameter.

CHPID=chpid
A parameter which specifies the CHPID number for which to retrieve the acronym
and/or description.

To code: Specify the RS-type address, or address in register (2)-(12), of a halfword
field.

CHP_TYPE=chp_type
A parameter which specifies the channel path type for which to retrieve the acronym
and/or description. The channel path type can be obtained by invoking the

646 OS/390 V2R8.0 MVS Assembler Services Reference

 IOSCHPD Macro

?UCBINFO PATHINFO macro and mapping the results with the IOSDPATH
mapping macro. (The interface type is in the field called PathIntType).

To code: Specify the RS-type address, or address in register (2)-(12), of an
one-byte field.

,ACRONYM=acronym
,DESC=desc

A required output parameter. One or more of these parameters may be specified.

,ACRONYM=acronym
A parameter area which is to receive the acronym.

To code: Specify the RS-type address, or address in register (2)-(12), of a
5-character field.

,DESC=desc
A parameter area which is to receive the description.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

An optional parameter that indicates whether a branch-entry linkage should be
generated or a Program Call should be issued for the routine invocation. The default is
LINKAGE=SYSTEM.

,LINKAGE=SYSTEM
requests Program Call invocation.

,LINKAGE=BRANCH
requests branch-entry invocation. The LINKAGE=BRANCH option is intended for
performance-sensitive invokers or programs which require this function during NIP
before a PC can be issued. See RESTRICTIONS for the restrictions on
branch-entry invocation.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an optional input
parameter on all forms of the macro, including the list form. When using PLISTVER,
specify it on all macro forms used for a request and with the same value on all of the
macro forms. The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form, when both are assembled with the same level of the

 IOSCHPD — IOS CHPID Description Service 647

 IOSCHPD Macro

system. In this way, MAX ensures that the parameter list does not overwrite nearby
storage.

� 1, if you use the currently available parameters.

To code: Specify one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 1

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with
the list form of the macro for applications that require reentrant code. The execute form
of the macro stores the parameters into the storage area defined by the list form, and
generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this
can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment
of the parameter list. Use a value of 0F to force the parameter list to a word
boundary, or 0D to force the parameter list to a doubleword boundary. If you do not
code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

 ABEND Codes
None.

648 OS/390 V2R8.0 MVS Assembler Services Reference

 IOSCHPD Macro

Return and Reason Codes
When the IOSCHPD macro returns control to your program:

� GPR 15 (and retcode, when you code RETCODE) contains a return code.
� When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) reason code.

The following table identifies the hexadecimal return and reason codes:

Figure 42. Return and Reason Codes for the IOSCHPD Macro

Hexadecimal
Return Code

Reason Code Meaning and Action

00 — The acronym and/or description has been returned.

04 — The acronym and/or description have not been returned (the
acronym and description output areas have been set to zeroes).

Reason
Code Meaning

00 The system could not determine the CHP type from
the input CHPID.

01 The input CHPID is not configured.

02 The CHP type obtained from the input CHPID is not
valid.

03 The input CHP type is invalid.

08 — Error in caller's parameters.

Reason
Code Meaning

01 The caller specified an invalid ALET.

02 An error occurred in accessing the caller's parameter
list.

0C — Recovery was entered.

20 — Recovery was entered.

 IOSCHPD — IOS CHPID Description Service 649

 IOSCHPD Macro

650 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGBRWSE Macro

IXGBRWSE — Browse/Read a Log Stream

 Description
Use the IXGBRWSE macro to read and browse a log stream for log block information. Using
IXGBRWSE, a program can read consecutive log blocks in a log stream or search for and
read a specific log block in a log stream. IXGBRWSE returns the specified log block in the
calling program's output buffer.

The requests for IXGBRWSE are:

� REQUEST=START, which starts a browse session. See page 653 for the syntax of this
request.

� REQUEST=READCURSOR, which reads the next consecutive log block in the log
stream. Use this request multiple times to read consecutive blocks in a log stream.
See page 658 for the syntax of this request.

� REQUEST=READBLOCK, which reads a selected log block in a log stream. See page
663 for the syntax of this request.

� REQUEST=RESET, which resets the browse cursor to either the beginning or the end of
the log stream. See page 668 for the syntax of this request.

� REQUEST=END, which ends a browse session. See page 672 for the syntax of this
request.

For information about using the system logger services and the IXGBRWSE request, see
OS/390 MVS Programming: Assembler Services Guide, which also includes information
about related macros IXGCONN, IXGINVNT, IXGWRITE, and IXGDELET.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held.
Control parameters: All control parameters (except for ECB) must be in the primary

address space. ECB should be addressable from home address
space.

 Programming Requirements
� The current primary address space must be the same primary address space used at

the time your program issued the IXGCONN request.

� The calling program must be connected to the log stream through the IXGCONN service
with either read or write authority.

� The parameter list for this service must be addressable in the caller's primary address
space.

� Include the IXGCON mapping macro in your program. This macro provides a list of
equate symbols for the system logger services.

� Include macro IXGANSAA in your program. This macro maps the format of the answer
area output returned for each system logger service in the ANSAREA parameter.

 Copyright IBM Corp. 1988, 1999 651

 IXGBRWSE Macro

 Restrictions
� All storage areas specified on this macro must be in the same storage key as the

caller's storage key, with the exception of the BUFFKEY parameter.

Storage areas that are not ALET-qualified must exist in the caller's primary address
space. The ECB should be addressable from the home address space.

� There is more than one version of this macro available. The parameters you can use
depend on the version you specify on the PLISTVER parameter. See the description of
the PLISTVER parameter for more information.

Input Register Information
Before issuing the IXGBRWSE macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code, if register 15 contains a non-zero return code.
1 Used as a work register by the system
2 - 13 Unchanged
14 Used as a work register by the system.
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0 - 1 Used as a work register by the system.
2 - 13 Unchanged
14 - 15. Used as a work register by the system.

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

652 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGBRWSE Macro

REQUEST=START Option of IXGBRWSE
The IXGBRWSE macro with the REQUEST=START parameter starts a browse session and
sets the starting position of the browse cursor.

Syntax for REQUEST=START
The IXGBRWSE REQUEST=START macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IXGBRWSE.

IXGBRWSE

␣ One or more blanks must follow IXGBRWSE.

REQUEST=START

,STREAMTOKEN=streamtoken streamtoken: RS-type address or register (2) - (12).

,BROWSETOKEN=browsetoken browsetoken: RS-type address or register (2) - (12).

,ANSAREA=ansarea ansarea: RS-type address or register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or register (2) - (12).

 ,OLDEST Default: OLDEST
 ,YOUNGEST
 ,STARTBLOCKID=startblockid startblockid: RS-type address or register (2) - (12).
 ,SEARCH=search search: RS-type address or register (2) - (12).

 GMT=YES
 GMT=NO

 VIEW=ACTIVE Default: VIEW=ACTIVE
 VIEW=ALL

 MODE=SYNC Default: MODE=SYNC
 MODE=SYNCECB

 ,ECB=ecb ecb: RS-type address or register (2) - (12).

|
| ,DIAG=NO_DIAG| Default: DIAG=NO_DIAG
| ,DIAG=NO
| ,DIAG=YES

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver
 ,PLISTVER=0
 ,PLISTVER=1

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,MF=S Default: MF=S
 ,MF=(L,list addr)
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)
 ,MF=(E,list addr,NOCHECK)

 IXGBRWSE — Browse/Read a Log Stream 653

 IXGBRWSE Macro

 ,MF=(M,list addr)
 ,MF=(M,list addr,COMPLETE)
 ,MF=(M,list addr,NOCHECK)

Parameters for REQUEST=START
The parameters are explained as follows:

REQUEST=START
Requests that a browse session be started.

,STREAMTOKEN=streamtoken
Specifies the name or address (using a register) of a required 16-byte input field
containing the token for the log stream that you want to browse and read. The stream
token is returned by the IXGCONN service at connection to the log stream.

,BROWSETOKEN=browsetoken
Specifies the name or address (using a register) of a required 4-byte output area where
a token uniquely identifying the browse session is returned by the IXGBRWSE
REQUEST=START request. This browse token is then used as an input to subsequent
IXGBRWSE requests to identify the browse session.

,ANSAREA= ansarea
Specifies the name (or address in a register) of an answer area containing information
about this request. The answer area must be at least 40 bytes. To map this
information, use the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or address in a register) of the 4-byte field containing the answer
area length. The length of the answer area must be at least 40 bytes and must be the
same length as the field specified in ANSAREA.

To ascertain the optimal answer area length, look at the ANSAA_PREFERRED_SIZE
field of the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name or address (using a register) of the 4-byte field containing the
answer area length. The length of the answer area must be at least 32 bytes and must
be the same length as the field specified in ANSAREA.

To ascertain the optimal answer area size, look at the ANSAA_PREFERRED_SIZE field
of the IXGANSAA macro.

,OLDEST
,YOUNGEST
,STARTBLOCKID= startblockid
,SEARCH=search

Specifies where the cursor should be set for the start of the browse session.

� OLDEST: Specifies that the block cursor be positioned at the oldest log block in the
log stream.

When VIEW=ACTIVE is specified for this browse session, the cursor is positioned
at the oldest active log block in the log stream. If there is no active data in the log
stream, the request will fail.

When VIEW=ALL is specified, the cursor is positioned at the oldest log block in the
log stream of the active and inactive data. If there is neither active nor inactive data
in the log stream, the request will fail.

� YOUNGEST: Specifies that the block cursor be positioned at the youngest log block
in the log stream.

When VIEW=ACTIVE is specified for this browse session, the cursor is positioned
at the youngest active log block in the log stream.

654 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGBRWSE Macro

When VIEW=ALL is specified, the cursor is positioned at the youngest log block in
the log stream, even if the youngest block is eligible for deletion.

� STARTBLOCKID=startblockid: Specifies the name (or register) of a 8-byte input
field containing the block identifier for the log block you want to use as the starting
cursor position.

When VIEW=ALL is specified, you must specify a starting block that is active.

� SEARCH=search: Specifies the name (or register) of a 64-bit input field containing
the time stamp you want to use in searching for a particular log block as the starting
cursor position for this browse session. For information on how the SEARCH
keyword works, see OS/390 MVS Programming: Assembler Services Guide.

The time stamp must be Greenwich mean time (GMT) or local time, in time of day
(TOD) clock format. The GMT parameter is required with the SEARCH parameter.

,GMT=YES
,GMT=NO

Specifies whether the time stamp specified on the SEARCH parameter is GMT or local
time.

� GMT=YES: The time stamp specified on the SEARCH parameter is in GMT format.
� GMT=NO: The time stamp specified on the SEARCH parameter is local time.

VIEW=ACTIVE
VIEW=ALL

Specifies whether requests issued during this browse session return active data only, or
both active and inactive data. Active data is data that has not been marked for deletion
via the IXGDELET service. Inactive data is data that has been deleted via IXGDELET
but has not been physically deleted from the log stream because of the retention period
specified in the log stream definition in the LOGR couple data set.

� VIEW=ACTIVE, which is the default, specifies that in this browse session, system
logger will only return active data from the log stream.

� VIEW=ALL specifies that in this browse session, system logger will return both
active and inactive data.

When VIEW=ALL is specified and a log block is returned, system logger sets a flag
in the answer area, AnsaaBlkFromInactive, indicating whether the block was active
or eligible for deletion.

The system where IXGBRWSE is issued must be IPLed at the OS/390 Release 3 level
or above for the VIEW parameter to be recognized. If this parameter is specified on a
pre-OS/390 release 3 level systems, it is processed as VIEW=ACTIVE.

,MODE=SYNC
,MODE=SYNCECB

Specifies that the request should be processed in one of the following ways:

� MODE=SYNC: Specifies that the request process synchronously. Control is not
returned to the caller until request processing is complete. If necessary, the calling
program will be suspended until the request completes.

� MODE=SYNCECB: Specifies that the request process synchronously if possible. If
the request processes asynchronously, control returns to the caller before the
request completes and the event control block (ECB) specified on the ECB
parameter is posted when the request completes. The ECB parameter is required
with MODE=SYNCECB.

,ECB=ecb
Specifies the name or address (using a register) of a 4-byte input field containing an
event control block (ECB) to be posted when the request completes.

 IXGBRWSE — Browse/Read a Log Stream 655

 IXGBRWSE Macro

Before coding ECB, you must ensure that:

� You initialize the ECB to zero.

� The ECB must reside in either common storage or the home address space at the
time the IXGBRWSE request is issued.

� The virtual storage area specified for the ECB must reside on a fullword boundary.

| ,DIAG=NO_DIAG
| ,DIAG=NO
| ,DIAG=YES
| Specifies whether or not the DIAG option on the IXGCONN for this logstream will be in
| effect for this browse session. Refer to the DIAG keyword on the IXGINVNT, IXGCONN
| and IXGDELET macro services.

| If you specify DIAG=NO_DIAG, which is the default, then the DIAG option on the
| IXGCONN for this logstream will be in effect for this browse session.

| If you specify DIAG=NO, then Logger will not take additional diagnostic action as
| defined on the logstream definition DIAG parameter.

| If you specify DIAG=YES, then Logger will take additional diagnostic action as defined
| on the logstream definition DIAG parameter providing the IXGCONN connect DIAG
| specification allows it.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default. Note that on the list form, the default will cause
the smallest parameter list to be created.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form when both forms are assembled using the same level
of the system. In this way, MAX ensures that the parameter list does not overwrite
nearby storage.

� 0, supports all parameters except those specifically referenced in higher versions.

� 2, supports both the following parameters and parameters from version 0:

 – REQDATA

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION

 � MAX

� A decimal value of 0 or 1

656 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGBRWSE Macro

,RETCODE=retcode
Specifies a name or address (using a register) of a 4-byte output field where the system
will place the return code. The return code is also in general purpose register (GPR)
15.

,RSNCODE=rsncode
Specifies a name or address (using a register) of a 4-byte output field where the system
will place the reason code. The reason code is also in general purpose register (GPR)
0, if you received a non-zero return code.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter can be specified on the list form of the macro. IBM recommends
that you always specify PLISTVER=MAX on the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together
with the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list form,
and generates the macro invocation to transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines
that need to provide different options according to user-provided input. Use the list form
to define a storage area; use the modify form to set the appropriate options; then use
the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following order:

� Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters, including all
required ones.

� Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to change.

� Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value that is valid
on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to
supply defaults for omitted optional parameters.

 IXGBRWSE — Browse/Read a Log Stream 657

 IXGBRWSE Macro

REQUEST=READCURSOR Option of IXGBRWSE
The IXGBRWSE macro with the REQUEST=READCURSOR option allows a program to read
the next consecutive log block in a log stream. Use this request multiple times to read a
series of consecutive log blocks. The direction of the browse is controlled by the program
and can be changed dynamically.

Note: REQUEST=READCURSOR reads the next consecutive log block in the log stream,
but the blocks may not be in exact local time sequence. This can happen, for example,
because of daylight savings time, one or more records with the same local time stamp, or
multiple applications writing to the same log stream.

Syntax for REQUEST=READCURSOR
The IXGBRWSE REQUEST=READCURSOR macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IXGBRWSE.

IXGBRWSE

␣ One or more blanks must follow IXGBRWSE.

REQUEST=READCURSOR

,STREAMTOKEN=streamtoken streamtoken: RS-type address or register (2) - (12).

,BROWSETOKEN=browsetoken browsetoken: RS-type address or register (2) - (12).

,BUFFER=buffer buffer: RS-type address or register (2) - (12).

,BUFFLEN=bufflen bufflen: RS-type address or register (2) - (12).

,DIRECTION=OLDTOYOUNG
,DIRECTION=YOUNGTOOLD

,ANSAREA=ansarea ansarea: RS-type address or register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or register (2) - (12).

 ,BUFFALET=buffalet buffalet: RS-type address or register (2) - (12).

Default: BUFFALET=0

 ,BLKSIZE=blksize blksize: RS-type address or register (2) - (12).

Default: BLKSIZE=0

 ,RETBLOCKID=retblockid retblockid: RS-type address or register (2) - (12).

Default: NO_BLKID

 ,TIMESTAMP=timestamp timestamp: RS-type address or register (2) - (12).

Default: NO_TIMESTAMP

 MODE=SYNC Default: MODE=SYNC
 MODE=SYNCECB

 ,ECB=ecb ecb: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver
 ,PLISTVER=0
 ,PLISTVER=1

658 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGBRWSE Macro

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,MF=S Default: MF=S
 ,MF=(L,list addr)
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)
 ,MF=(E,list addr,NOCHECK)
 ,MF=(M,list addr)
 ,MF=(M,list addr,COMPLETE)
 ,MF=(M,list addr,NOCHECK)

Parameters for REQUEST=READCURSOR
The parameters are explained as follows:

REQUEST=READCURSOR
Requests that a program read the next consecutive log block in the log stream, in the
direction specified on the DIRECTION parameter.

,STREAMTOKEN=streamtoken
Specifies the name or address (using a register) of a required 16-byte input field
containing the token for the log stream that you want to browse and read. The stream
token is returned by the IXGCONN service at connection to the log stream.

,BROWSETOKEN=browsetoken
Specifies the name or address (using a register) of a required 4-byte input field
containing the identifier for the browse session which was returned on the IXGBRWSE
REQUEST=START request.

,BUFFER=buffer
Specifies the name or address (using a register) of a required output field that contains
the buffer into which the log block is read.

,BUFFLEN=bufflen
Specifies the name or address (using a register) of a required 4-byte input field that
contains the length of the buffer specified on the BUFFER parameter.

IXGBRWSE will return the length of the block in the BLKSIZE parameter, if specified.
You can issue IXGBRWSE with BLKSIZE specified to obtain the length of the block and
then re-issue IXGBRWSE using the returned BLKSIZE value in the BUFFLEN
parameter.

,DIRECTION=OLDTOYOUNG
,DIRECTION=YOUNGTOOLD

Specifies the direction that you want the cursor to move to read the next consecutive log
block. Specify OLDTOYOUNG to get the next youngest block or YOUNGTOOLD to get
the next oldest block.

,ANSAREA= ansarea
Specifies the name (or address in a register) of an answer area containing information
about this request. The answer area must be at least 40 bytes. To map this
information, use the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or address in a register) of the 4-byte field containing the answer
area length. The length of the answer area must be at least 40 bytes and must be the
same length as the field specified in ANSAREA.

To ascertain the optimal answer area length, look at the ANSAA_PREFERRED_SIZE
field of the IXGANSAA macro.

 IXGBRWSE — Browse/Read a Log Stream 659

 IXGBRWSE Macro

,ANSLEN=anslen
Specifies the name (or register) of the 4-byte field containing the answer area length.
The length of the answer area must be at least 32 bytes and must be the same length
as the field specified in ANSAREA.

To ascertain the optimal answer area size, look at the ANSAA_PREFERRED_SIZE field
of the IXGANSAA macro.

,BUFFALET= buffalet
Specifies the name (or address in a register) of a 4-byte input field specifying the access
list entry table (ALET) to be used to access the buffer specified on the BUFFER
keyword. If the buffer is ALET-qualified, the ALET must index a valid entry on the task's
dispatchable unit access list (DUAL) or specify a SCOPE=COMMON data space. An
ALET that indexes the system logger PASN-AL list will not work.

The default is 0, which means that the buffer is in the calling program's primary address
space.

,BLKSIZE= blksize
Specifies the name or address (using a register) of a 4-byte output field where the
actual size of the requested log block is returned.

,RETBLOCKID= retblockid
Specifies the name or address (using a register) of an 8-byte output field where the
identifier of the requested log block is returned.

,TIMESTAMP=timestamp
Specifies the name or address (using a register) of a 16-byte output field where the
Greenwich mean time stamp and the local time stamp associated with the requested log
block are returned. The GMT time stamp is first, then the local time stamp. Both time
stamps are in TOD-clock format.

,MODE=SYNC
,MODE=SYNCECB

Specifies that the request should be processed in one of the following ways:

� MODE=SYNC: Specifies that the request process synchronously. Control is not
returned to the caller until request processing is complete. If necessary, the calling
program will be suspended until the request completes.

� MODE=SYNCECB: Specifies that the request process synchronously if possible. If
the request processes asynchronously, control returns to the caller before the
request completes and the event control block (ECB) specified on the ECB
parameter is posted when the request completes. The ECB parameter is required
with MODE=SYNCECB.

ECB=ecb
Specifies the name or address (using a register) of a 4-byte input field that contains an
event control block (ECB) to be posted when the request completes.

Before coding ECB, you must ensure that:

� You initialize the ECB to zero.

� The ECB must reside in either common storage or the home address space at the
time the IXGBRWSE request is issued.

� The virtual storage area specified for the ECB must reside on a fullword boundary.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

660 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGBRWSE Macro

The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default. Note that on the list form, the default will cause
the smallest parameter list to be created.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form when both forms are assembled using the same level
of the system. In this way, MAX ensures that the parameter list does not overwrite
nearby storage.

� 0, supports all parameters except those specifically referenced in higher versions.

� 2, supports both the following parameters and parameters from version 0:

 – REQDATA

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION

 � MAX

� A decimal value of 0 or 1

,RETCODE=retcode
Specifies a name or address (using a register) of a 4-byte output field where the system
will place the return code. The return code is also in general purpose register (GPR)
15.

,RSNCODE=rsncode
Specifies a name or address (using a register) of a 4-byte output field where the system
will place the reason code. The reason code is also in general purpose register (GPR)
0, if you received a non-zero return code.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter can be specified on the list form of the macro. IBM recommends
that you always specify PLISTVER=MAX on the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together
with the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list form,
and generates the macro invocation to transfer control to the service.

 IXGBRWSE — Browse/Read a Log Stream 661

 IXGBRWSE Macro

Use MF=M together with the list and execute forms of the macro for service routines
that need to provide different options according to user-provided input. Use the list form
to define a storage area; use the modify form to set the appropriate options; then use
the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following order:

� Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters, including all
required ones.

� Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to change.

� Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value that is valid
on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to
supply defaults for omitted optional parameters.

662 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGBRWSE Macro

REQUEST=READBLOCK Option of IXGBRWSE
The IXGBRWSE macro with the REQUEST=READBLOCK parameter allows a program to
search for and read a specific log block from the log stream. The target can be defined
either by the log block identifier or by a time stamp.

Syntax for REQUEST=READBLOCK
The IXGBRWSE REQUEST=READBLOCK macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IXGBRWSE.

IXGBRWSE

␣ One or more blanks must follow IXGBRWSE.

REQUEST=READBLOCK

,STREAMTOKEN=streamtoken streamtoken: RS-type address or register (2) - (12).

,BROWSETOKEN=browsetoken browsetoken: RS-type address or register (2) - (12).

,BLOCKID=blockid blockid: RS-type address or register (2) - (12).
,SEARCH=search search: RS-type address or register (2) - (12).

,BUFFER=buffer buffer: RS-type address or register (2) - (12).

,BUFFLEN=bufflen bufflen: RS-type address or register (2) - (12).

,ANSAREA=ansarea ansarea: RS-type address or register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or register (2) - (12).

 GMT=YES
 GMT=NO

 ,BUFFALET=buffalet buffalet: RS-type address or register (2) - (12).

Default: BUFFALET=0

 ,BLKSIZE=blksize blksize: RS-type address or register (2) - (12).

Default: BLKSIZE=0

 ,RETBLOCKID=retblockid retblockid: RS-type address or register (2) - (12).

Default: NO_BLKID

 ,TIMESTAMP=timestamp timestamp: RS-type address or register (2) - (12).

Default: NO_TIMESTAMP

 MODE=SYNC Default: MODE=SYNC
 MODE=SYNCECB

 ,ECB=ecb ecb: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver
 ,PLISTVER=0
 ,PLISTVER=1

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 IXGBRWSE — Browse/Read a Log Stream 663

 IXGBRWSE Macro

 ,MF=S Default: MF=S
 ,MF=(L,list addr)
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)
 ,MF=(E,list addr,NOCHECK)
 ,MF=(M,list addr)
 ,MF=(M,list addr,COMPLETE)
 ,MF=(M,list addr,NOCHECK)

Parameters for REQUEST=READBLOCK
The parameters are explained as follows:

REQUEST=READBLOCK
Requests that a program read a specific block from the log stream. The target can be
defined either by the log block identifier or by a time stamp.

,STREAMTOKEN=streamtoken
Specifies the name or address (using a register) of a required 16-byte input field
containing the token for the log stream that you want to search. The stream token is
returned by the IXGCONN service at connection to the log stream.

,BROWSETOKEN=browsetoken
Specifies the name or address (using a register) of a required 4-byte input field
containing the identifier for the browse session which was returned from the IXGBRWSE
REQUEST=START request.

,BLOCKID= blockid
Specifies the name or address (using a register) of an 8-byte input field that contains the
block identifier of the log block you wish to read. The block identifier was returned from
the IXGWRITE request.

,SEARCH=search
Specifies the name or address (using a register) of a 64-bit input field containing the
time stamp for the log block you wish to search for and read. The time stamp must be
Greenwich mean time or local time,

When you use a time stamp as a search criteria, IXGBRWSE searches in the
oldest-to-youngest direction, searching for a log block with an exactly matching time
stamp. If no exact match is found, IXGBRWSE reads the next latest (youngest) time
stamp. For information on how the SEARCH keyword works, see OS/390 MVS
Programming: Assembler Services Guide.

The GMT parameter is required with the SEARCH parameter.

,BUFFER=buffer
Specifies the name or address (using a register) of a required output field that contains
the buffer into which the log block is read.

,BUFFLEN=bufflen
Specifies the name or address (using a register) of a required 4-byte input field that
contains the length of the buffer specified on the BUFFER parameter.

IXGBRWSE will return the length of the block in the BLKSIZE parameter, if specified.
You can issue IXGBRWSE with BLKSIZE specified to obtain the length of the block and
then re-issue IXGBRWSE using the returned BLKSIZE value in the BUFFLEN
parameter.

,ANSAREA= ansarea
Specifies the name (or address in a register) of an answer area containing information
about this request. The answer area must be at least 40 bytes. To map this
information, use the IXGANSAA macro.

664 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGBRWSE Macro

,ANSLEN=anslen
Specifies the name (or address in a register) of the 4-byte field containing the answer
area length. The length of the answer area must be at least 40 bytes and must be the
same length as the field specified in ANSAREA.

To ascertain the optimal answer area length, look at the ANSAA_PREFERRED_SIZE
field of the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or register) of the 4-byte field containing the answer area length.
The length of the answer area must be at least 32 bytes and must be the same length
as the field specified in ANSAREA.

To ascertain the optimal answer area size, look at the ANSAA_PREFERRED_SIZE field
of the IXGANSAA macro.

,GMT=YES
,GMT=NO

Specifies whether the time stamp specified on the SEARCH parameter is in Greenwich
mean time (GMT) or local time.

� GMT=YES: The time stamp specified on the SEARCH parameter is in Greenwich
mean time.

� GMT=NO: The time stamp specified on the SEARCH parameter is local time.

,BUFFALET= buffalet
Specifies the name (or address in a register) of a 4-byte input field specifying the access
list entry table (ALET) to be used to access the buffer specified on the BUFFER
keyword. If the buffer is ALET-qualified, the ALET must index a valid entry on the task's
dispatchable unit access list (DUAL) or specify a SCOPE=COMMON data space. An
ALET that indexes the system logger PASN-AL list will not work.

The default is 0, which means that the buffer is in the calling program's primary address
space.

,BLKSIZE= blksize
Specifies the name or address (using a register) of a 4-byte output field where the
actual size of the requested log block is returned.

,RETBLOCKID= retblockid
Specifies the name or address (using a register) of a 8-byte output field where the
identifier of the requested log block is returned.

,TIMESTAMP=timestamp
Specifies the name or address (using a register) of a 16-byte output field where the
Greenwich mean time and local time stamps associated with the requested log block is
returned. The GMT time stamp is first, then the local time stamp. Both time stamps will
be in TOD-clock format.

,MODE=SYNC
,MODE=SYNCECB

Specifies that the request should be processed in one of the following ways:

� MODE=SYNC: Specifies that the request process synchronously. Control is not
returned to the caller until request processing is complete. If necessary, the calling
program will be suspended until the request completes.

� MODE=SYNCECB: Specifies that the request process synchronously if possible. If
the request processes asynchronously, control returns to the caller before the
request completes and the event control block (ECB) specified on the ECB
parameter is posted when the request completes. The ECB parameter is required
with MODE=SYNCECB.

ECB=ecb
Specifies the name or address (using a register) of a 4-byte input field that contains an
event control block (ECB) to be posted when the request completes.

 IXGBRWSE — Browse/Read a Log Stream 665

 IXGBRWSE Macro

Before coding ECB, you must ensure that:

� You initialize the ECB to zero.

� The ECB must reside in either common storage or the home address space at the
time the IXGBRWSE request is issued.

� The virtual storage area specified for the ECB must reside on a fullword boundary.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default. Note that on the list form, the default will cause
the smallest parameter list to be created.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form when both forms are assembled using the same level
of the system. In this way, MAX ensures that the parameter list does not overwrite
nearby storage.

� 0, supports all parameters except those specifically referenced in higher versions.

� 2, supports both the following parameters and parameters from version 0:

 – REQDATA

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION

 � MAX

� A decimal value of 0 or 1

,RETCODE=retcode
Specifies a name or address (using a register) of a 4-byte output field where the system
will place the return code. The return code is also in general purpose register (GPR)
15.

,RSNCODE=rsncode
Specifies a name or address (using a register) of a 4-byte output field where the system
will place the reason code. The reason code is also in general purpose register (GPR)
0, if you received a non-zero return code.

666 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGBRWSE Macro

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter can be specified on the list form of the macro. IBM recommends
that you always specify PLISTVER=MAX on the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together
with the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list form,
and generates the macro invocation to transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines
that need to provide different options according to user-provided input. Use the list form
to define a storage area; use the modify form to set the appropriate options; then use
the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following order:

� Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters, including all
required ones.

� Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to change.

� Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value that is valid
on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to
supply defaults for omitted optional parameters.

 IXGBRWSE — Browse/Read a Log Stream 667

 IXGBRWSE Macro

REQUEST=RESET Option of IXGBRWSE
The IXGBRWSE macro with the REQUEST=RESET parameter allows a program to
re-position the browse cursor to either the youngest or oldest block in the log stream.

Syntax for REQUEST=RESET
The IXGBRWSE REQUEST=RESET macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IXGBRWSE.

IXGBRWSE

␣ One or more blanks must follow IXGBRWSE.

REQUEST=RESET

,STREAMTOKEN=streamtoken streamtoken: RS-type address or register (2) - (12).

,BROWSETOKEN=browsetoken browsetoken: RS-type address or register (2) - (12).

,POSITION=YOUNGEST
,POSITION=OLDEST

,ANSAREA=ansarea ansarea: RS-type address or register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or register (2) - (12).

 VIEW=ACTIVE
 VIEW=ALL

 MODE=SYNC Default: MODE=SYNC
 MODE=SYNCECB

 ,ECB=ecb ecb: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver
 ,PLISTVER=0
 ,PLISTVER=1

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,MF=S Default: MF=S
 ,MF=(L,list addr)
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)
 ,MF=(E,list addr,NOCHECK)
 ,MF=(M,list addr)
 ,MF=(M,list addr,COMPLETE)
 ,MF=(M,list addr,NOCHECK)

668 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGBRWSE Macro

Parameters for REQUEST=RESET
The parameters are explained as follows:

REQUEST=RESET
Requests that the browse cursor be repositioned at either the oldest or youngest block
in the log stream.

,STREAMTOKEN=streamtoken
Specifies the name or address (using a register) of a required 16-byte input field
containing the token for the log stream that you want to search. The stream token is
returned by the IXGCONN service at connection to the log stream.

,BROWSETOKEN=browsetoken
Specifies the name or address (using a register) of a required 4-byte input field
containing the identifier for the browse session which was returned from the IXGBRWSE
REQUEST=START request.

,POSITION=YOUNGEST
,POSITION=OLDEST

Specifies the cursor position desired, at either the youngest or the oldest log block in the
log stream.

,ANSAREA= ansarea
Specifies the name (or address in a register) of an answer area containing information
about this request. The answer area must be at least 40 bytes. To map this
information, use the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or address in a register) of the 4-byte field containing the answer
area length. The length of the answer area must be at least 40 bytes and must be the
same length as the field specified in ANSAREA.

To ascertain the optimal answer area length, look at the ANSAA_PREFERRED_SIZE
field of the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or register) of the 4-byte field containing the answer area length.
The length of the answer area must be at least 32 bytes and must be the same length
as the field specified in ANSAREA.

To ascertain the optimal answer area size, look at the ANSAA_PREFERRED_SIZE field
of the IXGANSAA macro.

VIEW=ACTIVE
VIEW=ALL

Specifies whether requests issued during this browse session return active data only, or
both active and inactive data. Active data is data that has not been marked for deletion
via the IXGDELET service. Inactive data is data that has been deleted via IXGDELET
but has not been physically deleted from the log stream because of the retention period
specified in the log stream definition in the LOGR couple data set.

� VIEW=ACTIVE, which is the default, specifies that in this browse session, system
logger will only return active data from the log stream.

� VIEW=ALL specifies that in this browse session, system logger will return both
active and inactive data.

When VIEW=ALL is specified and a log block is returned, system logger sets a flag
in the answer area, AnsaaBlkFromInactive, indicating whether the block was active
or eligible for deletion.

The system where IXGBRWSE is issued must be IPLed at the OS/390 Release 3 level
or above for the VIEW parameter to be recognized. If this parameter is specified on a
pre-OS/390 release 3 level systems, it is processed as VIEW=ACTIVE.

 IXGBRWSE — Browse/Read a Log Stream 669

 IXGBRWSE Macro

,MODE=SYNC
,MODE=SYNCECB

Specifies that the request should be processed in one of the following ways:

� MODE=SYNC: Specifies that the request process synchronously. Control is not
returned to the caller until request processing is complete. If necessary, the calling
program will be suspended until the request completes.

� MODE=SYNCECB: Specifies that the request process synchronously if possible. If
the request processes asynchronously, control returns to the caller before the
request completes and the event control block (ECB) specified on the ECB
parameter is posted when the request completes. The ECB parameter is required
with MODE=SYNCECB.

ECB=ecb
Specifies the name or address (using a register) of a 4-byte input field that contains an
event control block (ECB) to be posted when the request completes.

Before coding ECB, you must ensure that:

� You initialize the ECB to zero.

� The ECB must reside in either common storage or the home address space at the
time the IXGBRWSE request is issued.

� The virtual storage area specified for the ECB must reside on a fullword boundary.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default. Note that on the list form, the default will cause
the smallest parameter list to be created.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form when both forms are assembled using the same level
of the system. In this way, MAX ensures that the parameter list does not overwrite
nearby storage.

� 0, supports all parameters except those specifically referenced in higher versions.

� 2, supports both the following parameters and parameters from version 0:

 – REQDATA

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION

 � MAX

� A decimal value of 0 or 1

,RETCODE=retcode
Specifies a name or address (using a register) of a 4-byte output field where the system
will place the return code. The return code is also in general purpose register (GPR)
15.

670 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGBRWSE Macro

,RSNCODE=rsncode
Specifies a name or address (using a register) of a 4-byte output field where the system
will place the reason code. The reason code is also in general purpose register (GPR)
0, if you received a non-zero return code.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter can be specified on the list form of the macro. IBM recommends
that you always specify PLISTVER=MAX on the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together
with the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list form,
and generates the macro invocation to transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines
that need to provide different options according to user-provided input. Use the list form
to define a storage area; use the modify form to set the appropriate options; then use
the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following order:

� Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters, including all
required ones.

� Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to change.

� Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value that is valid
on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to
supply defaults for omitted optional parameters.

 IXGBRWSE — Browse/Read a Log Stream 671

 IXGBRWSE Macro

REQUEST=END Option of IXGBRWSE
The IXGBRWSE macro with the REQUEST=END parameter ends the browse session begun
with the REQUEST=START parameter.

Syntax for REQUEST=END
The IXGBRWSE REQUEST=END macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IXGBRWSE.

IXGBRWSE

␣ One or more blanks must follow IXGBRWSE.

REQUEST=END

,STREAMTOKEN=streamtoken streamtoken: RS-type address or register (2) - (12).

,BROWSETOKEN=browsetoken browsetoken: RS-type address or register (2) - (12).

,ANSAREA=ansarea ansarea: RS-type address or register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or register (2) - (12).

 MODE=SYNC Default: MODE=SYNC
 MODE=SYNCECB

 ,ECB=ecb ecb: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver
 ,PLISTVER=0
 ,PLISTVER=1

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,MF=S Default: MF=S
 ,MF=(L,list addr)
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)
 ,MF=(E,list addr,NOCHECK)
 ,MF=(M,list addr)
 ,MF=(M,list addr,COMPLETE)
 ,MF=(M,list addr,NOCHECK)

Parameters for REQUEST=END
The parameters are explained as follows:

REQUEST=END
Requests that the browse session be ended.

672 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGBRWSE Macro

,STREAMTOKEN=streamtoken
Specifies the name or address (using a register) of a required 16-byte input field
containing the token for the log stream that you want to search. The stream token is
returned by the IXGCONN service at connection to the log stream.

,BROWSETOKEN=browsetoken
Specifies the name or address (using a register) of a required 4-byte input field
containing the identifier for the browse session which was returned from the IXGBRWSE
REQUEST=START request.

,ANSAREA= ansarea
Specifies the name (or address in a register) of an answer area containing information
about this request. The answer area must be at least 40 bytes. To map this
information, use the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or address in a register) of the 4-byte field containing the answer
area length. The length of the answer area must be at least 40 bytes and must be the
same length as the field specified in ANSAREA.

To ascertain the optimal answer area length, look at the ANSAA_PREFERRED_SIZE
field of the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or register) of the 4-byte field containing the answer area length.
The length of the answer area must be at least 32 bytes and must be the same length
as the field specified in ANSAREA.

To ascertain the optimal answer area size, look at the ANSAA_PREFERRED_SIZE field
of the IXGANSAA macro.

,MODE=SYNC
,MODE=SYNCECB

Specifies that the request should be processed in one of the following ways:

� MODE=SYNC: Specifies that the request process synchronously. Control is not
returned to the caller until request processing is complete. If necessary, the calling
program will be suspended until the request completes.

� MODE=SYNCECB: Specifies that the request process synchronously if possible. If
the request processes asynchronously, control returns to the caller before the
request completes and the event control block (ECB) specified on the ECB
parameter is posted when the request completes. The ECB parameter is required
with MODE=SYNCECB.

ECB=ecb
Specifies the name or address (using a register) of a 4-byte input field that contains an
event control block (ECB) to be posted when the request completes.

Before coding ECB, you must ensure that:

� You initialize the ECB to zero.

� The ECB must reside in either common storage or the home address space at the
time the IXGBRWSE request is issued.

� The virtual storage area specified for the ECB must reside on a fullword boundary.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

 IXGBRWSE — Browse/Read a Log Stream 673

 IXGBRWSE Macro

The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default. Note that on the list form, the default will cause
the smallest parameter list to be created.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form when both forms are assembled using the same level
of the system. In this way, MAX ensures that the parameter list does not overwrite
nearby storage.

� 0, supports all parameters except those specifically referenced in higher versions.

� 2, supports both the following parameters and parameters from version 0:

 – REQDATA

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION

 � MAX

� A decimal value of 0 or 1

,RETCODE=retcode
Specifies a name or address (using a register) of a 4-byte output field where the system
will place the return code. The return code is also in general purpose register (GPR)
15.

,RSNCODE=rsncode
Specifies a name or address (using a register) of a 4-byte output field where the system
will place the reason code. The reason code is also in general purpose register (GPR)
0, if you received a non-zero return code.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter can be specified on the list form of the macro. IBM recommends
that you always specify PLISTVER=MAX on the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together
with the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list form,
and generates the macro invocation to transfer control to the service.

674 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGBRWSE Macro

Use MF=M together with the list and execute forms of the macro for service routines
that need to provide different options according to user-provided input. Use the list form
to define a storage area; use the modify form to set the appropriate options; then use
the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following order:

� Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters, including all
required ones.

� Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to change.

� Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value that is valid
on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to
supply defaults for omitted optional parameters.

 ABEND Codes
None.

Return and Reason Codes
When IXGBRWSE macro returns control to your program, GPR 15 contains a return code
and GPR 0 contains a reason code.

Note: The return and reason codes are in the answer area mapped by IXGANSAA when
the request completes.

The IXGCONN mapping macro provides equate symbols for the return and reason codes.
The equate symbols associated with each hexadecimal return code are as follows:

00 IXGRSNCODEOK - Service completes successfully.
04 IXGRSNCODEWARNING - Service completes with a warning.
08 IXGRETCODEERROR - Service does not complete.
0C IXGRETCODECOMPERROR - Service does not complete.

The following table contains hexadecimal return and reason codes, the equate symbols
associated with each reason code, and the meaning and suggested action for each return
and reason code.

Figure 43 (Page 1 of 8). Return and Reason Codes for the IXGBRWSE Macro

Return Code Reason Code Meaning and Action

00 xxxx0000 Equate Symbol : IxgRsnCodeOk

Explanation: Request processed successfully.

 IXGBRWSE — Browse/Read a Log Stream 675

 IXGBRWSE Macro

Figure 43 (Page 2 of 8). Return and Reason Codes for the IXGBRWSE Macro

Return Code Reason Code Meaning and Action

04 xxxx0401 Equate Symbol : IxgRsnCodeProcessedAsynch

Explanation: Program error. The program specified
MODE=SYNCECB and the request must be processed
asynchronously.

Action: Wait for the ECB specified on the ECB parameter to be
posted, indicating that the request is complete. Check the
ANSAA_ASYNCH_RETCODE and ANSAA_ASYNCH_RSNCODE
fields, mapped by IXGANSAA, to determine whether the request
completed successfully.

04 xxxx0402 Equate Symbol : IxgRsnCodeWarningDel

Explanation: Environment error. The request completed
successfully, but the data requested was deleted from the log stream
via an IXGDELET request. The next available data in the log stream
in the direction specified is returned.

Action: Determine whether this is an acceptable condition for your
application. If so, ignore this condition. If not, provide serialization or
some other installation protocol to prevent deletes from being
performed by other applications on the log stream during a browse
session.

04 xxxx0403 Equate Symbol : IxgRsnCodeWarningGap

Explanation: Environment error. The request completed
successfully, but the data requested was unreadable. The next
readable data in the log stream in the specified direction is returned.
This condition could be caused by either an I/O error while attempting
to read a log data set or a log data set deleted without using the
IXGDELET interface.

Action: The action necessary is completely up to the application,
depending on how critical your data is. You can do one of the
following:

� Accept this condition and continue reading.
� Stop processing the log all together.
� Attempt to get the problem rectified, if possible, and then attempt

to re-read the log data.

04 xxxx0405 Equate Symbol : IxgRsnCodeWarningLossOfData

Explanation: Environment error. Returned for READCURSOR
requests only. A log block has been returned, but there may be log
blocks permanently missing between this log block and the one
previously returned. This condition occurs when a system and
coupling facility fail and not all of the log data in the log stream could
be recovered.

Action: If your application cannot tolerate any data loss, stop issuing
system logger services to this log stream, disconnect from the log
stream, and reconnect to a new, undamaged log stream. You can
continue using the log stream if your applications can tolerate data
loss.

08 xxxx0801 Equate Symbol : IxgRsnCodeBadParmlist

Explanation: Program error. The parameter list could not be
accessed.

Action: Ensure that the storage area for the parameter list is
accessible to the system logger for the duration of the request. The
parameter list storage must be addressable in the caller's primary
address space and in the same key as the caller.

08 xxxx0802 Equate Symbol : IxgRsnCodeXESError

Explanation: System error. A severe cross-system extended
services (XES) error has occurred.

Action: See ANSAA_DIAG1 for the XES return code and
ANSAA_DIAG2 for the XES reason code.

676 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGBRWSE Macro

Figure 43 (Page 3 of 8). Return and Reason Codes for the IXGBRWSE Macro

Return Code Reason Code Meaning and Action

08 xxxx0803 Equate Symbol : IxgRsnCodeBadBuffer

Explanation: Program error. The virtual storage area specified on the
BUFFER parameter is not addressable.

Action: Ensure that the storage area specified on the BUFFER
parameter is accessible to system logger for the duration of the
request. If the BUFFKEY parameter is specified, make sure it
contains a valid key associated with the storage area. If BUFFKEY is
not used, ensure that the storage is in the same key as the program
at the time the logger service was requested. The storage must be
addressable in the caller's primary address space.

08 xxxx0804 Equate Symbol : IxgRsnCodeNoBlock

Explanation: Program error. The block identifier or time stamp does
not exist in the log stream. Either the value provided was never a
valid location within the log stream or a prior IXGDELET request
deleted the portion of the log stream it referenced.

Action: Ensure that the value provided references an existing portion
of the log stream and issue the request again. Use the LIST
LOGSTREAM DETAIL(YES) request on the IXCMIPU utility to display
the range of valid block identifiers for the log stream.

08 xxxx0806 Equate Symbol : IxgRsnCodeBadStmToken

Explanation: Program error. One of the following occurred:

� The stream token was not valid.
� The specified request was issued from an address space other

than the connector's address space.

Action: Do one of the following:

� Make sure that the stream token specified is valid.
� Ensure that the request was issued from the connector's address

space.

08 xxxx0807 Equate Symbol : IxgRsnCodeBadBrwToken

Explanation: Program error. The browse token specified is not valid.

Action: Ensure that the browse token being passed to the
IXGBRWSE service is the same one returned from the IXGBRWSE
REQUEST=START function.

08 xxxx080A Equate Symbol : IxgRsnCodeRequestLocked

Explanation: Program error. The program issuing the request is
holding a lock.

Action: Ensure that the program issuing the request is not holding a
lock.

08 xxxx080F Equate Symbol : IxgRsnCodeBadBufsize

Explanation: Program error. The buffer specified on the BUFFER
parameter is not large enough to contain the data being read. No
data is returned.

Action: Obtain a buffer of the length returned in the BLKSIZE
parameter and then re-issue the request.

08 xxxx0814 Equate Symbol : IxgRsnCodeNotAvailForIPL

Explanation: Environment error. The system logger address space
is not available for the remainder of this IPL. The system issues
messages about this error during system logger initialization.

Action: See the explanation for system messages issued during
system logger initialization.

08 xxxx0815 Equate Symbol : IxgRsnCodeNotEnabled

Explanation: Program error. The program issuing the request is not
enabled for I/O and external interrupts, so the request fails.

Action: Make sure the program issuing the request is enabled for
I/O and external interrupts.

 IXGBRWSE — Browse/Read a Log Stream 677

 IXGBRWSE Macro

Figure 43 (Page 4 of 8). Return and Reason Codes for the IXGBRWSE Macro

Return Code Reason Code Meaning and Action

08 xxxx0816 Equate Symbol : IxgRsnCodeBadAnslen

Explanation: Program error. The answer area length (ANSLEN
parameter) is not large enough. The system logger returned the
required size in the Ansaa_Preferred_Size field of the answer area,
mapped by IXGANSAA macro.

Action: Re-issue the request, specifying an answer area of the
required size.

08 xxxx0817 Equate Symbol : IxgRsnCodeBadAnsarea

Explanation: Program error. The storage area specified on the
ANSAREA parameter cannot be accessed. This may occur after the
system logger address space has terminated.

Action: Specify storage that is in the caller's primary address space
and in the same key as the calling program at the time the system
logger service was issued. This storage must be accessible until the
request completes.

08 xxxx0818 Equate Symbol : IxgRsnCodeBadBlockidStor

Explanation: Program error. The storage area specified by BLOCKID
cannot be accessed.

Action: Ensure that the storage area is accessible to system logger
for the duration of the request. The storage must be addressable in
the caller's primary address space and in the same key as the caller.

08 xxxx082D Equate Symbol : IxgRsnCodeExpiredStmToken

Explanation: Environment error. The stream token is no longer valid
because the connector has been disconnected.

Action: Connect to the log stream again before issuing any functional
requests.

08 xxxx0836 Equate Symbol : IxgRsnCodeBadGap

Explanation: Environment error. The request failed because the
requested log data was unreadable. This condition could be caused
by either an I/O error while attempting to read a log data set or a log
data set deleted without using the IXGDELET interface.

Action: For an IXGBRWSE request, choose on of the following:

 � Continue processing.
� Stop processing the log stream all together.
� Attempt to get the problem rectified if possible, then attempt to

re-read the log data.

For an IXGDELET request, the block identifier of the first accessible
block toward the youngest data in the log stream is returned in the
ANSAA_GAPS_NEXT_BLKID field in the answer area mapped by the
IXGANSAA macro. If appropriate, re-issue the IXGDELET request
using this block identifier.

08 xxxx0837 Equate Symbol : IxgRsnCodeBadTimestamp

Explanation: Program error. The storage area specified by
TIMESTAMP cannot be accessed.

Action: Ensure that the storage area is accessible to the system
logger service for the duration of the request. The storage must be
addressable in the caller's primary address space and in the same
key as the caller.

08 xxxx083B Equate Symbol : IxgRsncodeBadBTokenStor

Explanation: Program error. The storage area specified by
BROWSETOKEN cannot be accessed.

Action: Ensure that the storage area is accessible to the system
logger for the duration of the request. The storage must be
addressable in the caller's primary address space and in the same
key as the caller.

08 xxxx083D Equate Symbol : IxgRsnCodeBadECBStor

Explanation: Program error. The ECB storage area was not
accessible to the system logger.

Action: Ensure that the storage area is accessible to the system
logger for the duration of the request. The storage must be
addressable in the caller's home address space and in the same key
as the caller.

678 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGBRWSE Macro

Figure 43 (Page 5 of 8). Return and Reason Codes for the IXGBRWSE Macro

Return Code Reason Code Meaning and Action

08 xxxx083F Equate Symbol : IxgRsnCodeTestartError

Explanation: System error. An unexpected error was encountered
while attempting to validate the buffer ALET.

Action: See ANSAA_DIAG1 in the answer area mapped by the
IXGANSAA macro for the return code from the TESTART system
service.

08 xxxx0841 Equate Symbol : IxgRsnCodeBadBufferAlet

Explanation: Program error. The buffer ALET specified is not zero
and does not represent a valid entry on the caller's dispatchable unit
access list (DUAL). See the ANSAA_DIAG1 field of the answer area,
mapped by the IXGANSAA macro, for the return code from the
TESTART system service.

Action: Ensure that the correct ALET was specified. If not, provide
the correct ALET. Otherwise, add the correct ALET to dispatchable
unit access list (DUAL).

08 xxxx0845 Equate Symbol : IxgRsnCodeInvalidFunc

Explanation: System error. The parameter list for this service
contains an unrecognizable function code. The parameter list storage
may have been overlaid.

Action: Fix the problem and then re-issue the request.

08 xxxx0846 Equate Symbol : IxgRsnCodeEmptyStream

Explanation: Environment error. The log stream is empty.

Action: Wait for data to be written to the log stream before browsing
for data.

08 xxxx0847 Equate Symbol : IxgRsnCodeEOFDelete

Explanation: Environment error. The request prematurely reached
the beginning or the end of the log stream. The portion of the log
stream from the requested log data to either the beginning or the end
of the log stream (depending on the direction of the read) was
deleted from the log stream via a prior IXGDELET request.

Action: Determine whether this is an acceptable condition for your
application. If so, ignore this condition. If not, provide serialization on
the log stream or some other installation protocol to prevent deletes
from being performed by other applications during a browse session.

08 xxxx0848 Equate Symbol : IxgRsnCodeEndReached

Explanation: Environment error. The request failed and no log data
is returned. For a READCURSOR request, the end of the log stream
has been reached in the direction of the read. If the SEARCH
parameter was specified, the time stamp is greater than any block in
the log stream.

Action: For the READCURSOR case, no more data exists in the log
stream in the direction of the read. You may choose to stop reading,
wait for more data to be written, or change the direction of the read.
In the case where the SEARCH parameter was provided, ensure that
the time stamp is less than or equal to the highest time stamp of a
log block in the log stream.

08 xxxx0849 Equate Symbol : IxgRsnCodeBadBuffkey

Explanation: Program error. The buffer key specified on the
BUFFKEY parameter specifies an invalid key. Either the key is
greater than 15 or the program is running in problem state and the
specified key is not the same key as the PSW key at the time the
system logger service was issued.

Action: For problem state programs, either do not specify the
BUFFKEY parameter or else specify the same key as the PSW key
at the time the system logger service was issued. For supervisor
state programs, specify a valid storage key (0 <= key <= 15).

 IXGBRWSE — Browse/Read a Log Stream 679

 IXGBRWSE Macro

Figure 43 (Page 6 of 8). Return and Reason Codes for the IXGBRWSE Macro

Return Code Reason Code Meaning and Action

08 xxxx084A Equate Symbol : IxgRsnCodeEOFGap

Explanation: Environment error. The request prematurely reached
the beginning or the end of the log stream. The portion of the log
stream from the requested log data to either the beginning or the end
of the log stream (depending on the direction of the read) was
unreadable. This condition may be caused by either an I/O error
while trying to read a log data set, or a log data set deleted without
using the IXGDELET interface.

Action: The action necessary is completely up to the application
depending on how critical your data is. You can do one of the
following:

� Accept this condition and continue reading.
� Stop processing the log all together.
� Attempt to get the problem rectified, if possible, and then attempt

to re-issue the request.

08 xxxx084B Equate Symbol : IxgRsncodeLossOfDataGap

Explanation: Environment error. The requested log data referenced
a section of the log stream where log data is permanently missing.
This condition occurs when a system or coupling facility is in recovery
due to a failure, but not all of the log data in the log stream could be
recovered.

Action: If your application cannot tolerate any data loss, stop issuing
system logger services to this log stream, disconnect from the log
stream, and reconnect to a new, undamaged log stream. You can
continue using the log stream if your applications can tolerate data
loss.

08 xxxx084D Equate Symbol : IxgRsnCodeLossOfDataEOR

Explanation: Environment error. The request prematurely reached
the beginning or the end of the log stream. The portion of the log
stream from the requested log data to either the beginning or the end
of the log stream (depending on direction of the read) was
permanently lost. This condition occurs when a system or coupling
facility is in recovery due to a failure, but not all of the log data in the
log stream could be recovered.

Action: If your application cannot tolerate any data loss, stop issuing
system logger services to this log stream, disconnect from the log
stream, and reconnect to a new, undamaged log stream. You can
continue using the log stream if your applications can tolerate data
loss.

08 xxxx0852 Equate Symbol : IxgRsnCodeBadBlkSizeStor

Explanation: Program error. The storage area specified on the
BLKSIZE parameter cannot be accessed.

Action: Ensure that the storage area is accessible to system logger
for the duration of the request.

08 xxxx085F Equate Symbol : IxgRsnPercToRequestor

Explanation: Environment error. Percolation to the service
requestor's task occurred because of an abend during system logger
processing. Retry was not allowed.

Action: Issue the request again. If the problem persists, contact the
IBM Support Center.

08 xxxx0861 Equate Symbol : IxgRsnCodeRebuildInProgress

Explanation: Environment error. No requests can be processed for
this log stream because a coupling facility structure re-build is in
progress for the structure associated with this log stream.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the re-build completed
successfully. Re-issue the request.

� The re-build failed and the log stream is not available.

680 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGBRWSE Macro

Figure 43 (Page 7 of 8). Return and Reason Codes for the IXGBRWSE Macro

Return Code Reason Code Meaning and Action

08 xxxx0862 Equate Symbol : IxgRsnCodeXESPurge

Explanation: Environment error. An cross-system extended services
(XES) request has been purged due to re-build processing.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the re-build completed
successfully. Re-issue the request.

� The re-build failed and the log stream is not available.

08 xxxx0863 Equate Symbol : IxgRsnCodeStructureFailed

Explanation: Environment error. Either the coupling facility structure
associated with the log stream has failed or the coupling facility itself
has failed.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the re-build completed
successfully. Re-issue the request.

� The re-build failed and the log stream is not available.

08 xxxx0864 Equate Symbol : IxgRsnCodeNoConnectivity

Explanation: Environment error. No connectivity exists to the
coupling facility associated with the log stream. The system logger
will either attempt to re-build the log stream in another coupling
facility or the log stream will be disconnected.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the re-build completed
successfully. Re-issue the request.

� The re-build failed and the log stream is not available.
� The log stream has been disconnected from this system.

08 xxxx0890 Equate Symbol : IxgRsnCodeAddrSpaceNotAvail

Explanation: System error. The system logger address space failed
and is not available.

Action: Do not issue system logger requests.

08 xxxx0891 Equate Symbol : IxgRsnCodeAddrSpaceInitializing

Explanation: System error. The system logger address space is not
available because it is IPLing.

Action: Listen for ENF signal 48, which will indicate when the
system logger address space is available. Re-connect to the log
stream, then re-issue this request. You can also listen for ENF signal
48, which will indicate if the system logger address space will not be
available for the life of the IPL. In that case, do not issue system
logger services.

08 xxxx08D0 Equate Symbol : IxgRsnCodeProblemState

Explanation: Environment error. The request was rejected because
of one of the following:

� The request was issued in SRB mode while the requestor was in
problem program state.

� The SYNCEXIT parameter was specified while the requestor's
PSW key was in problem program key.

Action: Change the invoking environment to supervisor state.

08 xxxx08D1 Equate Symbol : IxgRsnCodeProgramKey

Explanation: Environment error. The request was rejected because
of one of the following:

� The request was issued in SRB mode while the requestor was in
problem program key (key 8-F).

� The SYNCEXIT parameter was specified while the requestor's
PSW key was in problem program key.

Action: Change the invoking environment to a system key (key 0-7).

 IXGBRWSE — Browse/Read a Log Stream 681

 IXGBRWSE Macro

Figure 43 (Page 8 of 8). Return and Reason Codes for the IXGBRWSE Macro

Return Code Reason Code Meaning and Action

08 xxxx08D2 Equate Symbol : IxgRsnCodeNoCompleteExit

Explanation: Program error. MODE=SYNCEXIT was specified, but
the connection request did not identify a complete exit.

Action: Either change this request to a different MODE option, or
reconnect to the log stream with a complete exit on the
COMPLETEXIT parameter.

0C xxxx0000 Equate Symbol : IxgRetCodeCompError

Explanation: User or System error. One of the following occurred:

� You issued the FORCE IXGLOGR,ARM command to terminate
the system logger address space.

� System logger component error occurred.

Action: If this reason code is not the result of forcing the system
logger address space, search problem reporting data bases for a fix
for the problem. If no fix exists, contact the IBM Support Center.
Provide the diagnostic data in the answer area (IXGANSAA) and any
dumps or LOGREC entries from system logger.

 Example 1
Issue IXGBRWSE REQUEST=START to start a browse session, starting the browse cursor
at the log block with the specified local time.

 IXGBRWSE REQUEST=START, X
 STREAMTOKEN=TOKEN, X
 SEARCH=SRCHTIME, X
 GMT=NO, X
 BROWSETOKEN=BRSTOKEN, X
 MODE=SYNC, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
ANSLEN DC A(L'ANSAREA) length of logger's answer area
TOKEN DS CL16 stream token from connect
SRCHTIME DS 2F local search time in stck format
BRSTOKEN DS CL4 returned browse token
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code
RSNCODE DS F reason code
DATAREA DSECT
 IXGANSAA LIST=YES answer area

682 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGBRWSE Macro

 Example 2
Issue IXGBRWSE REQUEST=READCURSOR to read the next consecutive log block in the
specified direction.

 IXGBRWSE REQUEST=READCURSOR, X
 STREAMTOKEN=TOKEN, X
 BUFFER=BUFF, X
 BUFFLEN=BUFFLEN, X
 BUFFALET=ALET, X
 BLKSIZE=BLKSIZE, X
 DIRECTION=OLDTOYOUNG, X
 RETBLOCKID=RETBLK, X
 TIMESTAMP=TIMESTMP, X
 BROWSETOKEN=BRSTOKEN, X
 MODE=SYNC, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
ANSLEN DC A(L'ANSAREA) length of logger's answer area
BUFFLEN DC F'2ðð' buffer length
TOKEN DS CL16 stream token from connect
BRSTOKEN DS CL4 returned browse token
BUFF DS CL2ðð buffer where data will be put
ALET DC F'1' buffer alet in secondary
BLKSIZE DS F block size of buffer
RETBLK DS CL8 return block id
TIMESTMP DS CL16 returned time stamp stck format
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code
RSNCODE DS F reason code
DATAREA DSECT
 IXGANSAA LIST=YES answer area

 IXGBRWSE — Browse/Read a Log Stream 683

 IXGBRWSE Macro

 Example 3
Issue IXGBRWSE REQUEST=READBLOCK to read a log block selected by block identifier.

 IXGBRWSE REQUEST=READBLOCK, X
 STREAMTOKEN=TOKEN, X
 BLOCKID=BLKID, X
 BUFFER=BUFF, X
 BUFFLEN=BUFFLEN, X
 BUFFALET=ALET, X
 BLKSIZE=BLKSIZE, X
 RETBLOCKID=RETBLK, X
 TIMESTAMP=TIMESTMP, X
 BROWSETOKEN=BRSTOKEN, X
 MODE=SYNC, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
ANSLEN DC A(L'ANSAREA) length of logger's answer area
BUFFLEN DC F'2ðð' buffer length
TOKEN DS CL16 stream token from connect
BRSTOKEN DS CL4 returned browse token
BUFF DS CL2ðð buffer where data will be put
ALET DS F'1' buffer alet in secondary
BLKSIZE DS F block size of buffer
RETBLK DS CL8 return block id
BLKID DS CL8 specific block id to browse
TIMESTMP DS CL16 returned time stamp stck format
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code
RSNCODE DS F reason code
DATAREA DSECT
 IXGANSAA LIST=YES answer area

 Example 4
Issue IXGBRWSE REQUEST=RESET to reset the cursor at the youngest block in the log
stream.

 IXGBRWSE REQUEST=RESET, X
 STREAMTOKEN=TOKEN, X
 POSITION=YOUNGEST, X
 BROWSETOKEN=BRSTOKEN, X
 MODE=SYNC, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
ANSLEN DC A(L'ANSAREA) length of logger's answer area
TOKEN DS CL16 stream token from connect
BRSTOKEN DS CL4 returned browse token
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code
RSNCODE DS F reason code
DATAREA DSECT
 IXGANSAA LIST=YES answer area

684 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGBRWSE Macro

 Example 5
Issue IXGBRWSE REQUEST=END to end a browse session.

 IXGBRWSE REQUEST=END, X
 STREAMTOKEN=TOKEN, X
 BROWSETOKEN=BRSTOKEN, X
 MODE=SYNC, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
ANSLEN DC A(L'ANSAREA) length of logger's answer area
TOKEN DS CL16 stream token from connect
BRSTOKEN DS CL4 browse token from browse start
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code
RSNCODE DS F reason code
DATAREA DSECT
 IXGANSAA LIST=YES answer area

 Example 6
Issue IXGBRWSE REQUEST=END to end a browse session asynchronously, if synchronous
processing is not possible.

 IXGBRWSE REQUEST=END, X
 STREAMTOKEN=TOKEN, X
 BROWSETOKEN=BRSTOKEN, X
 MODE=SYNCECB, X
 ECB=ANECB, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
\++
\ if rsncode = 'ððððð4ð1'X then wait on
\ the ecb ANECB.
\++
ANSLEN DC A(L'ANSAREA) length of logger's answer area
TOKEN DS CL16 stream token from connect
BRSTOKEN DS CL4 browse token from browse start
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
ANECB DS F ecb on which to wait
RETCODE DS F return code
RSNCODE DS F reason code
DATAREA DSECT
 IXGANSAA LIST=YES answer area

 IXGBRWSE — Browse/Read a Log Stream 685

 IXGBRWSE Macro

 Example 7
Issue IXGBRWSE REQUEST=END using registers.

LA R6,TOKEN place stream token in reg 6
 IXGBRWSE REQUEST=END, X
 STREAMTOKEN=(6), X
 BROWSETOKEN=BRSTOKEN, X
 MODE=SYNC, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
ANSLEN DC A(L'ANSAREA) length of logger's answer area
TOKEN DS CL16 stream token from connect
BRSTOKEN DS CL4 browse token from browse start
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code
RSNCODE DS F reason code
DATAREA DSECT
 IXGANSAA LIST=YES answer area
R6 EQU 6

686 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGCONN Macro

IXGCONN — Connect/Disconnect to Log Stream

 Description
Use the IXGCONN macro to connect a program to a specific log stream or disconnect a
program from a specific log stream.

IXGCONN returns a unique connection identifier called a stream token on completion of the
IXGCONN REQUEST=CONNECT request. Subsequent logger services use the stream
token to identify the connection. If multiple applications connect to the same log stream, the
log blocks written from the different applications are merged.

The IXGCONN connect service can be used in the following ways:

� Once a program has connected to a log stream, any application running in the same
address space shares the connect status and may share the same stream token to
issue other logger services. Any program in the address space can disconnect the
entire address space from the log stream by issuing the IXGCONN
REQUEST=DISCONNECT service.

� Multiple programs in a single address space can issue IXGCONN
REQUEST=CONNECT individually to connect to the same log stream and receive
separate stream tokens. Each program must disconnect from the log stream
individually.

� Multiple address spaces on one or more MVS systems may connect to a single log
stream, but each one must issue IXGCONN individually to connect and then disconnect
from the log stream. Each one receives a unique stream token; address spaces cannot
share a stream token.

Note that a DASD-only log stream is single-system in scope. This means that only one
system may connect to a DASD-only log stream, although there can be multiple
connections from that one system.

For information on using the system logger services and the IXGCONN request, see OS/390
MVS Programming: Assembler Services Guide.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held.
Control parameters: None.

 Programming Requirements
� The parameter list for this service must be addressable in the caller's primary address

space.

� Include the IXGCON mapping macro in your program. This macro provides a list of
equate symbols for the system logger services.

� Include mapping macro IXGANSAA in your program. This macro shows the format of
the answer area output returned for each system logger service in the ANSAREA
parameter.

 Copyright IBM Corp. 1988, 1999 687

 IXGCONN Macro

 Restrictions
� All storage areas specified in this service must be in the same storage key as the

caller's storage key and must exist in the caller's primary address space.

� The caller cannot have an EUT FRR established.

� If the Security Authorization Facility (SAF) is available, the system performs SAF
authorization checks on all IXGCONN REQUEST=CONNECT requests in order to
protect the integrity of data in a log stream.

To connect successfully to a log stream, the caller must have SAF authorization that
matches the authorization required for the log stream:

– To connect to a log stream with an authorization level of READ, the caller must
have read access to RESOURCE(log_stream_name) in SAF class
CLASS(LOGSTRM).

– To connect to a log stream with an authorization level of WRITE, the caller must
have alter access to RESOURCE(log_stream_name) in SAF class
CLASS(LOGSTRM).

If SAF is not available or if CLASS(LOGSTRM) is not defined to SAF, no security
checking is performed. In that case, the caller is connected to the log stream with the
requested or default AUTH parameter value.

� There is more than one version of this macro available. The parameters you can use
depend on the version you specify on the PLISTVER parameter. See the description of
the PLISTVER parameter for more information.

� An MVS image may connect to a maximum of 4096 log streams.

Input Register Information
Before issuing the IXGCONN macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code, if register 15 contains a non-zero return code.
2 - 13 Unchanged
14 Used as a work register by the system.
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0 - 1 Used as a work register by the system.
2 - 13 Unchanged
14 - 15 Used as a work register by the system.

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

688 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGCONN Macro

 Performance Implications
None.

 Syntax
The standard form of the IXGCONN macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IXGCONN.

IXGCONN

␣ One or more blanks must follow IXGCONN.

Valid parameters (Required parameters are underlined.)

REQUEST=CONNECT All parameters are valid.
REQUEST=DISCONNECT STREAMTOKEN, ANSAREA, ANSLEN, USERDATA, RETCODE,

RSNCODE, MF

,STREAMNAME=streamname streamname: RS-type address or register (2) - (12).

,STREAMTOKEN=streamtoken streamtoken: RS-type address or register (2) - (12).

,ANSAREA=ansarea ansarea: RS-type address or register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or register (2) - (12).

 ,AUTH=READ Default: AUTH=READ
 ,AUTH=WRITE

 ,STRUCTNAME=structname structname: RS-type address or register (2) - (12).

 ,AVGBUFSIZE=avgbufsize avgbufsize: RS-type address or register (2) - (12).

 ,MAXBUFSIZE=maxbufsize maxbufsize: RS-type address or register (2) - (12).

 ,ELEMENTSIZE=elementsize elementsize: RS-type address or register (2) - (12).

 ,LSVERSION=lsversion lsversion: RS-type address or register (2) - (12).

 ,USERDATA=userdata userdata: RS-type address or register (2) - (12).

 ,IMPORTCONNECT=NO Default: IMPORTCONNECT=NO
 ,IMPORTCONNECT=YES

|
| ,DIAG=NO_DIAG| Default: DIAG=NO_DIAG
| ,DIAG=NO
| ,DIAG=YES

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=1
 ,PLISTVER=2

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,MF=S Default: MF=S
 ,MF=(L,list addr)
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)

 IXGCONN — Connect/Disconnect to Log Stream 689

 IXGCONN Macro

 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)
 ,MF=(E,list addr,NOCHECK)
 ,MF=(M,list addr)
 ,MF=(M,list addr,COMPLETE)
 ,MF=(M,list addr,NOCHECK)

 Parameters
The parameters are explained as follows:

REQUEST=CONNECT
REQUEST=DISCONNECT

Input parameter specifying whether the program is connecting to or disconnecting from
the specified log stream.

When you specify CONNECT, all parameters are valid. Keywords required with connect
are: STREAMNAME, STREAMTOKEN, ANSAREA, and ANSLEN.

When you specify DISCONNECT, the following parameters are valid (required
parameters are underlined): STREAMTOKEN, ANSAREA, ANSLEN, USERDATA,
RETCODE, RSNCODE, and MF.

,STREAMNAME=streamname
Specifies the 26-byte field (or register) containing the name of the log stream to which a
program is connecting. You must use the name you defined for the log stream in the
LOGR policy, see “IXGINVNT — Managing the LOGR Inventory Couple Data Set” on
page 731 for information on the syntax of log stream names in the LOGR policy.

,STREAMTOKEN=streamtoken
Specifies the 16-byte token uniquely identifying the program's connection to the log
stream.

When specified with REQUEST=CONNECT, STREAMTOKEN is an output parameter
where IXGCONN places the log stream token when the macro completes successfully.

When specified with REQUEST=DISCONNECT or other logger services,
STREAMTOKEN is an input parameter where you specify the log stream token returned
at connection.

,ANSAREA= ansarea
Specifies the name (or address in a register) of an answer area containing information
about this request. The answer area must be at least 40 bytes. To map this
information, use the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or address in a register) of the 4-byte field containing the answer
area length. The length of the answer area must be at least 40 bytes and must be the
same length as the field specified in ANSAREA.

To ascertain the optimal answer area length, look at the ANSAA_PREFERRED_SIZE
field of the IXGANSAA macro.

,AUTH=READ
,AUTH=WRITE

Specifies whether the caller has write or read access to the specified log stream.

If you specify AUTH=READ when connecting to a log stream, the program must also
have read access authority to SAF resource(logstream_name) in CLASS(LOGSTRM) for
the specified log stream. You can then issue only the IXGBRWSE and IXGQUERY
requests against the log stream.

If you specify AUTH=WRITE when connecting to a log stream, the program must also
have write access authority to SAF resource(logstream_name) in CLASS(LOGSTRM) for

690 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGCONN Macro

the specified log stream. You can then issue any system logger request against the log
stream.

,STRUCTNAME=structname
Specifies the name or address (using a register) of a 16-byte output field where
IXGCONN REQUEST=CONNECT will return the name of the coupling facility structure
that the log stream is connected to. The name comes from the LOGR policy.

If you are connecting to a DASD-only log stream, this field will contain hexadecimal
zeros. In addition, flag Ansaa_DasdOnlyLogStream in macro IXGANSAA will be set on
for a DASD-only log stream.

,MAXBUFSIZE=maxbufsize
Specifies the name or address (using a register) of a 4-byte output field where
IXGCONN returns the size, in bytes, of the largest log block that can be written to this
log stream.

MAXBUFSIZE is defined in the LOGR policy.

,AVGBUFSIZE=avgbufsize
Specifies the name or address (using a register) of a 4-byte output field where
IXGCONN returns the average size, in bytes, of individual log blocks that can be written
to the coupling facility structure associated with this log stream.

AVGBUFSIZE is defined in the LOGR policy.

� If you are using an OS/390 Release 3 or higher LOGR couple data set for a
coupling facility log stream, this value shows the initial setting used to determine the
element-to-entry ratio. System logger monitors structure use and adjusts the
average buffer size dynamically, but the AVGBUFSIZE value returned by IXGCONN
will always reflect the original setting rather than the actual value in use by system
logger at any given time.

� If you are connecting to a DASD-only log stream, this field will contain hexadecimal
zeros. In addition, flag Ansaa_DasdOnlyLogStream in macro IXGANSAA will be set
on for a DASD-only log stream.

,ELEMENTSIZE=elementsize
Specifies the name or address (using a register) of a 4-byte output field where
IXGCONN returns the size of the elements that system logger will break the log blocks
into to write them to the coupling facility associated with this log stream.

If you are connecting to a DASD-only log stream, this field will contain hexadecimal
zeros. In addition, flag Ansaa_DasdOnlyLogStream in macro IXGANSAA will be set on
for a DASD-only log stream.

,LSVERSION=lsversion
Specifies the name or address (using a register) of a 64-bit output field where
IXGCONN returns the version of the log stream the program is connecting to.

The log stream version is a GMT timestamp that uniquely identifies the instance of the
log stream definition. A program can use the log stream version to see if a log stream
definition has been deleted and redefined since the last connect to a log stream.

For example, assume you connect to log stream LS1 and IXGCONN returns a log
steam version of X'AA00000000000000', which the program saves. On a subsequent
connection to log stream LS1, IXGCONN returns a different log stream version, which
indicates that the definition for log stream LS1 in the LOGR policy has been deleted and
redefined since the last connection.

,USERDATA=userdata
Specifies a 64-byte input/output field containing a user data area.

When specified with REQUEST=CONNECT, USERDATA is an output parameter where
IXGCONN returns the user data specified for this log stream.

When specified with REQUEST=DISCONNECT, USERDATA is an input parameter
where you can specify or update the user data the user data for the specified log

 IXGCONN — Connect/Disconnect to Log Stream 691

 IXGCONN Macro

stream. You can only specify or change the user data for a log stream on a disconnect
request.

,IMPORTCONNECT=NO
,IMPORTCONNECT=YES

Specifies whether the connection is for writing or importing log data to a log stream.
You must specify AUTH=WRITE to use the IMPORTCONNECT parameter. The
application must run in supervisor state, key 0 to use this parameter.

If you specify IMPORTCONNECT=YES, this connection will be used for importing data
to a log stream. Importing log data means using the IXGIMPRT service to copy data
from one log stream to another, maintaining the same log block identifier and GMT time
stamp. IXGWRITE requests are not valid with IMPORTCONNECT=YES. You can have
only one IMPORTCONNECT=YES connection active for a log stream in the sysplex.

If you specify IMPORTCONNECT=NO, which is the default, the connect request is a
write connection. In a write connection, only IXGWRITE requests can be issued against
the log stream, IXGIMPRT requests will be rejected.

You can have multiple write connects to a log stream, provided there are no import
connections. If you have a write connect established against a log stream, a
subsequent import connection will be rejected. You cannot, in other words, issue both
IXGIMPRT and IXGWRITE requests against a single log stream.

,RMNAME=rmname
Specifies the name (or address in a register) of the 8-byte input field containing the
name of the resource manager program connecting to the log stream. The resource
manager name specified on the IXGCONN request must be the same as the one
associated with the log stream in the log stream definition in the LOGR policy. The
application must run in supervisor state, key 0-7 to use this parameter.

The RMNAME parameter is specified only by the resource manager at connect time, to
tell system logger that it is connecting to a log stream. Other connections to a resource
manager managed log stream do not have to specify RMNAME. Note that a resource
manager can only connect to one log stream per system.

The active primary LOGR couple data set must be formatted at the OS/390 Release 3
level or above to use this parameter.

,RMEXIT=rmexit
Specifies the name (or address in a register) of the input field containing the address of
user exit for the resource manager. The application must run in supervisor state, key
0-7 to use this parameter.

RMEXIT is required with the RMNAME parameter, even though use of a resource
manager exit is optional. The exit is called only if the resource manager monitors write
and/or delete events as selected on the RMEVENT parameter.

The active primary LOGR couple data set must be formatted at the OS/390 Release 3
level or above to use this parameter.

RMEXIT is required when you specify RMNAME.

,RMDATA= rmdata
Specifies the name (or address in a register) of the 8-byte input field containing the data
for the user exit. The application must run in supervisor state, key 0-7 to use this
parameter.

RMDATA is required with the RMNAME parameter.

The active primary LOGR couple data set must be formatted at the OS/390 Release 3
level or above to use this parameter.

,RMEVENT=LBWRITE
,RMEVENT=LBDELETE

Input parameter specifying the events that you want to trigger the resource manager
user exit. RMEVENT is required with the RMNAME parameter. You can specify
RMEVENTS=LBWRITE, RMEVENTS=LBDELETE, or

692 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGCONN Macro

RMEVENTS=(LBWRITE,LBDELETE). The application must run in supervisor state, key
0-7 to use this parameter.

If you specify RMEVENT=LBWRITE, successful write requests to the log stream will
trigger the resource manager user exit.

If you specify RMEVENT=LBDELETE, successful delete requests to the log stream will
trigger the resource manager user exit.

The active primary LOGR couple data set must be formatted at the OS/390 Release 3
level or above to use this parameter.

| ,DIAG=NO_DIAG
| ,DIAG=NO
| ,DIAG=YES
| Specifies whether Logger should provide additional diagnostics as specified on the
| logstream definition DIAG parameter. This indication is used over the span of this
| connection. Refer to the DIAG keyword on the IXGINVNT, IXGBRWSE and IXGDELET
| macro services.

| If you specify DIAG=NO_DIAG, which is the default, then Logger will not provide the
| additional diagnostics as specified on the logstream definition DIAG parameter, unless
| another Logger service, for example, IXGBRWSE, specifically requests the additional
| diagnostics.

| If you specify DIAG=NO, the Logger will not provide the additional diagnostics as
| specified on the logstream definition DIAG parameter, regardless of other Logger service
| specifications.

| If you specify DIAG=YES, then Logger will provide additional diagnostics as specified on
| the logstream definition DIAG parameter, unless another Logger service, for example,
| IXGDELET, specifically requests not to provide the additional diagnostics.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default. Note that on the list form, the default will cause
the smallest parameter list to be created.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form when both forms are assembled using the same level
of the system. In this way, MAX ensures that the parameter list does not overwrite
nearby storage.

� 1, which supports all parameters except those specifically referenced in higher
versions.

� 2, which supports both the following parameters and parameters from version 1:

 – IMPORTCONNECT
 – LSVERSION

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION

 IXGCONN — Connect/Disconnect to Log Stream 693

 IXGCONN Macro

 � MAX

� A decimal value of 1 or 2

,RETCODE=retcode
Specifies a name or address (using a register) of a 4-byte output field where the system
will place the return code. The return code is also in general purpose register (GPR)
15.

,RSNCODE=rsncode
Specifies a name (or address in a register) of a 4-byte output field where the system will
place the reason code. The reason code is also in general purpose register (GPR) 0, if
you received a non-zero return code.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter can be specified on the list form of the macro. IBM recommends
that you always specify PLISTVER=MAX on the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together
with the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list form,
and generates the macro invocation to transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines
that need to provide different options according to user-provided input. Use the list form
to define a storage area; use the modify form to set the appropriate options; then use
the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following order:

� Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters, including all
required ones.

� Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to change.

� Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value that is valid
on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

694 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGCONN Macro

,NOCHECK
Specifies that the system is not to check for required parameters and is not to
supply defaults for omitted optional parameters.

 ABEND Codes
None.

Return and Reason Codes
When IXGCONN macro returns control to your program, GPR 15 contains a return code and
GPR 0 contains a reason code.

Note: The return and reason codes are in the answer area mapped by IXGANSAA when
the request completes.

The IXGCONN mapping macro provides equate symbols for the return and reason codes.
The equate symbols associated with each hexadecimal return code are as follows:

00 IXGRETCODEOK - Service completes successfully.
04 IXGRETCODEWARNING - Service completes with a warning.
08 IXGRETCODEERROR - Service does not complete.
0C IXGRETCODECOMPERROR - Service does not complete.

The following table contains hexadecimal return and reason codes, the equate symbols
associated with each reason code, and the meaning and suggested action for each return
and reason code.

Figure 44 (Page 1 of 7). Return and Reason Codes for the IXGCONN Macro

Return Code Reason Code Meaning and Action

00 xxxx0000 Equate Symbol : IxgRsnCodeOk

Explanation: Request processed successfully.

04 xxxx0404 Equate Symbol : IxgRsnCodeDisconnectInProgress

Explanation: Environment error. The disconnect request is being
completed asynchronously. The application has been disconnected
from the log stream and the stream token is no longer valid.

Action: The log stream cannot be deleted until the asynchronous
portion of the disconnect processing completes.

04 xxxx0406 Equate Symbol : IxgRsnCodeConnectRebuild

Explanation: Environment error. The connect request was
successful, but the log stream is temporarily unavailable because a
coupling facility structure re-build is in progress.

Action: Listen to the ENF signal 48, which will indicate either that
the log stream is available because the re-build completed
successfully or that the log stream is not available because the
re-build failed. In the meantime, do not attempt to issue system
logger services against the log stream.

04 xxxx0407 Equate Symbol : IxgRsnCodeConnPossibleLossOfData

Explanation: Environment error. The request was successful, but
there may be log blocks permanently missing between this log block
and the one previously returned. This condition occurs when a
system or coupling facility fails and not all of the data in the log
stream could be recovered.

Action: If your application cannot tolerate any data loss, stop issuing
system logger services to this log stream, disconnect from the log
stream, and reconnect to a new, undamaged log stream. You can
continue using the log stream if your applications can tolerate data
loss.

 IXGCONN — Connect/Disconnect to Log Stream 695

 IXGCONN Macro

Figure 44 (Page 2 of 7). Return and Reason Codes for the IXGCONN Macro

Return Code Reason Code Meaning and Action

04 xxxx0408 Equate Symbol : IxgRsnCodeDsDirectoryFullWarning

Explanation: Environment error. The request was successful, but
the DASD data set directory for the log stream is now full. System
logger cannot offload any further data to DASD. System logger will
continue to process IXGWRITE requests only until the coupling
facility structure space for this log stream is full.

Action: Either delete data from the log stream to free up space in the
data set directory or disconnect from the log stream.

04 xxxx0409 Equate Symbol : IxgRsnCodeWowWarning

Explanation: Environment error. The request was successful, but an
error condition was detected during a previous offload of data.
System logger might not be able to offload further data. System
logger will continue to process IXGWRITE requests only until the
interim storage for the log stream is filled. (Interim storage is the
coupling facility for a coupling facility log stream and local storage
buffers for a DASD-only log stream.)

Action: Do not issue any further requests for this log stream and
disconnect. Connect to another log stream. Check the system log for
message IXG301I to determine the cause of the error. If you cannot
fix the error, search problem reporting data bases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

08 xxxx0801 Equate Symbol : IxgRsnCodeBadParmlist

Explanation: Program error. The parameter list could not be
accessed.

Action: Ensure that the storage area for the parameter list is
accessible to the system logger for the duration of the request. The
parameter list storage must be addressable in the caller's primary
address space and in the same key as the caller.

08 xxxx0802 Equate Symbol : IxgRsnCodeXESError

Explanation: System error. A severe cross-system extended
services (XES) error has occurred.

Action: See ANSAA_DIAG1 for the XES return code and
ANSAA_DIAG2 for the XES reason code.

08 xxxx0806 Equate Symbol : IxgRsnCodeBadStmToken

Explanation: Program error. The stream token was not valid.

Action: Make sure that the stream token specified is valid.

08 xxxx080A Equate Symbol : IxgRsnCodeRequestLocked

Explanation: Program error. The program issuing the request is
holding a lock.

Action: Ensure that the program issuing the request is not holding a
lock.

08 xxxx080B Equate Symbol : IxgRsnCodeNoStream

Explanation: Program error. The log stream name specified has not
been defined in the LOGR policy.

Action: Ensure that the required log stream name has been defined
in the LOGR policy. If the definition appears to be correct, ensure that
the application is passing the correct log stream name to the service.

08 xxxx080C Equate Symbol : IxgRsnCodeStagingAllocError

Explanation: Environment error. The system encountered a severe
dynamic allocation error with the staging data set. ANSAA_DIAG2 of
the answer area contains either the dynamic allocation error code,
SMS reason code, or media manager reason code. For more
information about the error, check for either message IXG251I, which
is issued for data set allocation errors, or check for messages issued
by the access method.

Action: If the problem persists, search problem reporting data bases
for a fix for the problem. If no fix exists, contact the IBM Support
Center.

696 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGCONN Macro

Figure 44 (Page 3 of 7). Return and Reason Codes for the IXGCONN Macro

Return Code Reason Code Meaning and Action

08 xxxx080D Equate Symbol : IxgRsnCodeNoSAFAuth

Explanation: Environment error. The user does not have correct SAF
authorization for the request. The caller is not authorized to connect
to the log stream or the caller specified AUTH=WRITE when
connecting to a log stream with only READ authority.

Action: Define alter SAF authorization to the log stream or specify
AUTH=READ.

08 xxxx0811 Equate Symbol : IxgRsnCodeBadStrname

Explanation: Environment error. The structure name specified on
the STRUCTNAME parameter is not defined in the CFRM policy.

Action: Make sure that the structure you want to specify is defined in
the CFRM policy.

08 xxxx0812 Equate Symbol : IxgRsnCodeLogStreamRecoveryFailed

Explanation: Environment error. The log stream could not be
recovered. The system issues message IXG211E providing further
information about the error.

Action: If the problem persists, search problem reporting data bases
for a fix for the problem. If no fix exists, contact the IBM Support
Center.

08 xxxx0813 Equate Symbol : IxgRsnCodeLogStreamDeleted

Explanation: Environment error. The request to connect to the
specified log stream failed because the log stream is being deleted.

Action: Re-define the log stream in the LOGR policy and then
re-issue the connect request.

08 xxxx0814 Equate Symbol : IxgRsnCodeNotAvailForIPL

Explanation: Environment error. The system logger address space
is not available for the remainder of this IPL. The system issues
messages about this error during system logger initialization.

Action: See the explanation for system messages issued during
system logger initialization.

08 xxxx0815 Equate Symbol : IxgRsnCodeNotEnabled

Explanation: Program error. The program issuing the request is not
enabled for I/O and external interrupts, so the request fails.

Action: Make sure the program issuing the request is enabled for
I/O and external interrupts.

08 xxxx0816 Equate Symbol : IxgRsnCodeBadAnslen

Explanation: Program error. The answer area length (ANSLEN
parameter) is not large enough. The system logger returned the
required size in the Ansaa_Preferred_Size field of the answer area,
mapped by IXGANSAA macro.

Action: Re-issue the request, specifying an answer area of the
required size.

08 xxxx0819 Equate Symbol : IxgRsnCodeSRBMode

Explanation: Program error. The calling program is in SRB mode,
but task mode is the required dispatchable unit mode for this system
logger service.

Action: Make sure the calling program is in task mode.

08 xxxx081A Equate Symbol : IxgRsnCodeMaxStreamConn

Explanation: Environment error. The system has reached the limit
for the maximum number of log streams that can be concurrently
active. An MVS image may connect to a maximum of 4096 log
streams concurrently.

Action: Either plan your workload to either consolidate log streams
or balance system activity so that fewer log streams are needed in a
given time period.

08 xxxx081B Equate Symbol : IxgRsnCodePrimaryNotHome

Explanation: Program error. The primary address space does not
equal the home address space.

Action: Make sure that the primary address space equals the home
address space when issuing this system logger service.

 IXGCONN — Connect/Disconnect to Log Stream 697

 IXGCONN Macro

Figure 44 (Page 4 of 7). Return and Reason Codes for the IXGCONN Macro

Return Code Reason Code Meaning and Action

08 xxxx081D Equate Symbol : IxgRsnCodeRMNameBadState

Explanation: Program error. The calling program cannot issue
IXGCONN with the RMNAME parameter unless it is in supervisor
state and system key.

Action: Make sure the calling program is in supervisor state.

08 xxxx081E Equate Symbol : IxgRsnCodeXESStrNotAuth

Explanation: Environment Error. The system logger address space
does not have access authority to the coupling facility structure
associated with the log stream specified.

Action: Make sure the system logger address space has SAF access
to the structure.

08 xxxx081F Equate Symbol : IxgRsnCodeXcdsError

Explanation: System error. System logger encountered an internal
problem while processing the LOGR couple data set.

Action: Contact the IBM Support Center. Provide the return and
reason code and the contents of the answer area (ANSAREA field).

08 xxxx0820 Equate Symbol : IxgRsnCodeBadModelConn

Explanation: Program error. The program issued an IXGCONN
request to connect to a log stream that was defined as a model in the
LOGR policy. You cannot connect to a model log stream.

Action: Either change the definition of the specified structure so that
it is not a model, or else request connection to a different log stream
that is not a model.

08 xxxx082D Equate Symbol : IxgRsnCodeExpiredStmToken

Explanation: Environment error. The stream token is no longer valid
because the connector has been disconnected.

Action: Connect to the log stream again before issuing any
functional requests.

08 xxxx082E Equate Symbol : IxgRsnCodeNoLogrCDSAvail

Explanation: Environment error. The request failed because no
LOGR couple data set is available. The operator was prompted to
either make a couple data set available or to indicate that the current
request should be rejected. The operator specified that the current
request should be rejected.

Action: System logger services are unavailable for the remainder of
this IPL.

08 xxxx0831 Equate Symbol : IxgRsnCodeBadStreamName

Explanation: Program error. The log stream name specified on the
STREAMNAME parameter is not valid.

Action: Issue the request again with a valid log stream name on the
STREAMNAME parameter.

08 xxxx083A Equate Symbol : IxgRsnCodeRMNameNotAllowed

Explanation: Program error. The request specified the RMNAME
parameter, but the log stream is not defined as having an associated
resource manager.

Action: Either define a resource manager for the log stream
definition in the LOGR couple data set, or remove the RMNAME
parameter from the request.

08 xxxx0843 Equate Symbol : IxgRsnCodeXcdsReformat

Explanation: Program error. A couple data set record is not valid.

Action: Format the system logger couple data set again.

08 xxxx084C Equate Symbol : IxgRsnCodeRMAlreadyConnected

Explanation: Program error. The resource manager is trying to
connect to a log stream that it is already connected to. Only one
connection specifying RMNAME can be active for a log stream.

Action: Correct the program so that it does not try to reconnect to
the log stream.

698 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGCONN Macro

Figure 44 (Page 5 of 7). Return and Reason Codes for the IXGCONN Macro

Return Code Reason Code Meaning and Action

08 xxxx084F Equate Symbol : IxgRsnCodeInvalidRMNameSpecified

Explanation: Program error. The value for the RMNAME parameter
on the connect request does not match the name of the resource
manager defined in the LOGR couple data set for the log stream.

Action: Either correct the RMNAME value on the connect request or
correct the resource manager name in the log stream definition in the
LOGR couple data set.

08 xxxx0850 Equate Symbol : IXGRSNCODEBADVECTORLEN

Explanation: Environment error. The connect request was rejected.
System logger was unable to locate a vector table in the hardware
system area (HSA) that is large enough for the number of log
streams associated with it.

Action: Add storage to the vector storage table and/or retry the
connect request later, when storage might be available.

08 xxxx0851 Equate Symbol : IXGRSNCODEBADCFLEVEL

Explanation: Environment error. The connect request was rejected.
The operational level of the coupling facility is not sufficient to support
logger functions.

Action: Ensure that the coupling facility operational level for logger
structures is at the required level. See OS/390 MVS Setting Up a
Sysplex.

08 xxxx0853 Equate Symbol : IxgRsnCodeNoCF

Explanation: Environment error. The connect request was rejected.
System logger could not allocate coupling facility structure space
because no suitable coupling facility was available.

Action: Check accompanying message IXG206I for a list of the
coupling facilities where space allocation was attempted and the
reason why each attempt failed.

08 xxxx0863 Equate Symbol : IXGRSNCODESTRUCTUREFAILED

Explanation: Environment error. Either the coupling facility structure
associated with the log stream has failed or the coupling facility itself
has failed.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the re-build completed
successfully. Re-issue the request.

� The re-build failed and the log stream is not available.

08 xxxx0864 Equate Symbol : IXGRSNCODENOCONNECTIVITY

Explanation: Environment error. No connectivity exists to the
coupling facility associated with the log stream. The system logger
will either attempt to re-build the log stream in another coupling
facility or the log stream will be disconnected.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the re-build completed
successfully. Re-issue the request.

� The re-build failed and the log stream is not available.
� The log stream has been disconnected from this system.

08 xxxx0866 Equate Symbol : IXGRSNCODESTRUCTUREFULL

Explanation: Environment error. The coupling facility structure
space is full.

Action: Listen to the ENF signal 48 which will indicate that space is
available for the structure after data has been offloaded to DASD.

08 xxxx0890 Equate Symbol : IXGRSNCODEADDRSPACENOTAVAIL

Explanation: System error. The system logger address space failed
and is not available.

Action: Do not issue system logger requests.

 IXGCONN — Connect/Disconnect to Log Stream 699

 IXGCONN Macro

Figure 44 (Page 6 of 7). Return and Reason Codes for the IXGCONN Macro

Return Code Reason Code Meaning and Action

08 xxxx0891 Equate Symbol : IXGRSNCODEADDRSPACEINITIALIZING

Explanation: System error. The system logger address space is not
available because it is IPLing.

Action: Listen for ENF signal 48, which will indicate when the
system logger address space is available. Re-issue this request. You
can also listen for ENF signal 48, which will indicate if the system
logger address space will not be available for the life of the IPL. In
that case, do not issue system logger services.

08 xxxx08B0 Equate Symbol : IXGRSNCODESTRUCTURENOTAVAIL

Explanation: Environment error. The connect request failed. The
structure associated with the log stream is temporarily unavailable
because either a re-build is in progress, a structure dump is in
progress, or connections to the structure are being prevented.

Action: Listen for ENF signal 48, which indicates that a coupling
facility is available, and then retry the connect.

08 xxxx08D3 Equate Symbol : IXGRsnCodeFuncNotSupported

Explanation: Environment error. The connect request specified the
RMNAME or IMPORTCONNECT parameter. The request failed
because the active primary LOGR couple data set must be at OS/390
Release 3 or above to support these parameters.

Action: Either retry the request without the RMNAME or
IMPORTCONNECT parameters or reformat the LOGR couple data
set at OS/390 Release 3 or above level.

08 xxxx08D6 Equate Symbol : IXGRsnCodeConnTypeNotAllowed

Explanation: Environment error. One of the following occurred:

� The connect request specified IMPORTCONNECT=YES, but
there is already an active write connection (AUTH=WRITE
IMPORTCONNECT=NO) in the sysplex. You cannot have an
import connection and a write connection to the same log
stream.

� The connect request specified AUTH=WRITE
IMPORTCONNECT=NO, but there is already an active import
connection (IMPORTCONNECT=YES) for the log stream. You
cannot have an import connection and a write connection to the
same log stream.

You can only have one import connection to a log stream. You may
have multiple write connections, as long as there is no import
connection against a log stream.

Action: Correct your program and retry the request.

08 xxxx08E2 Equate Symbol : IxgRsncodeDasdOnlyConnected

Explanation: Environment error System logger rejected an attempt to
connect to a DASD-only log stream because the log stream is
already connected to by another log stream in the sysplex. Only one
system at a time can connect to a DASD-only log stream.

Action: Determine which system you want to have a connection to
the log stream. If you need this connection, disconnect the first
system connection to the log stream and retry this connect request.

700 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGCONN Macro

Figure 44 (Page 7 of 7). Return and Reason Codes for the IXGCONN Macro

Return Code Reason Code Meaning and Action

08 xxxx08E3 Equate Symbol : IXGRSNCODELOGSTREAMNOTSUPPORTED

Explanation: Environment error. A request to connect to a log
stream was rejected on this system because the system release level
does not support a DASD-only log stream. The system must be at
OS/390 Release 3 or higher to connect to DASD-only log stream.

Action: If you must connect to a DASD-only log stream, make sure
you do one of the following:

� Connect from a system that is OS/390 Release 3 or higher.
� Update the log stream definition in the LOGR policy to a coupling

facility one by specifying a structure name on the definition.
(This can only be done on a system that is OS/390 R3 or
higher.)

� Delete the log stream definition from the LOGR policy, and
redefine it as a coupling facility log stream with an associated
structure name. Then a system at a level below OS/390 R3 can
connect to the log stream. If the log stream was never connected
to by any system, the delete request can be done from a system
of any level. Otherwise, the delete request must be done from
an OS/390 R3 or higher system.

0C xxxx0000 Equate Symbol : IxgRetCodeCompError

Explanation: User or System error. One of the following occurred:

� You issued the FORCE IXGLOGR,ARM command to terminate
the system logger address space.

� System logger component error occurred.

Action: If this reason code is not the result of forcing the system
logger address space, search problem reporting data bases for a fix
for the problem. If no fix exists, contact the IBM Support Center.
Provide the diagnostic data in the answer area (IXGANSAA) and any
dumps or LOGREC entries from system logger.

 Examples
Example 1

Issue IXGCONN REQUEST=CONNECT to connect to a log stream with write authority.

 IXGCONN REQUEST=CONNECT, X
 STREAMNAME=STRMNAME, X
 STREAMTOKEN=TOKEN, X
 AUTH=WRITE, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
STRMNAME DC CL26'LOG.STREAM.NAME' stream name
ANSLEN DC A(L'ANSAREA) length of logger's answer area
TOKEN DS CL16 returned stream token
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code from logger
RSNCODE DS F reason code from logger
DATAREA DSECT
 IXGANSAA LIST=YES answer area

 IXGCONN — Connect/Disconnect to Log Stream 701

 IXGCONN Macro

Example 2

Issue IXGCONN REQUEST=CONNECT using registers.

LA R6,STRMNAME load stream name into reg 6
 IXGCONN REQUEST=CONNECT, X
 STREAMNAME=(6), X
 STREAMTOKEN=TOKEN, X
 AUTH=WRITE, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
STRMNAME DC CL26'LOG.STREAM.NAME' stream name
ANSLEN DC A(L'ANSAREA) length of logger's answer area
TOKEN DS CL16 returned stream token
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code from logger
RSNCODE DS F reason code from logger
DATAREA DSECT
 IXGANSAA LIST=YES answer area
R6 EQU 6 set up register 6

Example 3

Issue IXGCONN REQUEST=CONNECT as an import connect. This means the connection
may issue IXGIMPRT to import data to a log stream.

 IXGCONN REQUEST=CONNECT, @
 STREAMNAME=ONAME, @
 STREAMTOKEN=OTOKEN, @
 AUTH=WRITE, @
 IMPORTCONNECT=YES, @
 ANSAREA=XANSAREA, @
 ANSLEN=XANSLEN, @
 RSNCODE=RSCODE

\
ONAME DS CL26 Output Stream name
STOKEN DS CL16 Input Stream token
XANSAREA DS CL(ANSAA_LEN) Logger answer area
XANSLEN DC A(ANSAA_LEN) Answer area length
RSCODE DS F Reason code
 DSECT ,

IXGANSAA , The answer area macro

702 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGCONN Macro

Example 4

Issue IXGCONN REQUEST=DISCONNECT to disconnect from a log stream and associate
some user data with the log stream.

 IXGCONN REQUEST=DISCONNECT, X
 STREAMTOKEN=TOKEN, X
 USERDATA=USERDATA, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
USERDATA DC CL64'SOME USER DATA' user data to log with DISCONNECT
ANSLEN DC A(L'ANSAREA) length of logger's answer area
TOKEN DS CL16 token returned from CONNECT
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code from logger
RSNCODE DS F reason code from logger
DATAREA DSECT
 IXGANSAA LIST=YES answer area

 IXGCONN — Connect/Disconnect to Log Stream 703

 IXGCONN Macro

704 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGDELET Macro

IXGDELET — Deleting Log Data from a Log Stream

 Description
Use the IXGDELET macro to delete log blocks from a log stream.

For information about using the system logger services and the system logger inventory, see
OS/390 MVS Programming: Assembler Services Guide, which includes information about
related macros IXGCONN, IXGBRWSE, IXGWRITE, and IXGINVNT.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held.
Control parameters: All control parameters (except for ECB) must be in the primary

address space. ECB should be addressable from home address
space.

 Programming Requirements
� The current primary address space must be the same primary address space used at

the time your program issued the IXGCONN request.

� The parameter list for this service must be addressable in the caller's primary address
space.

� The calling program must be connected to the log stream with write authority through
the IXGCONN service.

� Include the IXGCON mapping macro in your program. This macro provides a list of
equate symbols for the system logger services.

� Include mapping macro IXGANSAA in your program. This macro shows the format of
the answer area output returned for each system logger service in the ANSAREA
parameter.

� If there are multiple connections to a log stream, each connected application must
serialize delete requests so that a delete of log blocks does not occur, for example, in
the middle of another application's browse session.

 Restrictions
� All storage areas specified in this service must be in the same storage key as the

caller's storage key and must exist in the caller's primary address space.

� There is more than one version of this macro available. The parameters you can use
depend on the version you specify on the PLISTVER parameter. See the description of
the PLISTVER parameter for more information.

 Copyright IBM Corp. 1988, 1999 705

 IXGDELET Macro

Input Register Information
Before issuing the IXGDELET macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code, if register 15 contains a non-zero return code.
1 Used as a work register by the system
2 - 13 Unchanged
14 Used as a work register by the system.
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0 - 1 Used as a work register by the system.
2 - 13 Unchanged
14 - 15. Used as a work register by the system.

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The standard form of the IXGDELET macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IXGDELET.

IXGDELET

␣ One or more blanks must follow IXGDELET.

,STREAMTOKEN=streamtoken streamtoken: RS-type address or register (2) - (12).

,BLOCKS=ALL
,BLOCKS=RANGE

,ANSAREA=ansarea ansarea: RS-type address or register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or register (2) - (12).

 ,FORCE=NO Default: FORCE=NO
 ,FORCE=YES Default: FORCEINFO=NO

 ,FORCEINFO=NO

 ,OBLOCKID=oblockid oblockid: RS-type address or register (2) - (12).

 ,BLOCKID=blockid blockid: RS-type address or register (2) - (12).

706 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGDELET Macro

 MODE=SYNC Default: MODE=SYNC
 MODE=ASYNCNORESPONSE
 MODE=SYNCECB

 ,ECB=ecb ecb: RS-type address or register (2) - (12).

|
| ,DIAG=NO_DIAG| Default: DIAG=NO_DIAG
| ,DIAG=NO
| ,DIAG=YES

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=0
 ,PLISTVER=1

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,MF=S Default: MF=S
 ,MF=(L,list addr)
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)
 ,MF=(E,list addr,NOCHECK)
 ,MF=(M,list addr)
 ,MF=(M,list addr,COMPLETE)
 ,MF=(M,list addr,NOCHECK)

 Parameters
The parameters are explained as follows:

,STREAMTOKEN=streamtoken
Specifies the name or address (using a register) of a required 16-byte input field
containing the token for the log stream that you want to search. The stream token is
returned by the IXGCONN service at connection to the log stream.

,BLOCKS=ALL
.BLOCKS=RANGE

Specifies whether all or just a subset of log blocks in a log stream be deleted.

� BLOCKS=ALL: Specifies that all the log blocks in the specified log stream be
deleted.

� BLOCKS=RANGE: Specifies that the range of log blocks, older than the block
specified on the BLOCKID parameter, be deleted. The BLOCKID parameter is
required with BLOCKS=RANGE, See OS/390 MVS Programming: Assembler
Services Guide for more information on deleting a range of log blocks.

,BLOCKID= blockid
Specifies the name or address (using a register) of a 8-byte input field which contains a
log block identifier. BLOCKID is required with the BLOCKS=RANGE parameter. All
blocks in the log stream older than the block specified on BLOCKID will be deleted.
Note that the block specified in BLOCKID is not deleted.

Block identifiers are returned in the RETBLOCKID field of the IXGWRITE service.

,ANSAREA= ansarea
Specifies the name (or address in a register) of an answer area containing information
about this request. The answer area must be at least 40 bytes. To map this
information, use the IXGANSAA macro.

 IXGDELET — Deleting Log Data from a Log Stream 707

 IXGDELET Macro

,ANSLEN=anslen
Specifies the name (or address in a register) of the 4-byte field containing the answer
area length. The length of the answer area must be at least 40 bytes and must be the
same length as the field specified in ANSAREA.

To ascertain the optimal answer area length, look at the ANSAA_PREFERRED_SIZE
field of the IXGANSAA macro.

,FORCE=NO
,FORCE=YES

Specifies whether this delete request can be overridden by a resource manager exit.

If you specify FORCE=NO, which is the default, the delete request can be overridden by
the resource manager exit.

If you specify FORCE=YES, the delete request cannot be overridden by a delete exit.

,OBLOCKID= oblockid
Specifies the name or address (using a register) of an 8 character output field where the
resource manager places the override block identifier.

,MODE=SYNC
,MODE=ASYNCNORESPONSE
,MODE=SYNCECB

Specifies that the request should be processed in one of the following ways:

� MODE=SYNC: Specifies that the request process synchronously. Control is not
returned to the caller until request processing is complete. If necessary, the calling
program will be suspended until the request completes.

� MODE=ASYNCNORESPONSE: Specifies that the request process asynchronously.
The caller is not notified when the request completes and the answer area
(ANSAREA) fields will not contain valid information.

To use this parameter, the system where the application is running must be IPLed
at OS/390 Release 3 level or above. If you specify this request on a pre-OS/390
Release 3 level system, the request is processed as a MODE=SYNC request.

� MODE=SYNCECB: Specifies that the request process synchronously if possible. If
the request processes asynchronously, control returns to the caller before the
request completes and the event control block (ECB) specified on the ECB
parameter is posted when the request completes. The ECB parameter is required
with MODE=SYNCECB.

ECB=ecb
Specifies the name or address (using a register) of a 4-byte input field that contains an
event control block (ECB) to be posted when the request completes.

Before coding ECB, you must ensure that:

� You initialize the ECB.

� The ECB must reside in either common storage or the home address space where
the IXGDELET request was issued.

� The virtual storage area specified for the ECB must reside on a fullword boundary.

| ,DIAG=NO_DIAG
| ,DIAG=NO
| ,DIAG=YES
| Specifies whether or not the DIAG option on the IXGCONN for this logstream will be in
| effect for this delete log data request. Refer to the DIAG keyword on the IXGINVNT,
| IXGCONN and IXGBRWSE macro services.

| If you specify DIAG=NO_DIAG, which is the default, then the DIAG option on the
| IXGCONN for this logstream will be in effect for this delete log data request.

| If you specify DIAG=NO, then Logger will not take additional diagnostic action as
| defined on the logstream definition DIAG parameter.

708 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGDELET Macro

| If you specify DIAG=YES, then Logger will take additional diagnostic action as defined
| on the logstream definition DIAG parameter providing the IXGCONN connect DIAG
| specification allows it.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default. Note that on the list form, the default will cause
the smallest parameter list to be created.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form when both forms are assembled using the same level
of the system. In this way, MAX ensures that the parameter list does not overwrite
nearby storage.

� 0, supports all parameters except those specifically referenced in higher versions.

� 2, supports both the following parameters and parameters from version 0:

 – FORCE
 – OBLOCKID

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION

 � MAX

� A decimal value of 0 or 1

,RETCODE=retcode
Specifies a name or address (using a register) of a 4-byte output field where the system
will place the return code. The return code is also in general purpose register (GPR)
15.

,RSNCODE=rsncode
Specifies a name (or address in a register) of a 4-byte output field where the system will
place the reason code. The reason code is also in general purpose register (GPR) 0, if
you received a non-zero return code.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

 IXGDELET — Deleting Log Data from a Log Stream 709

 IXGDELET Macro

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter can be specified on the list form of the macro. IBM recommends
that you always specify PLISTVER=MAX on the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together
with the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list form,
and generates the macro invocation to transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines
that need to provide different options according to user-provided input. Use the list form
to define a storage area; use the modify form to set the appropriate options; then use
the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following order:

� Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters, including all
required ones.

� Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to change.

� Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value that is valid
on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to
supply defaults for omitted optional parameters.

 ABEND Codes
None.

Return and Reason Codes
When IXGDELET macro returns control to your program, GPR 15 contains a return code
and GPR 0 contains a reason code.

Note: The return and reason codes will also be put into the answer area mapped by
IXGANSAA when the request completes.

The IXGCON macro provides equate symbols for the return and reason codes. The equate
symbols associated with each hexadecimal return code are as follows:

00 IXGRETCODEOK - Service completes successfully.
04 IXGRETCODEWARNING - Service completes with a warning.
08 IXGRETCODEERROR - Service does not complete.
0C IXGRETCODECOMPERROR - Service does not complete.

710 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGDELET Macro

The following table contains hexadecimal return and reason codes, the equate symbols
associated with each reason code, and the meaning and suggested action for each return
and reason code.

Figure 45 (Page 1 of 6). Return and Reason Codes for the IXGDELET Macro

Return Code Reason Code Meaning and Action

00 xxxx0000 Equate Symbol : IxgRsnCodeOk

Explanation: Request processed successfully.

04 xxxx0401 Equate Symbol : IxgRsnCodeProcessedAsynch

Explanation: Program error. The program specified
MODE=SYNCECB and the request must be processed
asynchronously.

Action: Wait for the ECB specified on the ECB parameter to be
posted, indicating that the request is complete. Check the
ANSAA_ASYNCH_RETCODE and ANSAA_ASYNCH_RSNCODE
fields, mapped by IXGANSAA, to determine whether the request
completed successfully.

04 xxxx040B Equate Symbol : IxgRsnCodeRMNotConnected

Explanation: Program or environment error. The log stream is
identified as being a source log stream managed by a resource
manager (RMNAME is specified in the LOGR couple data set).
However, at the time of the delete request, the resource manager
was not connected to the log stream and FORCE=NO was specified
on the request. Delete requests can only be honored on a resource
manager managed system if the resource manager is connected to
the log stream.

Action: Either:

� Start the resource manager so that it can connect to the log
stream.

� Issue the IXGDELET request specifying FORCE=YES to delete
the log block even though the resource manager is not
connected to the source log stream.

04 xxxx040C Equate Symbol : IxgRsnCodeRMOverrideOK

Explanation: The caller's delete request was overridden by the
associated resource manager. The override information was
successfully processed.

04 xxxx040D Equate Symbol : IxgRsnCodeRMNoBlock

Explanation: Program error. The log block identifier on the
IXGDELET request does not exist in the log stream. Either the block
id never existed or was deleted in a previous IXGDELET request.
This warning is issued only if a resource manager overrides the
caller-specified block id.

Action: Make sure that the block id specified on the IXGDELET
request is correct.

04 xxxx040E Equate Symbol : IxgRsnCodeRMBadGap

Explanation: Environment error. The IXGDELET request failed
because the requested log data was unreadable. This problem is
caused by either an I/O error while attempting to read a DASD log
data set or a log data set was deleted using an interface other than
IXGDELET. This reason code is issued only when a resource
manager exit overrides the block identifier specified on the
IXGDELET request.

Action: System logger returns the block identifier of the first readable
log block (in the direction of youngest data) in the
ANSAA_GAPS_NEXT_BLKID field of the answer area mapped by
IXGANSAA. If appropriate, reissue the IXGDELET request using this
block identifier.

 IXGDELET — Deleting Log Data from a Log Stream 711

 IXGDELET Macro

Figure 45 (Page 2 of 6). Return and Reason Codes for the IXGDELET Macro

Return Code Reason Code Meaning and Action

04 xxxx040F Equate Symbol : IxgRsnCodeRMEOFGap

Explanation: Environment error. While processing the IXGDELET
request, system logger prematurely reached the end or beginning of
the log stream. The portion of the log stream from the requested log
data to either the beginning or end of the log stream was unreadable.
This problem is caused by either an I/O error while attempting to read
a DASD log data set or a log data set was deleted using an interface
other than IXGDELET. This reason code is issued only when a
resource manager exit overrides the block identifier specified on the
IXGDELET request.

Action: The action you take depends on whether your application
can tolerate any loss of data. You can either:

� Accept the loss of data and continue processing this log stream.
� Stop using this log stream.
� Correct the problem and re-issue the request.

04 xxxx0410 Equate Symbol : IxgRsnCodeRMLossOfDataGap

Explanation: Environment error. The log data you tried to delete is
in a section of the log stream where data is permanently missing.
This condition occurs when a system or coupling facility is in recovery
from a failure and not all the log data could be recovered. This
reason code is issued only when a resource manager exit overrides
the block identifier specified on the IXGDELET request.

Action: If your application cannot tolerate any data loss, stop issuing
system logger services to this log stream, disconnect from the log
stream, and reconnect to a new, undamaged log stream. If your
application can tolerate data loss, you can continue using the log
stream.

04 xxxx0411 Equate Symbol : IxgRsnCodeRMAbended

Explanation: Program error. The resource manager abended and
percolated to the system logger recovery environment. The
IXGDELET request was not processed.

Action: Look for and correct the problem in your resource manager
program or reissue the delete request, specifying FORCE=YES.

04 xxxx0412 Equate Symbol : IxgRsnCodeRMDisabled

Explanation: Environment error. The log stream is identified as
being managed by a resource manager (RMNAME is specified in the
LOGR couple data set). The resource manager is connected to the
log stream, but is disabled due to an abend from which it did not
recover successfully (by percolating to system logger recovery
environment).

Action: Either:

� Cancel the resource manager exit and then restart the resource
manager address space.

� Reissue the request, specifying FORCE=YES.

08 xxxx0801 Equate Symbol : IxgRsnCodeBadParmlist

Explanation: Program error. The parameter list could not be
accessed.

Action: Ensure that the storage area for the parameter list is
accessible to the system logger for the duration of the request. The
parameter list storage must be addressable in the caller's primary
address space and in the same key as the caller.

08 xxxx0802 Equate Symbol : IxgRsnCodeXESError

Explanation: System error. A severe cross-system extended
services (XES) error has occurred.

Action: See ANSAA_DIAG1 for the XES return code and
ANSAA_DIAG2 for the XES reason code.

712 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGDELET Macro

Figure 45 (Page 3 of 6). Return and Reason Codes for the IXGDELET Macro

Return Code Reason Code Meaning and Action

08 xxxx0804 Equate Symbol : IxgRsnCodeNoBlock

Explanation: Program error. The block identifier or time stamp does
not exist in the log stream. Either the value provided was never a
valid location within the log stream or a prior IXGDELET request
deleted the portion of the log stream it referenced.

Action: Ensure that the value provided references an existing portion
of the log stream and issue the request again. Use the LIST
LOGSTREAM DETAIL(YES) request on the IXCMIPU utility to display
the range of valid block identifiers for the log stream.

08 xxxx0806 Equate Symbol : IxgRsnCodeBadStmToken

Explanation: Program error. One of the following occurred:

� The stream token was not valid.
� The specified request was issued from an address space other

than the connector's address space.

Action: Do one of the following:

� Make sure that the stream token specified is valid.
� Ensure the request was issued from the connector's address

space.

08 xxxx080A Equate Symbol : IxgRsnCodeRequestLocked

Explanation: Program error. The program issuing the request is
holding a lock.

Action: Ensure that the program issuing the request is not holding a
lock.

08 xxxx0814 Equate Symbol : IxgRsnCodeNotAvailForIPL

Explanation: Environment error. The system logger address space
is not available for the remainder of this IPL. The system issues
messages about this error during system logger initialization.

Action: See the explanation for system messages issued during
system logger initialization.

08 xxxx0815 Equate Symbol : IxgRsnCodeNotEnabled

Explanation: Program error. The program issuing the request is not
enabled for I/O and external interrupts, so the request fails.

Action: Make sure the program issuing the request is enabled for
I/O and external interrupts.

08 xxxx0816 Equate Symbol : IxgRsnCodeBadAnslen

Explanation: Program error. The answer area length (ANSLEN
parameter) is not large enough. The system logger returned the
required size in the Ansaa_Preferred_Size field of the answer area,
mapped by IXGANSAA macro.

Action: Re-issue the request, specifying an answer area of the
required size.

08 xxxx0817 Equate Symbol : IxgRsnCodeBadAnsarea

Explanation: Program error. The storage area specified on the
ANSAREA parameter cannot be accessed. This may occur after the
system logger address space has terminated.

Action: Specify storage that is in the caller's primary address space
and in the same key as the calling program at the time the system
logger service was issued. This storage must be accessible until the
request completes.

08 xxxx081C Equate Symbol : IxgRsnCodeNotAuthFunc

Explanation: Program error. The program connected to the log
stream with the AUTH=READ parameter and then tried to delete or
write data. You cannot write or delete data when connected with read
authority.

Action: Issue the IXGCONN service with AUTH=WRITE authority
and then re-issue this request.

08 xxxx081F Equate Symbol : IxgRsnCodeXcdsError

Explanation: System error. System logger encountered an internal
problem while processing the LOGR couple data set.

Action: Contact the IBM Support Center. Provide the return and
reason code and the contents of the answer area (ANSAREA field).

 IXGDELET — Deleting Log Data from a Log Stream 713

 IXGDELET Macro

Figure 45 (Page 4 of 6). Return and Reason Codes for the IXGDELET Macro

Return Code Reason Code Meaning and Action

08 xxxx082D Equate Symbol : IxgRsnCodeExpiredStmToken

Explanation: Environment error. The stream token is no longer valid
because the connector has been disconnected.

Action: Connect to the log stream again before issuing any
functional requests.

08 xxxx0836 Equate Symbol : IxgRsnCodeBadGap

Explanation: Environment error. The request failed because the
requested log data was unreadable. This condition could be caused
by either an I/O error while attempting to read a log data set or a log
data set deleted without using the IXGDELET interface.

Action: The block identifier of the first accessible block toward the
youngest data in the log stream is returned in the
ANSAA_GAPS_NEXT_BLKID field in the answer area mapped by the
IXGANSAA macro. If appropriate, re-issue the IXGDELET request
using this block identifier.

08 xxxx083D Equate Symbol : IxgRsnCodeBadECBStor

Explanation: Program error. The ECB storage area was not
accessible to the system logger.

Action: Ensure that the storage area is accessible to the system
logger for the duration of the request. The storage must be
addressable in the caller's home address space and in the same key
as the caller.

08 xxxx084A Equate Symbol : IxgRsnCodeEOFGap

Explanation: Environment error. The request prematurely reached
the beginning or the end of the log stream. The portion of the log
stream from the requested log data to either the beginning or the end
of the log stream (depending on the direction of the read) was
unreadable. This condition may be caused by either an I/O error
while trying to read a log data set, or a log data set deleted without
using the IXGDELET interface.

Action: The action necessary is completely up to the application
depending on how critical your data is. You can do one of the
following:

� Accept this condition and continue reading.
� Stop processing the log all together.
� Attempt to get the problem rectified, if possible, and then try to

re-issue the request.

08 xxxx084B Equate Symbol : IxgRsnCodeLossOfDataGap

Explanation: Environment error. The requested log data referenced
a section of the log stream where log data is permanently missing.
This condition occurs when a system or coupling facility is in recovery
due to a failure, but not all of the log data in the log stream could be
recovered.

Action: If your application cannot tolerate any data loss, stop issuing
system logger services to this log stream, disconnect from the log
stream, and reconnect to a new, undamaged log stream. You can
continue using the log stream if your applications can tolerate data
loss.

08 xxxx0861 Equate Symbol : IxgRsnCodeRebuildInProgress

Explanation: Environment error. No requests can be processed for
this log stream because a coupling facility structure re-build is in
progress for the structure associated with this log stream.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the re-build completed
successfully. Re-issue the request.

� The re-build failed and the log stream is not available.

714 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGDELET Macro

Figure 45 (Page 5 of 6). Return and Reason Codes for the IXGDELET Macro

Return Code Reason Code Meaning and Action

08 xxxx0862 Equate Symbol : IxgRsnCodeXESPurge

Explanation: Environment error. An cross-system extended services
(XES) request has been purged due to re-build processing.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the re-build completed
successfully. Re-issue the request.

� The re-build failed and the log stream is not available.

08 xxxx0863 Equate Symbol : IxgRsnCodeStructureFailed

Explanation: Environment error. Either the coupling facility structure
associated with the log stream has failed or the coupling facility itself
has failed.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the re-build completed
successfully. Re-issue the request.

� The re-build failed and the log stream is not available.

08 xxxx0864 Equate Symbol : IxgRsnCodeNoConnectivity

Explanation: Environment error. No connectivity exists to the
coupling facility associated with the log stream. The system logger
will either attempt to re-build the log stream in another coupling
facility or the log stream will be disconnected.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the re-build completed
successfully. Re-issue the request.

� The re-build failed and the log stream is not available.
� The log stream has been disconnected from this system.

08 xxxx0890 Equate Symbol : IxgRsnCodeAddrSpaceNotAvail

Explanation: System error. The system logger address space failed
and is not available.

Action: Do not issue system logger requests.

08 xxxx0891 Equate Symbol : IxgRsnCodeAddrSpaceInitializing

Explanation: System error. The system logger address space is not
available because it is IPLing.

Action: Listen for ENF signal 48, which will indicate when the
system logger address space is available. Re-connect to the log
stream, then re-issue this request. You can also listen for ENF signal
48, which will indicate if the system logger address space will not be
available for the life of the IPL. In that case, do not issue system
logger services.

08 xxxx08D0 Equate Symbol : IxgRsnCodeProblemState

Explanation: Environment error. The request was rejected because
of one of the following:

� The request was issued in SRB mode while the requestor was in
problem program state.

� The SYNCEXIT parameter was specified while the requestor's
PSW key was in problem program key.

Action: Change the invoking environment to supervisor state.

08 xxxx08D1 Equate Symbol : IxgRsnCodeProgramKey

Explanation: Environment error. The request was rejected because
of one of the following:

� The request was issued in SRB mode while the requestor was in
problem program key (key 8-F).

� The SYNCEXIT parameter was specified while the requestor's
PSW key was in problem program key.

Action: Change the invoking environment to a system key (key 0-7).

 IXGDELET — Deleting Log Data from a Log Stream 715

 IXGDELET Macro

Figure 45 (Page 6 of 6). Return and Reason Codes for the IXGDELET Macro

Return Code Reason Code Meaning and Action

08 xxxx08D2 Equate Symbol : IxgRsnCodeNoCompleteExit

Explanation: Program error. MODE=SYNCEXIT was specified, but
the connection request did not identify a complete exit.

Action: Either change this request to a different MODE option, or
reconnect to the log stream with a complete exit specified on the
COMPLETEXIT parameter.

08 xxxx085F Equate Symbol : IxgRsnPercToRequestor

Explanation: Environment error. Percolation to the service
requestor's task occurred because of an abend during system logger
processing. Retry was not allowed.

Action: Issue the request again. If the problem persists, contact the
IBM Support Center.

0C xxxx0000 Equate Symbol : IxgRetCodeCompError

Explanation: User or System error. One of the following occurred:

� You issued the FORCE IXGLOGR,ARM command to terminate
the system logger address space.

� System logger component error occurred.

Action: If this reason code is not the result of forcing the system
logger address space, search problem reporting data bases for a fix
for the problem. If no fix exists, contact the IBM Support Center.
Provide the diagnostic data in the answer area (IXGANSAA) and any
dumps or LOGREC entries from system logger.

 Examples
Example 1 : Delete all data from the log stream.

 IXGDELET STREAMTOKEN=TOKEN, X
 BLOCKS=ALL, X
 MODE=SYNC, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
ANSLEN DC A(L'ANSAREA) length of logger's answer area
TOKEN DS CL16 stream token from connect
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code
RSNCODE DS F reason code
DATAREA DSECT
 IXGANSAA LIST=YES answer area

716 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGDELET Macro

Example 2 : Delete a range of data from the log stream asynchronously, if synchronous
processing is not possible.

 IXGDELET STREAMTOKEN=TOKEN, X
 BLOCKS=RANGE, X
 BLOCKID=BLOCKID, X
 MODE=SYNCECB, X
 ECB=ANECB, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
\++
\ If rsncode = 'ððððð4ð1'X then wait on
\ the ecb ANECB.
\++
ANSLEN DC A(L'ANSAREA) length of logger's answer area
BLOCKID DS CL8 block id from which to delete
TOKEN DS CL16 stream token from connect
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
ANECB DS F ecb on which to wait
RETCODE DS F return code
RSNCODE DS F reason code
DATAREA DSECT
 IXGANSAA LIST=YES answer area

Example 3 : Delete all data from the log stream using registers with the macro.

LA R6,TOKEN load stream token into register 6
 IXGDELET STREAMTOKEN=(6), X
 BLOCKS=ALL, X
 MODE=SYNC, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
ANSLEN DC A(L'ANSAREA) length of logger's answer area
TOKEN DS CL16 stream token from connect
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code
RSNCODE DS F reason code
DATAREA DSECT
 IXGANSAA LIST=YES answer area
R6 EQU 6

 IXGDELET — Deleting Log Data from a Log Stream 717

 IXGDELET Macro

718 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGIMPRT Macro

IXGIMPRT — Import Log Blocks

 Description
The IXGIMPRT macro allows a program to import a copy of a log block from one log stream
to another, specifying a log block identifier and time stamp to be assigned to the log block.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: None.

 Programming Requirements
� Before issuing this request, the caller must have a valid connection to the log stream.

The connection must be issued with AUTH=WRITE and IMPORTCONNECT=YES
parameters specified.

� The parameter list for this service must be addressable in the caller's primary address
space.

� Include the IXGCON mapping macro in your program. This macro provides a list of
equate symbols for the system logger services.

� Include mapping macro IXGANSAA in your program. This macro shows the format of
the answer area output returned for each system logger service in the ANSAREA
parameter.

 Restrictions
All storage areas specified must be in the same storage key as the caller. Storage areas that
are not ALET qualified must exist in the caller's primary address space.

Input Register Information
Before issuing the IXGIMPRT macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code, if register 15 contains a non-zero return code.
1 Used as a work register by the system
2 - 13 Unchanged
14 Used as a work register by the system.
15 Return code

 Copyright IBM Corp. 1988, 1999 719

 IXGIMPRT Macro

When control returns to the caller, the ARs contain:

Register Contents
0 - 1 Used as a work register by the system.
2 - 13 Unchanged
14 - 15 Used as a work register by the system.

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The IXGIMPRT macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IXGIMPRT.

IXGIMPRT

␣ One or more blanks must follow IXGIMPRT.

STREAMTOKEN=streamtoken streamtoken: RS-type address or address in register (2) - (12).

,BUFFER=buffer buffer: RS-type address or address in register (2) - (12).

,BLOCKLEN=blocklen blocklen: RS-type address or address in register (2) - (12).

,BLOCKID=blockid blockid: RS-type address or address in register (2) - (12).

,GMT_TIMESTAMP=gmt_timestamp gmt_timestamp: RS-type address or address in register (2) - (12).

,LOCALTIME=localtime localtime: RS-type address or address in register (2) - (12).

,ANSAREA=ansarea ansarea: RS-type address or address in register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or address in register (2) - (12).

 ,BUFFALET=buffalet buffalet: RS-type address or address in register (2) - (12).
 ,BUFFALET=0, Default: BUFFALET=0,

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX
 ,PLISTVER=0

 ,MF=S Default: MF=S
 ,MF=(L,list addr) list addr: RS-type address or register (1) - (12).
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)
 ,MF=(E,list addr,NOCHECK)
 ,MF=(M,list addr)

720 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGIMPRT Macro

 ,MF=(M,list addr,COMPLETE)
 ,MF=(M,list addr,NOCHECK)

 Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IXGIMPRT macro
invocation. The name must conform to the rules for an ordinary assembler language
symbol.

STREAMTOKEN=streamtoken
A required input parameter that specifies the log stream token that was returned by the
IXGCONN service.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character
field.

,BUFFER=buffer
A required input parameter that specifies the buffer from which the log stream block is to
be written.

The buffer can be ALET qualified. If a buffer is ALET qualified, the ALET must index a
valid entry on the task's dispatchable unit access list (DUAL).

To code: Specify the RS-type address, or address in register (2)-(12), of a character
field.

,BLOCKID= blockid
A required input parameter that specifies the block id to be assigned to the log block
being written. The block identifier specified must be greater than any previous block
identifier in the log stream.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

,GMT_TIMESTAMP=gmt_timestamp
A required input parameter that specifies the 8-byte GMT time stamp to be associated
with the log block being written. The timestamp specified must be greater than any
previous timestamp in the log stream. The timestamp must be in STCK format.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

,LOCALTIME= localtime
A required input parameter that specifies the 8-byte local time stamp to be associated
with the log block being imported. The timestamp must be in STCK format.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

,ANSAREA= ansarea
A required output parameter of a virtual storage area, called the answer area, in which
service response information will be placed. The format of the answer area is described
by the IXGANSAA mapping macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a field.

,ANSLEN=anslen
A required input parameter that specifies the answer area length. The length of the
answer area must be at least as large as the length of IXGANSAA.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

 IXGIMPRT — Import Log Blocks 721

 IXGIMPRT Macro

,BUFFALET= buffalet
,BUFFALET=0,

An optional input parameter that specifies the ALET to be used to access the storage
specified by the BUFFER keyword. The default is 0, which means that the buffer
resides in the caller's primary address space.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,BLOCKLEN= blocklen
A required input parameter that specifies the length of the log block to be written. The
maximum block length is 65,536.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default. Note that on the list form, the default will cause
the smallest parameter list to be created.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form when both forms are assembled using the same level
of the system. In this way, MAX ensures that the parameter list does not overwrite
nearby storage.

� 0, supports all parameters except those specifically referenced in higher versions.

To code: Specify one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 0

722 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGIMPRT Macro

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter can be specified on the list form of the macro. IBM recommends
that you always specify PLISTVER=MAX on the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together
with the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list form,
and generates the macro invocation to transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines
that need to provide different options according to user-provided input. Use the list form
to define a storage area; use the modify form to set the appropriate options; then use
the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following order:

� Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters, including all
required ones.

� Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to change.

� Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value that is valid
on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to
supply defaults for omitted optional parameters.

 ABEND Codes
Abend 1C5 Ixg_Abend_Code - See OS/390 MVS System Codes for more information on
this abend.

 IXGIMPRT — Import Log Blocks 723

 IXGIMPRT Macro

Return and Reason Codes
When the IXGIMPRT macro returns control to your program:

� GPR 15 (and retcode, if you coded RETCODE) contains a return code.
� When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE)

contains reason code.

The IXGCONN mapping macro provides equate symbols for the return and reason codes.
The equate symbols associated with each hexadecimal return code are as follows:

00 IXGRETCODEOK - Service completes successfully.
04 IXGRETCODEWARNING - Service completes with a warning.
08 IXGRETCODEERROR - Service does not complete.
0C IXGRETCODECOMPERROR - Service does not complete. A System Logger

component error has been encountered.

The following table contains hexadecimal return and reason codes, the equate symbols
associated with each reason code, and the meaning and suggested action for each return
and reason code.

Figure 46 (Page 1 of 6). Return and Reason Codes for the IXGIMPRT Macro

Return Code Reason Code Meaning and Action

00 xxxx0000 IxgRsnCodeOk -

Explanation: Request processed successfully.

04 xxxx0405 IxgRsnCodeWarningLossOfData -

Explanation: Environment error. The request was successful
however the log stream has previously lost log blocks. This condition
occurs when a system and coupling facility fail and not all of the log
data in the log stream could be recovered.

Action: If your application cannot tolerate any data loss, stop issuing
system logger services to this log stream, disconnect from the log
stream, and reconnect to a new, undamaged log stream. You can
continue using the log stream if your applications can tolerate data
loss.

04 xxxx0407 IxgRsnCodeConnPossibleLossOfData -

Explanation: Environment error. The request was successful, but
there may be log blocks permanently in the log stream. This
condition occurs when a system or coupling facility fails and not all of
the data in the log stream could be recovered.

Action: If your application cannot tolerate any data loss, stop issuing
system logger services to this log stream, disconnect from the log
stream, and reconnect to a new, undamaged log stream. You can
continue using the log stream if your applications can tolerate data
loss.

04 xxxx0408 IxgRsnCodeDsDirectoryFullWarning -

Explanation: Environment error. The request was successful, but
the log stream's DASD data set directory is full. System logger cannot
offload any further data from the coupling facility structure to DASD.
The system logger will continue to process IXGIMPRT requests until
this log streams portion of the coupling facility structure becomes full.

Action: Either delete enough data from the log stream to free up
space in the log streams data set directory so that offloading can
occur or disconnect from the log stream.

724 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGIMPRT Macro

Figure 46 (Page 2 of 6). Return and Reason Codes for the IXGIMPRT Macro

Return Code Reason Code Meaning and Action

04 xxxx0409 Equate Symbol : IxgRsnCodeWowWarning

Explanation: Environment error. The request was successful, but an
error condition was detected during a previous offload of data.
System logger might not be able to offload further data. System
logger will continue to process IXGWRITE requests only until the
interim storage for the log stream is filled. (Interim storage is the
coupling facility for a coupling facility log stream and local storage
buffers for a DASD-only log stream.)

Action: Do not issue any further requests for this log stream and
disconnect. Connect to another log stream. Check the system log for
message IXG301I to determine the cause of the error. If you cannot
fix the error, search problem reporting data bases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

04 xxxx040A IxgRsnCodeDuplexFailureWarning -

Explanation: Environment error. The request was successful, but the
system logger was unable to duplex log data to staging data sets,
even though the log stream definition requested unconditional
duplexing to staging data sets (STG_DUPLEX=YES,
DUPLEXMODE=UNCOND).

Action: If duplexing to staging data sets is required, disconnect from
this log stream and connect to a log stream that can be duplexed to
staging data sets.

08 xxxx0801 IxgRsnCodeBadParmlist -

Explanation: Program error. The parameter list is invalid. Either the
parameter list storage is inaccessible, or an invalid version of the
macro was used.

Action: Ensure that the storage area for the parameter list is
accessible to the system logger for the duration of the request, and
that the macro version is correct. The parameter list storage must be
addressable in the caller's primary address space and in the same
key as the caller.

08 xxxx0802 IxgRsnCodeXESError -

Explanation: System error. A severe cross-system extended
services (XES) error has occurred.

Action: See ANSAA_DIAG1 for the XES return code and
ANSAA_DIAG2 for the XES reason code.

08 xxxx0803 IxgRsnCodeBadBuffer -

Explanation: Program error. The virtual storage area specified on the
BUFFER parameter is not addressable.

Action: Ensure that the storage area specified on the BUFFER
parameter is accessible to system logger for the duration of the
request. If the BUFFKEY parameter is specified, make sure it
contains a valid key associated with the storage area. If BUFFKEY is
not used, ensure that the storage is in the same key as the program
at the time the logger service was requested. The storage must be
addressable in the caller's primary address space.

08 xxxx0806 IxgRsnCodeBadStmToken -

Explanation: Program error. One of the following occurred:

� The stream token was not valid.

� The specified request was issued from an address space other
than the connectors address space.

Action: Do one of the following:

� Make sure that the stream token specified is valid.

� Ensure that IXGIMPRT requests were issued from the
connectors address space.

 IXGIMPRT — Import Log Blocks 725

 IXGIMPRT Macro

Figure 46 (Page 3 of 6). Return and Reason Codes for the IXGIMPRT Macro

Return Code Reason Code Meaning and Action

08 xxxx0809 IxgRsnCodeBadWriteSize -

Explanation: Program error. The size of the log block specified in
the BLOCKLEN parameter is not valid. The value for BLOCKLEN
must be greater than zero and less than or equal to the maximum
buffer size (MAXBUFSIZE) defined in the LOGR policy for the
structure associated with this log stream.

Action: Ensure that the value specified on the BLOCKLEN parameter
is greater than 0 and less than or equal to the MAXBUFSIZE which is
returned on the log stream connect request.

08 xxxx080A IxgRsnCodeRequestLocked -

Explanation: Program error. The program issuing the request is
holding a lock.

Action: Ensure that the program issuing the request is not holding a
lock.

08 xxxx0814 IxgRsnCodeNotAvailForIPL -

Explanation: Environment error. The system logger address space
is not available for the remainder of this IPL. The system issues
messages about this error during system logger initialization.

Action: See the explanation for system messages issued during
system logger initialization.

08 xxxx0815 IxgRsnCodeNotEnabled -

Explanation: Program error. The program issuing the request is not
enabled for I/O and external interrupts, so the request fails.

Action: Make sure the program issuing the request is enabled for
I/O and external interrupts.

08 xxxx0816 IxgRsnCodeBadAnslen -

Explanation: Program error. The answer area length (ANSLEN
parameter) is not large enough. The system logger returned the
required size in the Ansaa_Preferred_Size field of the answer area,
mapped by IXGANSAA macro.

Action: Reissue the request, specifying an answer area of the
required size.

08 xxxx0817 IxgRsnCodeBadAnsarea -

Explanation: Program error. The storage area specified on the
ANSAREA parameter cannot be accessed. This may occur after the
system logger address space has terminated.

Action: Specify storage that is in the caller's primary address space
and in the same key as the calling program at the time the system
logger service was issued. This storage must be accessible until the
request completes.

08 xxxx0819 IxgRsnCodeSRBMode -

Explanation: Program error. The calling program is in SRB mode,
but task mode is required for this system logger service.

Action: Make sure your program is in task mode.

08 xxxx082D IxgRsnCodeExpiredStmToken -

Explanation: Environment error. The stream token is no longer valid
because the connector has been disconnected.

Action: Re-connect to the logstream before issuing any functional
requests.

08 xxxx083F IxgRsnCodeTestartError -

Explanation: System error. An unexpected error was encountered
while attempting to validate the buffer ALET.

Action: See ANSAA_DIAG1 in the answer area mapped by the
IXGANSAA macro for the return code from the

08 xxxx0840 IxgRsnCodeBadVersion -

Explanation: Environment error. The parameter list passed to the
service routine has an incorrect version indicator.

Action: Make sure that the level of MVS executing the request and
the macro library used to compile the invoking routine are compatible.

726 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGIMPRT Macro

Figure 46 (Page 4 of 6). Return and Reason Codes for the IXGIMPRT Macro

Return Code Reason Code Meaning and Action

08 xxxx0841 IxgRsnCodeBadBufferAlet -

Explanation: Program error. The buffer ALET specified is not zero
and does not represent a valid entry on the callers dispatchable unit
access list (DUAL). See the ANSAA_DIAG1 field of the answer area,
mapped by the IXGANSAA macro, for the return code from the
TESTART system service.

Action: Ensure that the correct ALET was specified. If not, provide
the correct ALET. Otherwise, add the correct ALET to dispatchable
unit access list (DUAL).

08 xxxx0849 IxgRsnCodeBadBuffkey -

Explanation: Program error. The buffer key specified on the
BUFFKEY parameter specifies an invalid key. Either the key is
greater than 15 or the program is running in problem state and the
specified key is not the same key as the PSW key at the time the
system logger service was issued.

Action: For problem state programs, either do not specify the
BUFFKEY parameter or else specify the same key as the PSW key
at the time the system logger service was issued. For supervisor
state programs, specify a valid storage key (0 <= key <= 15).

08 xxxx085C IxgRsnCodeDsDirectoryFull -

Explanation: Environment error. The coupling facility structure space
allocated for this log stream is full. Attempts to offload the coupling
facility data to DASD failed because the log stream's data set
directory is full. If this reason code is issued by the IXGWRITE
request, no further write requests can be processed until additional
directory space is available for the log stream.

The sytem issues related messages IXG257I and ISG301I.

Action: You must make more log stream data set directory space
available. See OS/390 MVS Setting Up a Sysplex for more
information.

08 xxxx085D Equate Symbol : IxgRsnCodeWowError

Explanation : Environment error. The coupling facility structure
space allocated for this log stream is full, or the staging data set

| space is full. Attempts to offload log data the interim storage data to
DASD failed because of severe errors. No further write requests can
be processed.

| Action : Wait for the ENF signal that indicates that the logstream has
| been successfully offloaded, or disconnect from this log stream and

connect to another log stream. Check the log for message IXG301I
to determine the cause of the error. If error was related to the your
installation, correct the error. Otherwise, search problem reporting
data bases for a fix for the problem. If no fix exists, contact the IBM
Support Center.

08 xxxx0860 IxgRsnCodeCFLogStreamStorFull -

Explanation: Environment error. The coupling facility structure space
allocated for this log stream is full. No further requests can be
processed until the log data in the coupling facility structure is
offloaded to DASD log data sets.

Action: Listen to the ENF signal 48 which will indicate that the log
stream is available after the data has been offloaded to DASD and
then reissue the request.

08 xxxx0861 IxgRsnCodeRebuildInProgress -

Explanation: Environment error. No requests can be processed for
this log stream because a coupling facility structure re-build is in
progress for the structure associated with this log stream.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the re-build completed
successfully. Reissue the request.

� The re-build failed and the log stream is not available.

 IXGIMPRT — Import Log Blocks 727

 IXGIMPRT Macro

Figure 46 (Page 5 of 6). Return and Reason Codes for the IXGIMPRT Macro

Return Code Reason Code Meaning and Action

08 xxxx0862 IxgRsnCodeXESPurge -

Explanation: Environment error. An cross-system extended services
(XES) request has been purged due to re-build processing.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the re-build completed
successfully. Reissue the request.

� The re-build failed and the log stream is not available.

08 xxxx0863 IxgRsnCodeStructureFailed -

Explanation: Environment error. Either the coupling facility structure
associated with the log stream has failed or the coupling facility itself
has failed.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the re-build completed
successfully. Reissue the request.

� The re-build failed and the log stream is not available.

08 xxxx0864 IxgRsnCodeNoConnectivity -

Explanation: Environment error. No connectivity exists to the
coupling facility associated with the log stream. The system logger
will either attempt to re-build the log stream in another coupling
facility or the log stream will be disconnected.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the re-build completed
successfully. Reissue the request.

� The re-build failed and the log stream is not available. # The log
stream has been disconnected from this system.

08 xxxx0865 Equate Symbol : IxgRsnCodeStagingDSFull

Explanation: Environment error. The staging data set allocated for
this log stream on this system is full. No further requests can be
processed until enough log data in the coupling facility structure is
offloaded to DASD log data sets to relieve the staging data set's full
condition.

Action: Listen to the ENF signal 48 which will indicate that the log
stream is available after room becomes available in the staging data
set. Then, reissue the request.

08 xxxx0867 Equate Symbol : IxgRsnCodeLocalBufferFull

Explanation: Environment error. The available local buffer space for
the system logger address space is full. No further requests can be
processed until the log data in the local storage buffer is offloaded to
DASD log data sets. Note that this reason code applies only to a
IXGWRITE or IXGIMPRT request issued against a DASD-only log
stream.

Action: Listen for the ENF signal 48 indicating that the DASD-only
log stream is available again after the data has been offloaded to
DASD log data sets. Then reissue the request.

08 xxxx0868 Equate Symbol : IxgRsnCodeStagingDSFormat

Explanation: Environment error. The staging data set allocated for
this log stream on this system has not finished being formatted for
use by System Logger. No further IXGWRITE requests can be
processed until the formatting completes.

Action: Listen to the ENG signal 48 which will indicate that the log
stream is available after formatting process is finished. Then, reissue
the request.

08 xxxx0890 IxgRsnCodeAddrSpaceNotAvail -

Explanation: System error. The system logger address space failed
and is not available.

Action: Do not issue system logger requests.

728 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGIMPRT Macro

Figure 46 (Page 6 of 6). Return and Reason Codes for the IXGIMPRT Macro

Return Code Reason Code Meaning and Action

08 xxxx0891 IxgRsnCodeAddrSpaceInitializing -

Explanation: System error. The system logger address space is not
available because it is IPLing.

Action: Listen for ENF signal 48, which will indicate when the
system logger address space is available. Once it's available,
re-connect to the log stream, then reissue this request. You can also
listen for ENF signal 48, which will indicate if the system logger
address space will not be available for the life of the IPL. In that
case, do not issue system logger services.

08 xxxx08D7 IxgRsnCodeRequestNotAllowed -

Explanation: Program error. The caller attempted to issue an
import request while a write connection (IXGCONN
AUTH=WRITE,IMPORTCONNECT=NO) was active.

Action: Issue the correct type of request based on the import status
of your connection.

08 xxxx08D9 IxgRsnCodeBadImportBlockId -

Explanation: Program error. The blockid specified on the import
request was either less than the blockid expected or less than the
size the control information system logger adds to each log block.
You can use IXGQUERY service to ascertain the size of control
information for a log block. IXGQUERY returns the control information
size for a log stream in the QBUF_Control_Info_Size field in the
query buffer. IXGQUERY also returns the block identifier of the last
successfully written log block.

Action: Specify a valid value for the block id and reissue the import
request.

08 xxxx08DA IxgRsnCodeBadImportTimeStamp -

Explanation: Program error. The GMT timestamp specified on the
import request was not greater than or equal to the GMT time stamp
assigned to the last log block successfully imported.

Action: Specify a valid value for GMT_TimeStamp and reissue the
request. You can obtain the GMT timestamp of the last successfully
written log block using the IXGQUERY service.

08 xxxx08DB IxgRsnCodeImportNoSrbMode -

Explanation: Program error. IXGIMPRT requests can only be
issued in task mode.

Action: Issue the IXGIMPRT request while executing in task mode.

08 xxxx08DC IxgRsnCodeImportInProgress -

Explanation: Program error. Only one import operation for a given
log stream can be in progress at any instance in time. The problem
may be due to a task initiating an import request before a previously
initiated import to the log stream has completed.

Action: Wait for the currently executing import operation to complete
before initiating a subsequent import operation.

0C xxxx0000 IxgRetCodeCompError -

Explanation: User or System error. One of the following occurred:

� You issued the FORCE IXGLOGR,ARM command to terminate
the system logger address space.

� System logger component error occurred.

Action: If this reason code is not the result of forcing the system
logger address space, search problem reporting data bases for a fix
for the problem. If no fix exists, contact the IBM Support Center.
Provide the diagnostic data in the answer area (IXGANSAA) and any
dumps or LOGREC entries from system logger.

 IXGIMPRT — Import Log Blocks 729

 IXGIMPRT Macro

 Example
Issue IXGIMPRT to import a log block to a back up log stream.

\ R6 Read buffer address
 IXGIMPRT @
 STREAMTOKEN=OTOKEN, @
 BUFFER=(R6), @
 BLOCKLEN=DATALEN, @
 BLOCKID=RBLKID, @
 GMT_TIMESTAMP=GMTTIME, @
 LOCALTIME=LOCTIME, @
 ANSAREA=XANSAREA, @
 ANSLEN=XANSLEN, @
 RSNCODE=RSCODE
R6 EQU 6
OTOKEN DS CL16 Output Stream token
DATALEN DS F Returned data length
RBLKID DS CL8 Returned block identifier
GMTTIME DS CL8 GMT
LOCTIME DS CL8 Local Time
XANSAREA DS CL(ANSAA_LEN) Logger answer area
XANSLEN DC A(ANSAA_LEN) Answer area length
RSCODE DS F Reason code
 DSECT ,

IXGANSAA , The answer area macro

730 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

IXGINVNT — Managing the LOGR Inventory Couple Data Set

 Description
The LOGR policy tracks all data associated with log streams, such as log stream
characteristics, coupling facility structures associated with log streams, and the systems
connected to each log stream.

Use the IXGINVNT macro to manage the LOGR policy by:

� Defining, updating or deleting entries for log streams in the LOGR policy.
� Defining or deleting entries for coupling facility structures in the LOGR policy.

The three requests for the macro are:

� IXGINVNT REQUEST=DEFINE, which defines an entry in the LOGR policy. There are
two types of DEFINE requests:

– TYPE=LOGSTREAM defines an entry for a log stream. See page 734 for the
syntax of this request.

– TYPE=STRUCTURE defines an entry for a system logger coupling facility structure.
See page 744 for the syntax of this request.

� IXGINVNT REQUEST=UPDATE, which updates a log stream entry in the LOGR policy.
See page 748 for the syntax of this request.

� IXGINVNT REQUEST=DELETE, which deletes a log stream or structure entry from the
LOGR policy. See page 757 for the syntax of this request.

For information on using the system logger services and the LOGR policy, see OS/390 MVS
Programming: Assembler Services Guide.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held.
Control parameters: Control parameters must be in the primary address space.

 Programming Requirements
� The parameter list for this service must be addressable in the caller's primary address

space.

� Include the IXGCON mapping macro in your program. This macro provides a list of
equate symbols for the system logger services.

� Include mapping macro IXGANSAA in your program. This macro shows the format of
the answer area output returned for each system logger service in the ANSAREA
parameter.

 Copyright IBM Corp. 1988, 1999 731

 IXGINVNT Macro

 Restrictions
� All storage areas specified in this service must be in the same storage key as the

caller's storage key and must exist in the caller's primary address space.

� The caller cannot have an EUT FRR established.

� You can only use the IXGINVNT REQUEST=DELETE TYPE=LOGSTREAM request to
delete a log stream entry from the LOGR policy if there are no connections (active or
failed) to the log stream.

� For most parameters on the IXGINVNT REQUEST=UPDATE request, there must be no
connections (active or failed) to the log stream being updated. The AUTODELETE and
RETPD parameters are the exception, as noted in the parameter descriptions.

� Restrictions for DASD-only log stream definitions:

– A DASD-only log stream is single-system in scope. This means that only one
system at a time may connect to a DASD-only log stream. You can have multiple
connections from one system or multiple systems connecting in sequence.

– A DASD-only log stream is not associated with a coupling facility structure.

– You cannot specify the STG_DUPLEX and DUPLEXMODE parameters for a
DASD-only log stream on the IXGINVNT REQUEST=UPDATE request. Use of
staging data sets is automatic rather than optional for a DASD-only log stream.

– You can upgrade a DASD-only log stream to a coupling facility log stream by
specifying STRUCTNAME on the IXGINVNT REQUEST=UPDATE
TYPE=LOGSTREAM request to update the DASD-only log stream entry.

You cannot change a coupling facility log stream to DASD-only, nor can you specify
STRUCTNAME on an update request issued against a coupling facility log stream.

� If the Security Authorization Facility (SAF) is available, the system performs SAF
authorization checks on all IXGINVNT requests.

For log stream entries, you must have the following authorization:

– To define, delete, or update a log stream entry, the caller must have alter access to
RESOURCE(log_stream_name) in SAF class CLASS(LOGSTREAM)

– If you specify the STRUCTNAME parameter on a DEFINE request for a log stream
entry, the caller must also have update access authority to the coupling facility
structure, RESOURCE(IXLSTR.structure_name) in SAF class CLASS(FACILITY)

– If you use the LIKE parameter to model your definition after another log stream on a
DEFINE request for a log stream entry, you must also have update access to the
RESOURCE(IXLSTR.like_structure_name) in class CLASS(FACILITY).

To define or delete a structure entry in the LOGR policy, the caller must have alter
access to RESOURCE(MVSADMIN.LOGR) in SAF class CLASS(FACILITY).

If SAF is not available or if there is no CLASS(LOGSTRM) or CLASS(FACILITY) class
defined for the log stream or structure, no security checking is performed.

� There is more than one version of this macro available. The parameters you can use
depend on the version you specify on the PLISTVER parameter. See the description of
the PLISTVER parameter for more information.

Input Register Information
Before issuing the IXGINVNT macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

732 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code, if register 15 contains a non-zero return code.
2 - 13 Unchanged
14 Used as a work register by the system.
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0 - 1 Used as a work register by the system.
2 - 13 Unchanged
14 - 15 Used as a work register by the system.

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 733

 IXGINVNT Macro

REQUEST=DEFINE TYPE=LOGSTREAM Option of IXGINVNT
The IXGINVNT macro with the DEFINE TYPE=LOGSTREAM parameters defines a log
stream or coupling facility structure entry in the LOGR policy.

Syntax for REQUEST=DEFINE TYPE=LOGSTREAM
The standard form of the IXGINVNT REQUEST=DEFINE TYPE=LOGSTREAM macro is
written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IXGINVNT.

IXGINVNT

␣ One or more blanks must follow IXGINVNT.

REQUEST=DEFINE

,TYPE=LOGSTREAM

,ANSAREA=ansarea ansarea: RS-type address or register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or register (2) - (12).

,STREAMNAME=streamname streamname: RS-type address or register (2) - (12).

 ,STRUCTNAME=structname structname: RS-type address or register (2) - (12).

 ,DASDONLY=NO Default: DASDONLY=NO
 ,DASDONLY=YES

 ,MAXBUFSIZE=maxbufsize maxbufsize: RS-type address or register (2) - (12).

 ,RMNAME=rmname rmname: RS-type address or register (2) - (12).

 ,DESCRIPTION=description description: RS-type address or register (2) - (12).

 ,STG_DUPLEX=NO Default: STG_DUPLEX=NO
 ,STG_DUPLEX=YES

 ,DUPLEXMODE=COND Default: DUPLEXMODE=COND
 ,DUPLEXMODE=UNCOND

 ,STG_MGMTCLAS=stg_mgmtclasstg_mgmtclas: RS-type address or register (2) - (12).

Default: NO_STG_MGMTCLAS

 ,STG_DATACLAS=stg_dataclas stg_dataclas: RS-type address or register (2) - (12).

Default: NO_STG_DATACLAS

 ,STG_STORCLAS=stg_storclas stg_storclas: RS-type address or register (2) - (12).

Default: NO_STG_STORCLAS

 ,STG_SIZE=stg_size stg_size: RS-type address or register (2) - (12).

Default: Size defined in SMS data class or by dynamic allocation

 ,LS_MGMTCLAS=ls_mgmtclas ls_mgmtclas: RS-type address or register (2) - (12).

Default: NO_LS_MGMTCLAS

 ,LS_DATACLAS=ls_dataclas ls_dataclas: RS-type address or register (2) - (12).

Default: NO_LS_DATACLAS

734 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

 ,LS_STORCLAS=ls_storclas ls_storclas: RS-type address or register (2) - (12).
Default: NO_LS_STORCLAS

 ,LS_SIZE=ls_size ls_size: RS-type address or register (2) - (12).

Default: Size defined in SMS data class or by dynamic allocation.

 ,RETPD=retpd retpd: RS-type address or register (2) - (12).

Default: NO_RETPD

 ,AUTODELETE=NO Default: AUTODELETE=NO
 ,AUTODELETE=YES

 ,HLQ=hlq hlq: RS-type address or register (2) - (12).

Default: NO_HLQ

 ,LOWOFFLOAD=lowoffload lowoffload: RS-type address or register (2) - (12).

Default: LOWOFFLOAD=0

 ,HIGHOFFLOAD=highoffload highoffload: RS-type address or register (2) - (12).

Default: HIGHOFFLOAD=80

 ,LIKE=like_streamname like: RS-type address or register (2) - (12).

Default: NO_LIKE

 ,MODEL=NO Default: MODEL=NO
 ,MODEL=YES

|
| ,DIAG=NO| Default: DIAG=NO
| ,DIAG=YES

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=0
 ,PLISTVER=1
 ,PLISTVER=2

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,MF=S Default: MF=S
 ,MF=(L,list addr)
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)
 ,MF=(E,list addr,NOCHECK)
 ,MF=(M,list addr)
 ,MF=(M,list addr,COMPLETE)
 ,MF=(M,list addr,NOCHECK)

Parameters for REQUEST=DEFINE,TYPE=LOGSTREAM
The parameters are explained as follows:

REQUEST=DEFINE
Requests that an entry for a log stream or coupling facility structure be defined in the
LOGR policy.

,TYPE=LOGSTREAM
Indicates that the entry to be defined in the LOGR policy is a log stream entry.

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 735

 IXGINVNT Macro

,ANSAREA= ansarea
Specifies the name (or address in a register) of an answer area containing information
about this request. The answer area must be at least 40 bytes. To map this
information, use the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or address in a register) of the 4-byte field containing the answer
area length. The length of the answer area must be at least 40 bytes and must be the
same length as the field specified in ANSAREA.

To ascertain the optimal answer area length, look at the ANSAA_PREFERRED_SIZE
field of the IXGANSAA macro.

,STREAMNAME=streamname
Specifies the name (or address in a register) of the 26-byte input field containing the
name of the log stream that you want to define in the LOGR policy.

The stream name must be 26 characters, padded on the right with blanks if necessary.
The name can be made up of one or more segments separated by periods, up to the
maximum length of 26 characters. The following rules apply:

� Each segment may contain up to eight numeric, alphabetic, or national ($, #, or @)
characters.

� The first character of each segment must be an alphabetic or national character.
� Each segment must be separated by periods, which you must count as characters.

STREAMNAME is required with the TYPE=LOGSTREAM parameter.

,STRUCTNAME=structname
With TYPE=LOGSTREAM, specifies the name (or address in a register) of a 16-byte
input field that contains the name of the coupling facility structure associated with the
coupling facility log stream being defined. The structure specified is a list structure
defined in the CFRM policy. All of this log stream's log blocks will be written to this
structure before being written to DASD.

For a coupling facility log stream, you must define STRUCTNAME in the log stream
definition in the LOGR policy via this parameter or the STRUCTNAME defined for the
log stream referenced by the LIKE parameter before you can connect to the log stream.

For a DASD-only log stream, omit the STRUCTNAME parameter, since there is no
coupling facility associated with the log stream.

,DASDONLY=NO
,DASDONLY=YES

Specifies whether the log stream being defined is a coupling facility or a DASD-only log
stream.

If you specify DASDONLY=NO, which is the default, the log stream is defined as a
coupling facility log stream.

If you specify DASDONLY=YES the log stream is defined as a DASD-only log stream
and does not use the coupling facility for log data.

With DASDONLY=NO, you can also specify STG_DUPLEX and DUPLEXMODE
parameters to select a method of duplexing for a coupling facility log stream.

,MAXBUFSIZE=maxbufsize
Specifies the name (or address in a register) of a 4-byte input field that contains the
size, in bytes, of the largest log block that can be written to the DASD-only log stream
being defined in this request.

The value for MAXBUFSIZE must be between 1 and 65,532 bytes. The default is
65,532 bytes.

This parameter is valid only with DASDONLY=YES.

736 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

,RMNAME=rmname
Specifies the name (or address in a register) of the 8-byte input field containing the
name of the recovery resource manager program associated with the log stream.
RNAME must be 8 alphanumeric or national ($,#,or @) characters, padded on the right
with blanks if necessary.

You must define RMNAME in the LOGR policy before the resource manager can
connect to the log stream.

If you specify RMNAME to associate a resource manager with a log stream in the
LOGR policy, the resource manager specified must subsequently connect to the log
stream. If the resource manager does not connect to that log stream, system logger will
not process any IXGDELET requests to delete log data. This is so that the resource
manager will not miss any delete requests issued against the log stream.

,DESCRIPTION=description
Specifies the name (or address in a register) of the 16 character input field containing
user defined data describing the log stream.

DESCRIPTION must be 16 alphanumeric or national ($,#,@) characters, underscore (_)
or period (.), padded on the right with blanks if necessary.

,STG_DUPLEX=NO
,STG_DUPLEX=YES

Specifies whether the log stream data for a coupling facility log stream should be
duplexed in DASD staging data sets.

If you specify STG_DUPLEX=NO, which is the default, log data for a coupling facility log
stream will not be duplexed in staging data sets.

If you specify STG_DUPLEX=YES, the log data for a coupling facility log stream will be
duplexed in staging data sets when the conditions defined by the DUPLEXMODE
parameter are fulfilled.

You can use the DUPLEXMODE parameter with STG_DUPLEX to specify whether you
want conditional or unconditional duplexing. STG_DUPLEX is only valid when you
specify or default to DASDONLY=NO to define a coupling facility log stream.

,DUPLEXMODE=COND
,DUPLEXMODE=UNCOND

Specifies the conditions under which the coupling facility log data for a coupling facility
log stream should be duplexed in DASD staging data sets.

If you specify DUPLEXMODE=COND, which is the default, the coupling facility log data
will be duplexed in staging data sets only if a system's connection to the coupling facility
log stream contains a single point of failure and is therefore vulnerable to permanent log
data loss:

� A connection to a log stream contains a single point of failure if the coupling facility
is volatile and/or resides on the same CPC as the MVS system connecting to it.
The coupling facility log data for the system connection containing the single point
of failure will be duplexed.

� A connection to a log stream is failure-independent when the coupling facility for the
log stream is non-volatile and resides on a different central processor complex
(CPC) than the MVS system connecting to it. The coupling facility log data for that
system connection will not be duplexed.

If you specify DUPLEXMODE=UNCOND, the log data for the coupling facility log stream
will be duplexed in staging data sets, unconditionally, even if the connection is failure
independent.

See OS/390 MVS Programming: Assembler Services Guide for complete information on
using staging data sets to duplex coupling facility log data.

DUPLEXMODE is only valid when STG_DUPLEX=YES is also specified.
DUPLEXMODE and STG_DUPLEX are only valid when you specify or default to
DASDONLY=NO to define a coupling facility log stream.

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 737

 IXGINVNT Macro

,STG_DATACLAS= NO_STG_DATACLAS
,STG_DATACLAS= stg_dataclas

Specifies the name (or address in a register) of an 8-byte input field containing the
name of the SMS data class that will be used for allocation of the DASD staging data
set for this log stream.

The data class must be 8 alphanumeric or national ($,#, or @) characters, padded on
the right with blanks if necessary. The first character must be an alphabetic or national
character.

If you specify NO_STG_DATACLAS, which is the default, or a field of zeros, the class is
assigned by standard SMS processing. See DFSMS/MVS Using Data Sets for more
information about SMS.

An SMS value specified on the STG_DATACLAS parameter, including
NO_STG_DATACLAS, always overrides one specified on a model log stream used on
the LIKE parameter.

STG_DATACLAS is only valid with STG_DUPLEX=YES or DASDONLY=YES.

,STG_MGMTCLAS=NO_STG_MGMTCLAS
,STG_MGMTCLAS=stg_mgmtclas

Specifies the name (or address in a register) of an 8-byte input field containing the
name of the SMS management class that will be used for allocation of the DASD
staging data set for this log stream.

The management class must be 8 alphanumeric or national ($,#, or @) characters,
padded on the right with blanks if necessary. The first character must be an alphabetic
or national character.

If you specify NO_STG_MGMTCLAS, which is the default, or a field of zeros, the class
is assigned by standard SMS processing. See DFSMS/MVS Using Data Sets for more
information about SMS.

An SMS value specified on the STG_MGMTCLAS parameter, including
NO_STG_MGMTCLAS, always overrides one specified on a model log stream used on
the LIKE parameter.

STG_MGMTCLAS is only valid with STG_DUPLEX=YES or DASDONLY=YES.

,STG_STORCLAS=NO_STG_STORCLAS
,STG_STORCLAS=stg_storclas

Specifies the name (or address in a register) of an 8-byte input field containing the
name of the SMS storage class that will be used for allocation of the DASD staging data
set for this log stream.

The storage class must be 8 alphanumeric or national ($,#, or @) characters, padded on
the right with blanks if necessary. The first character must be an alphabetic or national
character.

If you specify NO_STG_STORCLAS, which is the default, or a field of zeros, the class is
assigned by standard SMS processing. See DFSMS/MVS Using Data Sets for more
information about SMS.

An SMS value specified on the STG_STORCLAS parameter, including
NO_STG_STORCLAS, always overrides one specified on a model log stream used on
the LIKE parameter.

STG_STORCLAS is only valid with STG_DUPLEX=YES or DASDONLY=YES.

,STG_SIZE=stg_size
Specifies the name (or address in a register) of a 4-byte input field containing the size,
in 4K blocks, of the DASD staging data set for the log stream being defined.

If you omit STG_SIZE, for a coupling facility log stream , logger does one of the
following, in the order listed, to allocate space for staging data sets:

� Uses the STG_SIZE of the log stream specified on the LIKE parameter, if specified.

738 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

� Uses the maximum coupling facility structure size for the structure to which the log
stream is defined. This value is obtained from the value defined on the SIZE
parameter for the structure in the CFRM policy.

If you omit STG_SIZE for a DASD-only log stream , logger does one of the following, in
the order listed, to allocate space for staging data sets:

� Uses the STG_SIZE of the log stream specified on the LIKE parameter, if specified.

� Uses the size defined in the SMS data class for the staging data sets.

� Uses dynamic allocation rules for allocating data sets, if SMS is not available.

Note that if both the STG_DATACLAS and STG_SIZE are specified, the value for
STG_SIZE overrides the space allocation attributes for the data class specified on the
STG_DATACLAS value.

STG_SIZE is only valid with STG_DUPLEX=YES or DASDONLY=YES.

,LS_DATACLAS= NO_LS_DATACLAS
,LS_DATACLAS= ls_dataclas

Specifies the name (or address in a register) of an 8-byte input field containing the
name of the SMS data class that will be used for allocation of the DASD log data set for
this log stream.

The data class must be 8 alphanumeric or national ($,#, or @) characters, padded on
the right with blanks if necessary. The first character must be an alphabetic or national
character.

If you specify NO_LS_DATACLAS, which is the default, or a field of zeros, the class is
assigned by standard SMS processing. See DFSMS/MVS Using Data Sets for more
information about SMS.

An SMS value specified on the LS_DATACLAS parameter, including
NO_LS_DATACLAS, always overrides one specified on a model log stream used on the
LIKE parameter.

,LS_MGMTCLAS= NO_LS_MGMTCLAS
,LS_MGMTCLAS= ls_mgmtclas

Specifies the name (or address in a register) of an 8-byte input field containing the
name of the SMS management class that will be used for allocation of the DASD log
data set for this log stream.

The management class must be 8 alphanumeric or national ($,#, or @) characters,
padded on the right with blanks if necessary. The first character must be an alphabetic
or national character.

If you specify NO_LS_MGMTCLAS, which is the default, or a field of zeros, the class is
assigned by standard SMS processing. See DFSMS/MVS Using Data Sets for more
information about SMS.

An SMS value specified on the LS_MGMTCLAS parameter, including
NO_LS_MGMTCLAS, always overrides one specified on a model log stream used on
the LIKE parameter.

,LS_STORCLAS= NO_LS_STORCLAS
,LS_STORCLAS= ls_storclas

Specifies the name (or address in a register) of an 8-byte input field containing the
name of the SMS storage class that will be used for allocation of the DASD log data set
for this log stream.

The storage class must be 8 alphanumeric or national ($,#, or @) characters, padded on
the right with blanks if necessary. The first character must be an alphabetic or national
character.

If you specify NO_LS_MGMTCLAS, which is the default, or a field of zeros, the class is
assigned by standard SMS processing. See DFSMS/MVS Using Data Sets for more
information about SMS.

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 739

 IXGINVNT Macro

An SMS value specified on the LS_MGMTCLAS parameter, including
NO_LS_MGMTCLAS, always overrides one specified on a model log stream used on
the LIKE parameter.

,LS_SIZE=ls_size
Specifies the name (or address in a register) of a 4-byte input field containing the size,
in 4K blocks, of the DASD log data set for the log stream being defined.

If you omit LS_SIZE, or specify a field of zeros, the value is assigned by standard SMS
processing. See DFSMS/MVS Using Data Sets for more information.

| Note that a value specified on the LS_SIZE parameter overrides the space allocation
| attributes for the data class specified on the LS_DATACLAS parameter.

,AUTODELETE=NO
,AUTODELETE=YES

Specifies when system logger physically deletes log data.

If you specify AUTODELETE=NO, which is the default, system logger physically deletes
an entire log data set only when both of the following are true:

� Data is marked for deletion by a system logger application using the IXGDELET
service.

� The retention period for all the data in the log data set expires.

If you specify AUTODELETE=YES, system logger automatically physically deletes log
data whenever data is either marked for deletion (using the IXGDELET service or an
archiving procedure) or the retention period for all the log data in a data set has expired.

Be careful when using AUTODELETE=YES if the system logger application manages
log data deletion using the IXGDELET service. With AUTODELETE=YES, system
logger may delete data that the application expects to be accessible.

The LOGR couple data set must be formatted at the OS/390 Release 3 level or above
to use this keyword.

RETPD=0
RETPD=retpd

Specifies the name (or address in a register) of a 4-byte input field containing the
number of days of the retention period for log data in the log stream. The retention
period begins when data is written to the log stream. Once the retention period for an
entire log data set has expired, the data set is eligible for physical deletion. The point at
which system logger physically deletes the data depends on what you have specified on
the AUTODELETE parameter. System logger will not process a retention period or
delete data on behalf of log streams that are not connected to or being written to by an
application.

The value specified for RETPD must be between 0 and 65,536.

The LOGR couple data set must be formatted at the OS/390 Release 3 level or above
to use this keyword.

,HLQ=NO_HLQ
,HLQ=hlq

Specifies the name (or address in a register) of an 8-byte input field containing the high
level qualifier for both the log stream data set name and the staging data set name.

The high level qualifier must be 8 alphanumeric or national ($,#, or @) characters,
padded on the right with blanks if necessary. The first character must be an alphabetic
or national character.

If you specify an explicit value for HLQ, this value overrides a high level qualifier for the
log stream specified on the LIKE parameter.

If you do not specify a high level qualifier, or if you specify HLQ=NO_HLQ, the log
stream being defined will have a high level qualifier of IXGLOGR. If you also specified
the LIKE parameter, it will have the high level qualifier of the log stream specified on the
LIKE parameter.

740 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

,HIGHOFFLOAD=80
,HIGHOFFLOAD=highoffload

Specifies the name (or address in a register) of an 8-byte input field containing the
percent value you want to use as the high offload threshold for the coupling facility
structure associated with this log stream. When the coupling facility is filled to the high
offload threshold percentage or beyond, system logger begins offloading data from the
coupling facility to the DASD log stream data sets.

If you specify HIGHOFFLOAD=80, which is the default, HIGHOFFLOAD=0, or omit the
HIGHOFFLOAD parameter, system logger uses the 80% usage mark as the high offload
threshold where offloading starts.

IBM recommends that you do not define your HIGHOFFLOAD value to greater than the
default of 80%. Defining a higher high offload threshold can leave you vulnerable to
filling your coupling facility space for the log stream, which means that system logger will
reject all write requests until the coupling facility log data can be offloaded to DASD log
data sets.

The value specified for HIGHOFFLOAD must be higher than the LOWOFFLOAD value.

,LOWOFFLOAD= 0
,LOWOFFLOAD= lowoffload

Specifies the name (or address in a register) of an 8-byte input field containing the
percent value you want to use as the low offload threshold for the coupling facility
structure associated with this log stream. The low offload threshold is the target percent
where you want offloading to stop, leaving approximately the specified LOWOFFLOAD
percentage of log data in the coupling facility structure.

If you specify LOWOFFLOAD=0, which is the default, or omit the LOWOFFLOAD
parameter, system logger uses the 0% usage mark as the low offload threshold where
offloading stops, leaving 0% of the data in the coupling facility.

The value specified for LOWOFFLOAD must be less than the HIGHOFFLOAD value.

,LIKE=NO_LIKE
,LIKE= like_streamname

Specifies the name (or address in a register) of a 26-byte input field containing the
name of a log stream that has already been defined in the LOGR policy. The
characteristics of the already-defined log stream, such as storage class, management
class, high level qualifier, and data class will be copied for the log stream you are
currently defining. However, the parameters explicitly coded on this request override the
characteristics of the log stream specified on the LIKE parameter.

The stream name must be 26 characters, padded on the right with blanks if necessary.
The name can be made up of one or more segments separated by periods, up to the
maximum length of 26 characters. The following rules apply:

� Each segment may contain up to eight numeric, alphabetic, or national ($, #, or @)
characters.

� The first character of each segment must be an alphabetic or national character.
� Each segment must be separated by periods, which you must count as characters.

,MODEL=NO
,MODEL=YES

Specifies whether the log stream being defined in the LOGR policy is a model,
exclusively for use with the LIKE parameter to set up general characteristics for other
log stream definitions.

If you specify MODEL=NO, which is the default, then the log stream being defined is not
a model log stream. Systems can connect to and use this log stream. It can also be
specified on the LIKE parameter, but is not exclusively for use as a model.

If you specify MODEL=YES, then the log stream being defined is only a model log
stream. It can only be specified as a model for other log stream definitions on the LIKE
parameter in other IXGINVNT requests.

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 741

 IXGINVNT Macro

� Programs cannot connect to a log stream name that is defined as a model
(MODEL=YES) using an IXGCONN request.

� No log stream data sets are allocated on behalf of a model log stream.

� The attributes of a model log stream are syntax checked at the time of the request,
but not verified until a another log stream references the model log stream on the
LIKE parameter.

| ,DIAG=NO
| ,DIAG=YES
| Specifies whether or not dumping or additional diagnostics should be provided by
| Logger for certain conditions. Refer to the DIAG keyword on the IXGCONN,
| IXGBRWSE and IXGDELET macro services.

| If you specify DIAG=NO, which is the default, then no special Logger diagnostic activity
| is requested for this logstream regardless of the DIAG specifications on the IXGCONN,
| IXGDELET and IXGBRWSE requests.

| If you specify DIAG=YES, then special Logger diagnostic activity is allowed for this
| logstream and can be obtained when the appropriate specifications are provided on the
| IXGCONN, IXGDELET or IXGBRWSE requests.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default. Note that on the list form, the default will cause
the smallest parameter list to be created.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form when both forms are assembled using the same level
of the system. In this way, MAX ensures that the parameter list does not overwrite
nearby storage.

� 0, which supports all parameters except those specifically referenced in higher
versions.

� 1, which supports both the following parameters and parameters from version 0:

 – DESCRIPTION
 – RMNAME
 – RETPD

� 2, which supports both the following parameters and parameters from version 0 and
1:

 – DASDONLY

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 0, 1, or 2

742 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

,RETCODE=retcode
Specifies a name (or address in a register) of a 4-byte output field where the system will
place the return code. The return code is also in general purpose register (GPR) 15.

,RSNCODE=rsncode
Specifies a name (or address in a register) of a 4-byte output field where the system will
place the reason code. The reason code is also in general purpose register (GPR) 0, if
you received a non-zero return code.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter can be specified on the list form of the macro. IBM recommends
that you always specify PLISTVER=MAX on the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together
with the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list form,
and generates the macro invocation to transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines
that need to provide different options according to user-provided input. Use the list form
to define a storage area; use the modify form to set the appropriate options; then use
the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following order:

� Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters, including all
required ones.

� Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to change.

� Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value that is valid
on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to
supply defaults for omitted optional parameters.

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 743

 IXGINVNT Macro

REQUEST=DEFINE TYPE=STRUCTURE Option of IXGINVNT
The IXGINVNT macro with the DEFINE TYPE=STRUCTURE parameters defines a coupling
facility structure entry in the LOGR policy for a coupling facility log stream.

Syntax for REQUEST=DEFINE TYPE=STRUCTURE
The standard form of the IXGINVNT REQUEST=DEFINE TYPE=STRUCTURE macro is
written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IXGINVNT.

IXGINVNT

␣ One or more blanks must follow IXGINVNT.

REQUEST=DEFINE

,TYPE=STRUCTURE

,ANSAREA=ansarea ansarea: RS-type address or register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or register (2) - (12).

,STRUCTNAME=structname structname: RS-type address or register (2) - (12).

Default: NO_STRUCTNAME

,LOGSNUM=logsnum logsnum: RS-type address or register (2) - (12).

 ,MAXBUFSIZE=maxbufsize maxbufsize: RS-type address or register (2) - (12).

Default: 65532

 ,AVGBUFSIZE=avgbufsize avgbufsize: RS-type address or register (2) - (12).

Default: 1/2 of maxbufsize

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=0
 ,PLISTVER=1
 ,PLISTVER=2

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,MF=S Default: MF=S
 ,MF=(L,list addr)
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)
 ,MF=(E,list addr,NOCHECK)
 ,MF=(M,list addr)
 ,MF=(M,list addr,COMPLETE)
 ,MF=(M,list addr,NOCHECK)

744 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

Parameters for REQUEST=DEFINE,TYPE=STRUCTURE
The parameters are explained as follows:

REQUEST=DEFINE
Requests that an entry for a log stream or coupling facility structure be defined in the
LOGR policy.

,TYPE=STRUCTURE
Indicates that the entry to be defined in the LOGR policy is a coupling facility entry being
defined for a coupling facility log stream.

,ANSAREA= ansarea
Specifies the name (or address in a register) of an answer area containing information
about this request. The answer area must be at least 40 bytes. To map this
information, use the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or address in a register) of the 4-byte field containing the answer
area length. The length of the answer area must be at least 40 bytes and must be the
same length as the field specified in ANSAREA.

To ascertain the optimal answer area length, look at the ANSAA_PREFERRED_SIZE
field of the IXGANSAA macro.

,STRUCTNAME=structname
When specified with TYPE=STRUCTURE, specifies the name (or address in a register)
of a 16-byte input field that contains the name of the coupling facility structure you are
defining to the LOGR policy.

STRUCTNAME is required for TYPE=STRUCTURE.

,LOGSNUM=logsnum
Specifies the name (or address in a register) of a 4-byte input field that contains the
number of log streams that can be allocated to the coupling facility structure being
defined in the LOGR policy. logsnum must be a value between 1 and 512.

IBM recommends that you keep the value for LOGSNUM as small as possible,
particularly if your coupling facility structure is small. The more log streams that map to
a coupling facility, the less coupling facility space for each log stream and the more
chance you stand of running out of space for log streams. See OS/390 MVS
Programming: Assembler Services Guide for more information.

LOGSNUM is required for TYPE=STRUCTURE.

,MAXBUFSIZE=maxbufsize
Specifies the name (or address in a register) of a 4-byte input field that contains the
size, in bytes, of the largest log block that can be written to log streams allocated to the
coupling facility specified in this request.

The value for MAXBUFSIZE must be between 1 and 65,532 bytes. The default is
65,532 bytes.

,AVGBUFSIZE=avgbufsize
Specifies the name (or address in a register) of a 4-byte input field of the average size,
in bytes, of log blocks written to all the log streams using this coupling facility structure.

System logger uses the average buffer size to control the entry-to-element ratio for this
coupling facility structure.

When the active primary LOGR couple data set is at an OS/390 Release 3 level or
higher, system logger uses the AVGBUFSIZE specified simply to make an intial
determination of the entry-to-element ratio for the structure. After that, system logger
monitors structure use and dynamically manages the entry-to-element ratio accordingly.
System logger uses the last entry-to-element ratio in effect for a structure for subseqent
structure reallocation requests.

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 745

 IXGINVNT Macro

When the active primary LOGR couple data set is at a pre-OS/390 Release 3 level ,
system logger uses the AVGBUFSIZE specified to calculate an entry-to-element ration
that lasts for the life of this coupling facility structure. You cannot update the average
buffer size for a structure without first deleting the structure definition (and all the log
stream definitions associated with the structure) and then redefining the structure with a
new average buffer size.

avgbufsize must be between 1 and the value for MAXBUFSIZE. The default value is 1/2
of the MAXBUFSIZE value.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default. Note that on the list form, the default will cause
the smallest parameter list to be created.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form when both forms are assembled using the same level
of the system. In this way, MAX ensures that the parameter list does not overwrite
nearby storage.

� 0, which supports all parameters except those specifically referenced in higher
versions.

� 1, which supports both the following parameters and parameters from version 0:

 – DESCRIPTION
 – RMNAME
 – RETPD

� 2, which supports both the following parameters and parameters from version 0 and
1:

 – DASDONLY

To code, specify in this input parameter one of the following:

 – IMPLIED_VERSION
 – MAX

– A decimal value of 0, 1, or 2

,RETCODE=retcode
Specifies a name (or address in a register) of a 4-byte output field where the system will
place the return code. The return code is also in general purpose register (GPR) 15.

,RSNCODE=rsncode
Specifies a name (or address in a register) of a 4-byte output field where the system will
place the reason code. The reason code is also in general purpose register (GPR) 0, if
you received a non-zero return code.

746 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter can be specified on the list form of the macro. IBM recommends
that you always specify PLISTVER=MAX on the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together
with the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list form,
and generates the macro invocation to transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines
that need to provide different options according to user-provided input. Use the list form
to define a storage area; use the modify form to set the appropriate options; then use
the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following order:

� Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters, including all
required ones.

� Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to change.

� Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value that is valid
on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to
supply defaults for omitted optional parameters.

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 747

 IXGINVNT Macro

REQUEST=UPDATE Option of IXGINVNT
The IXGINVNT macro with the UPDATE parameter allows a program to update a log stream
entry in the LOGR policy for a coupling facility or DASD-only log stream. Except for the
RETPD and AUTODELETE parameters, note that you cannot update a log stream while
there are active connections to it.

Syntax for REQUEST=UPDATE
The standard form of the IXGINVNT REQUEST=UPDATE macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IXGINVNT.

IXGINVNT

␣ One or more blanks must follow IXGINVNT.

REQUEST=UPDATE

,TYPE=LOGSTREAM

,ANSAREA=ansarea ansarea: RS-type address or register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or register (2) - (12).

,STREAMNAME=streamname streamname: RS-type address or register (2) - (12).

 ,STRUCTNAME=structname structname: RS-type address or register (2) - (12).

 ,RMNAME=rmname rmname: RS-type address or register (2) - (12).

 ,DESCRIPTION=description description: RS-type address or register (2) - (12).

 ,MAXBUFSIZE=maxbufsize maxbufsize: RS-type address or register (2) - (12).

 ,STG_DUPLEX=NO
 ,STG_DUPLEX=YES

 ,DUPLEXMODE=COND
 ,DUPLEXMODE=UNCOND

 ,STG_MGMTCLAS=stg_mgmtclas

stg_mgmtclas: RS-type address or register (2) - (12).

 ,STG_DATACLAS=stg_dataclas stg_dataclas: RS-type address or register (2) - (12).

 ,STG_STORCLAS=stg_storclas stg_storclas: RS-type address or register (2) - (12).

 ,STG_SIZE=stg_size stg_size: RS-type address or register (2) - (12).

 ,LS_MGMTCLAS=ls_mgmtclas ls_mgmtclas: RS-type address or register (2) - (12).

 ,LS_DATACLAS=ls_dataclas ls_dataclas: RS-type address or register (2) - (12).

 ,LS_STORCLAS=ls_storclas ls_storclas: RS-type address or register (2) - (12).

 ,LS_SIZE=ls_size ls_size: RS-type address or register (2) - (12).

 ,RETPD=retpd retpd: RS-type address or register (2) - (12).

Default: NO_RETPD

 ,AUTODELETE=NO Default: AUTODELETE=NO

748 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

 ,AUTODELETE=YES

 ,LOWOFFLOAD=lowoffload lowoffload: RS-type address or register (2) - (12).

 ,HIGHOFFLOAD=highoffload highoffload: RS-type address or register (2) - (12).

|
| ,DIAG=NO_DIAG| Default: DIAG=NO_DIAG
| ,DIAG=NO
| ,DIAG=YES

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=0
 ,PLISTVER=1
 ,PLISTVER=2

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,MF=S Default: MF=S
 ,MF=(L,list addr)
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)
 ,MF=(E,list addr,NOCHECK)
 ,MF=(M,list addr)
 ,MF=(M,list addr,COMPLETE)
 ,MF=(M,list addr,NOCHECK)

Parameters for REQUEST=UPDATE
The parameters are explained as follows:

REQUEST=UPDATE
Requests that an entry for a log stream be updated in the LOGR policy.

,TYPE=LOGSTREAM
Requests that the entry to be updated in the LOGR policy is a log stream entry.

,ANSAREA= ansarea
Specifies the name (or address in a register) of an answer area containing information
about this request. The answer area must be at least 40 bytes. To map this
information, use the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or address in a register) of the 4-byte field containing the answer
area length. The length of the answer area must be at least 40 bytes and must be the
same length as the field specified in ANSAREA.

To ascertain the optimal answer area length, look at the ANSAA_PREFERRED_SIZE
field of the IXGANSAA macro.

,STREAMNAME=streamname
Specifies the name (or address in a register) of the 26-byte input field containing the
name of the log stream that you want to define in the LOGR policy.

The stream name must be 26 characters, padded on the right with blanks if necessary.
The name can be made up of one or more segments separated by periods, up to the
maximum length of 26 characters. The following rules apply:

� Each segment may contain up to eight numeric, alphabetic, or national ($, #, or @)
characters.

� The first character of each segment must be an alphabetic or national character.

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 749

 IXGINVNT Macro

� Each segment must be separated by periods, which you must count as characters.

STREAMNAME is required with the TYPE=LOGSTREAM parameter.

,STRUCTNAME=structname
With REQUEST=UPDATE, specifies the name (or address in a register) of a 16-byte
input field containing the name of the coupling facility structure where all of this log
stream's log blocks will be written before being offloaded to DASD. This keyword can
only be specified to upgrade a DASD-only log stream to a coupling facility log stream.
The structure specified is a list structure defined in the CFRM policy.

STRUCTNAME must be 16 alphanumeric or national ($,#,or @) characters, or
underscore (_), padded on the right with blanks if necessary. The first character must
be alphabetic.

Note that the MAXBUFSIZE value in the structure definition for this structure must be
equal to or greater than the MAXBUFSIZE specified for the DASD-only log stream you
are upgrading to coupling facility. For example, assume that the MAXBUFSIZE value in
the DASD-only log stream definition you are upgrading is 50,000 bytes. When you
specify a structure name to upgrade the DASD-only log stream to coupling facility, make
sure you specify one with a MAXBUFSIZE value of 50,000 bytes or more.

,RMNAME=rmname
Specifies the name (or address in a register) of the 8-byte input field containing the
name of the resource manager program associated with the log stream. RNAME must
be 8 alphanumeric or national ($,#,or @) characters, padded on the right with blanks if
necessary.

You must define RMNAME in the LOGR policy before the recovery resource manager
can connect to the log stream.

If you specify RMNAME to associate a resource manager with a log stream in the
LOGR policy, the resource manager specified must subsequently connect to the log
stream. If the resource manager does not connect to that log stream, system logger will
not process any IXGDELET requests to delete log data. This is so that the resource
manager will not miss any delete requests issued against the log stream.

,DESCRIPTION=description
Specifies the name (or address in a register) of the 16 character input field containing
user defined data describing the log stream.

DESCRIPTION must be 16 alphanumeric or national ($,#,@) characters, underscore (_)
or period (.), padded on the right with blanks if necessary.

,MAXBUFSIZE=maxbufsize
Specifies the name (or address in a register) of a 4-byte input field that contains the
size, in bytes, of the largest log block that can be written to the DASD-only log stream
being updated in this request.

The value for MAXBUFSIZE must be between 1 and 65,532 bytes and cannot be less
than the current MAXBUFSIZE for the DASD-only log stream. (You can increase the
MAXBUFSIZE, but you cannot decrease it.)

There is no default for the MAXBUFSIZE parameter on an UPDATE request. If you
omit this parameter, there will be no change to the duplexing status for this log stream
definition.

,STG_DUPLEX=NO
,STG_DUPLEX=YES

Specifies whether the log stream data for a coupling facility log stream should be
duplexed in DASD staging data sets.

If you specify STG_DUPLEX=NO, which is the default, log data for a coupling facility log
stream will not be duplexed in staging data sets.

750 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

If you specify STG_DUPLEX=YES, the log data for a coupling facility log stream will be
duplexed in staging data sets when the conditions defined by the DUPLEXMODE
parameter are fulfilled. STG_DUPLEX is only valid for a coupling facility log stream.

There is no default for the STG_DUPLEX parameter on an UPDATE request. If you omit
this parameter, there will be no change to the duplexing status for the coupling facility
log stream definition.

You can use the DUPLEXMODE parameter with STG_DUPLEX to specify whether you
want conditional or unconditional duplexing.

,DUPLEXMODE=COND
,DUPLEXMODE=UNCOND

Specifies the conditions under which the coupling facility log data for a coupling facility
log stream should be duplexed in DASD staging data sets.

If you specify DUPLEXMODE=COND, which is the default, the coupling facility log data
will be duplexed in staging data sets only if a system's connection to the coupling facility
log stream contains a single point of failure and is therefore vulnerable to permanent log
data loss:

� A connection to a log stream contains a single point of failure if the coupling facility
is volatile and/or resides on the same CPC as the MVS system connecting to it.
The coupling facility log data for the system connection containing the single point
of failure will be duplexed.

� A connection to a log stream is failure-independent when the coupling facility for the
log stream is non-volatile and resides on a different central processor complex
(CPC) than the MVS system connecting to it. The coupling facility log data for that
system connection will not be duplexed.

If you specify DUPLEXMODE=UNCOND, the log data for the coupling facility log stream
will be duplexed in staging data sets, unconditionally, even if the connection is failure
independent.

There is no default for the DUPLEXMODE parameter on an UPDATE request. If you
omit this parameter, there will be no change to the duplexing mode for the coupling
facility log stream definition.

See OS/390 MVS Programming: Assembler Services Guide for complete information on
using staging data sets to duplex coupling facility log data.

DUPLEXMODE is only valid when STG_DUPLEX=YES is also specified.
DUPLEXMODE and STG_DUPLEX are only valid for a coupling facility log stream.

,STG_DATACLAS= stg_dataclas
Specifies the name (or address in a register) of an 8-byte input field containing the
name of the SMS data class that will be used for allocation of the DASD staging data
set for this log stream.

The data class must be 8 alphanumeric or national ($,#, or @) characters, padded on
the right with blanks if necessary. The first character must be an alphabetic or national
character.

An SMS value specified on the STG_DATACLAS parameter, including
NO_STG_DATACLAS, always overrides one specified on a model log stream used on
the LIKE parameter.

There is no default for the STG_DATACLAS parameter on an UPDATE request. If you
omit this parameter, there will be no change to the data class for staging data sets for
this log stream definition.

STG_DATACLAS is only valid with STG_DUPLEX=YES or DASDONLY=YES.

,STG_MGMTCLAS=stg_mgmtclas
Specifies the name (or address in a register) of an 8-byte input field containing the
name of the SMS management class that will be used for allocation of the DASD
staging data set for this log stream.

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 751

 IXGINVNT Macro

The management class must be 8 alphanumeric or national ($,#, or @) characters,
padded on the right with blanks if necessary. The first character must be an alphabetic
or national character.

An SMS value specified on the STG_MGMTCLAS parameter, including
NO_STG_MGMTCLAS, always overrides one specified on a model log stream used on
the LIKE parameter.

There is no default for the STG_MGMTCLAS parameter on an UPDATE request. If you
omit this parameter, there will be no change to the management class for staging data
sets for this log stream definition.

STG_MGMTCLAS is only valid with STG_DUPLEX=YES or DASDONLY=YES.

,STG_STORCLAS=stg_storclas
Specifies the name (or address in a register) of an 8-byte input field containing the
name of the SMS storage class that will be used for allocation of the DASD staging data
set for this log stream.

The storage class must be 8 alphanumeric or national ($,#, or @) characters, padded on
the right with blanks if necessary. The first character must be an alphabetic or national
character.

An SMS value specified on the STG_STORCLAS parameter, including
NO_STG_STORCLAS, always overrides one specified on a model log stream used on
the LIKE parameter.

There is no default for the STG_STORCLAS parameter on an UPDATE request. If you
omit this parameter, there will be no change to the storage class for staging data sets in
this log stream definition.

STG_STORCLAS is only valid with STG_DUPLEX=YES or DASDONLY=YES.

,STG_SIZE=stg_size
Specifies the name (or address in a register) of a 4-byte input field containing the size,
in 4K blocks, of the DASD staging data set for this log stream.

If you omit this parameter, there will be no change to the DASD staging data size in this
log stream definition. Note that if both the STG_DATACLAS and STG_SIZE are
specified, the value for STG_SIZE overrides the space allocation attributes for the data
class specified on the STG_DATACLAS value.

STG_SIZE is only valid with STG_DUPLEX=YES or DASDONLY=YES.

,LS_DATACLAS= ls_dataclas
Specifies the name (or address in a register) of an 8-byte input field containing the
name of the SMS data class that will be used for allocation of the DASD log data set for
this log stream.

The data class must be 8 alphanumeric or national ($,#, or @) characters, padded on
the right with blanks if necessary. The first character must be an alphabetic or national
character.

An SMS value specified on the LS_DATACLAS parameter, including
NO_LS_DATACLAS, always overrides one specified on a model log stream used on the
LIKE parameter.

There is no default for the LS_DATACLAS parameter on an UPDATE request. If you
omit this parameter, there will be no change to the data class for the log stream data
sets for this log stream definition.

,LS_MGMTCLAS= ls_mgmtclas
Specifies the name (or address in a register) of an 8-byte input field containing the
name of the SMS management class that will be used for allocation of the DASD log
data set for this log stream.

The management class must be 8 alphanumeric or national ($,#, or @) characters,
padded on the right with blanks if necessary. The first character must be an alphabetic
or national character.

752 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

An SMS value specified on the LS_MGMTCLAS parameter, including
NO_LS_MGMTCLAS, always overrides one specified on a model log stream used on
the LIKE parameter.

There is no default for the LS_MGMTCLAS parameter on an UPDATE request. If you
omit this parameter, there will be no change to the management class for the log stream
data sets for this log stream definition.

,LS_STORCLAS= ls_storclas
Specifies the name (or address in a register) of an 8-byte input field containing the
name of the SMS storage class that will be used for allocation of the DASD log data set
for this log stream.

The storage class must be 8 alphanumeric or national ($,#, or @) characters, padded on
the right with blanks if necessary. The first character must be an alphabetic or national
character.

An SMS value specified on the LS_STORCLAS parameter, including
NO_LS_STORCLAS, always overrides one specified on a model log stream used on
the LIKE parameter.

There is no default for the LS_STORCLAS parameter on an UPDATE request. If you
omit this parameter, there will be no change to the storage class for the log stream data
sets for this log stream definition.

,LS_SIZE=ls_size
Specifies the name (or address in a register) of a 4-byte input field containing the size,
in 4K blocks, of the DASD log data set for the log stream being defined.

If you omit this parameter, there will be no change to the DASD log data set size for the
log stream being updated.

| Note that a value specified on the LS_SIZE parameter overrides the space allocation
| attributes for the data class specified on the LS_DATACLAS parameter.

,AUTODELETE=NO
,AUTODELETE=YES

Specifies when system logger physically deletes log data. This parameter can be
specified even when the log stream has active connectors. The log stream definition is
updated next time there is a switch to a new DASD log data set for this log stream.

If you specify AUTODELETE=NO, which is the default, system logger physically deletes
an entire log data set only when both of the following are true:

� Data is marked for deletion by a system logger application using the IXGDELET
service.

� The retention period for all the data in the log data set expires.

If you specify AUTODELETE=YES, system logger automatically physically deletes log
data whenever data is either marked for deletion (using the IXGDELET service or an
archiving procedure) or the retention period for all the log data in a data set has expired.

Be careful when using AUTODELETE=YES if the system logger application manages
log data deletion using the IXGDELET service. With AUTODELETE=YES, system
logger may delete data that the application expects to be accessible.

The LOGR couple data set must be formatted at the OS/390 Release 3 level or above
to use this keyword.

RETPD=0
RETPD=retpd

Specifies the name (or address in a register) of a 4-byte input field containing the
number of days of the retention period for log data in the log stream. The retention
period begins when data is written to the log stream. Once the retention period for an
entire log data set has expired, the data set is eligible for physical deletion. The point at
which system logger physically deletes the data depends on what you have specified on
the AUTODELETE parameter. System logger will not process a retention period or

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 753

 IXGINVNT Macro

delete data on behalf of log streams that are not connected to or being written to by an
application.

The value specified for RETPD must be between 0 and 65,536. This parameter can be
specified even when the log stream has active connectors. The log stream definition is
updated next time there is a switch to a new DASD log data set for this log stream.

The LOGR couple data set must be formatted at the OS/390 Release 3 level or above
to use this keyword.

,HIGHOFFLOAD=highoffload
Specifies the name (or address in a register) of an 8-byte input field containing the
percent value you want to use as the high offload threshold for the coupling facility
structure associated with this log stream. When the coupling facility is filled to the high
offload threshold point or beyond, system logger begins offloading data from the
coupling facility to the DASD log stream data sets.

IBM recommends that you are careful in considering to define your HIGHOFFLOAD
value to greater than 80%. Defining a higher high offload threshold can leave you
vulnerable to filling your coupling facility space for the log stream, which means that
system logger will reject all write requests until the coupling facility log data can be
offloaded to DASD log data sets.

The value specified for HIGHOFFLOAD must be higher than the LOWOFFLOAD value.

There is no default for the HIGHOFFLOAD parameter on an UPDATE request. If you
omit this parameter, there will be no change to the high offload value for this log stream
definition.

,LOWOFFLOAD= lowoffload
Specifies the name (or address in a register) of an 8-byte input field containing the
percent value you want to use as the low offload threshold for the coupling facility
structure associated with this log stream. The low offload threshold is the target percent
where you want offloading to stop, leaving approximately the specified LOWOFFLOAD
percentage of log data in the coupling facility structure.

The value specified for LOWOFFLOAD must be less than the HIGHOFFLOAD value.

There is no default for the LOWOFFLOAD parameter on an UPDATE request. If you
omit this parameter, there will be no change to the low offload value for this log stream
definition.

| ,DIAG=NO_DIAG
| ,DIAG=NO
| ,DIAG=YES
| Specifies whether or not dumping or additional diagnostics should be provided by
| Logger for certain conditions. Refer to the DIAG keyword on the IXGCONN,
| IXGBRWSE and IXGDELET macro services.

| This keyword can be updated regardless of whether the log stream is actively connected
| or not. The change will immediately udpate the log stream definition but will not take
| effect on a particular system until the next first connection to the log stream from that
| system.

| Omitting the DIAG parameter will not change the log stream's special diagnostics
| setting.

| If you specify DIAG=NO_DIAG, which is the default, then the DIAG attribute of the log
| stream should not be updated.

| If you specify DIAG=NO, then no special Logger diagnostic activity is requested for this
| logstream regardless of the DIAG specifications on the IXGCONN, IXGDELET and
| IXGBRWSE requests.

| If you specify DIAG=YES, then special Logger diagnostic activity is allowed for this
| logstream and can be obtained when the appropriate specifications are provided on the
| IXGCONN, IXGDELET or IXGBRWSE requests.

754 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default. Note that on the list form, the default will cause
the smallest parameter list to be created.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form when both forms are assembled using the same level
of the system. In this way, MAX ensures that the parameter list does not overwrite
nearby storage.

� 0, which supports all parameters except those specifically referenced in higher
versions.

� 1, which supports both the following parameters and parameters from version 0:

 – DESCRIPTION
 – RMNAME
 – RETPD

� 2, which supports both the following parameters and parameters from version 0 and
1:

 – DASDONLY

To code, specify in this input parameter one of the following:

 – IMPLIED_VERSION
 – MAX

– A decimal value of 0, 1, or 2

,RETCODE=retcode
Specifies a name (or address in a register) of a 4-byte output field where the system will
place the return code. The return code is also in general purpose register (GPR) 15.

,RSNCODE=rsncode
Specifies a name (or address in a register) of a 4-byte output field where the system will
place the reason code. The reason code is also in general purpose register (GPR) 0, if
you received a non-zero return code.

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 755

 IXGINVNT Macro

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter can be specified on the list form of the macro. IBM recommends
that you always specify PLISTVER=MAX on the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together
with the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list form,
and generates the macro invocation to transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines
that need to provide different options according to user-provided input. Use the list form
to define a storage area; use the modify form to set the appropriate options; then use
the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following order:

� Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters, including all
required ones.

� Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to change.

� Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value that is valid
on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to
supply defaults for omitted optional parameters.

756 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

REQUEST=DELETE Option of IXGINVNT
The IXGINVNT macro with the DELETE parameter allows a program to delete a log stream
entry or coupling facility structure entry in the LOGR policy.

Syntax for REQUEST=DELETE
The IXGINVNT REQUEST=DELETE macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IXGINVNT.

IXGINVNT

␣ One or more blanks must follow IXGINVNT.

REQUEST=DELETE

,TYPE=LOGSTREAM
,TYPE=STRUCTURE

,ANSAREA=ansarea ansarea: RS-type address or register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or register (2) - (12).

 ,STREAMNAME=streamname streamname: RS-type address or register (2) - (12).

 ,STRUCTNAME=structname structname: RS-type address or register (2) - (12).

Default: NO_STRUCTNAME

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=0
 ,PLISTVER=1
 ,PLISTVER=2

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,MF=S Default: MF=S
 ,MF=(L,list addr)
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)
 ,MF=(E,list addr,NOCHECK)
 ,MF=(M,list addr)
 ,MF=(M,list addr,COMPLETE)
 ,MF=(M,list addr,NOCHECK)

Parameters for REQUEST=DELETE
The parameters are explained as follows:

REQUEST=DELETE
Requests that an entry for a log stream or coupling facility structure be deleted from the
LOGR policy.

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 757

 IXGINVNT Macro

,TYPE=LOGSTREAM
Requests that the entry to be deleted from the LOGR policy is a log stream entry.

If you specify TYPE=LOGSTREAM, you must also specify STREAMNAME, ANSAREA,
and ANSLEN.

,TYPE=STRUCTURE
Requests that the entry to be deleted from the LOGR policy is a coupling facility entry.

If you specify TYPE=STRUCTURE, you must also specify STRUCTNAME, ANSAREA,
and ANSLEN.

,ANSAREA= ansarea
Specifies the name (or address in a register) of an answer area containing information
about this request. The answer area must be at least 40 bytes. To map this
information, use the IXGANSAA macro.

,ANSLEN=anslen
Specifies the name (or address in a register) of the 4-byte field containing the answer
area length. The length of the answer area must be at least 40 bytes and must be the
same length as the field specified in ANSAREA.

To ascertain the optimal answer area length, look at the ANSAA_PREFERRED_SIZE
field of the IXGANSAA macro.

,STREAMNAME=streamname
Specifies the 26-byte field (or address in a register) of the log stream that you want to
delete from the LOGR policy.

The stream name must be 26 characters, padded on the right with blanks, if necessary.
The name can be made up of one or more segments, up to the maximum length of 26
characters. The following rules apply:

� Each segment may contain 1-8 numeric, alphabetic, or national ($, #, or @)
characters.

� The first character of each segment must be an alphabetic or national character.
� Each segment must be separated by periods, which count as characters.

STREAMNAME is required for TYPE=LOGSTREAM.

,STRUCTNAME=structname
Specify TYPE=STRUCTURE to specify the name (or address in a register) of a 16-byte
input field that contains the name of the coupling facility structure you are deleting from
the LOGR policy.

STRUCTNAME is required for TYPE=STRUCTURE.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default. Note that on the list form, the default will cause
the smallest parameter list to be created.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might

758 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

specify on the execute form when both forms are assembled using the same level
of the system. In this way, MAX ensures that the parameter list does not overwrite
nearby storage.

� 0, which supports all parameters except those specifically referenced in higher
versions.

� 1, which supports both the following parameters and parameters from version 0:

 – DESCRIPTION
 – RMNAME
 – RETPD

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 0 or 1

,RETCODE=retcode
Specifies a name (or address in a register) of a 4-byte output field where the system will
place the return code. The return code is also in general purpose register (GPR) 15.

,RSNCODE=rsncode
Specifies a name (or address in a register) of a 4-byte output field where the system will
place the reason code. The reason code is also in general purpose register (GPR) 0, if
you received a non-zero return code.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter can be specified on the list form of the macro. IBM recommends
that you always specify PLISTVER=MAX on the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together
with the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list form,
and generates the macro invocation to transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines
that need to provide different options according to user-provided input. Use the list form
to define a storage area; use the modify form to set the appropriate options; then use
the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following order:

� Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters, including all
required ones.

� Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to change.

� Use MF=(E,list_addr,NOCHECK), to execute the macro.

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 759

 IXGINVNT Macro

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value that is valid
on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to
supply defaults for omitted optional parameters.

 ABEND Codes
None.

Return and Reason Codes
When IXGINVNT macro returns control to your program, GPR 15 contains a return code and
GPR 0 contains a reason code.

Note: The return and reason codes will also be put into the answer area mapped by
IXGANSAA when the request completes.

The IXGCONN macro provides equate symbols for the return and reason codes. The equate
symbols associated with each hexadecimal return code are as follows:

00 IXGRETCODEOK - Service completes successfully.
04 IXGRETCODEWARNING - Service completes with a warning.
08 IXGRETCODEERROR - Service does not complete.
0C IXGRETCODECOMPERROR - Service does not complete.

The following table contains hexadecimal return and reason codes, the equate symbols
associated with each reason code, and the meaning and suggested action for each return
and reason code.

Figure 47 (Page 1 of 9). Return and Reason Codes for the IXGINVNT Macro

Return Code Reason Code Meaning and Action

00 xxxx0000 Equate Symbol : IxgRsnCodeOk

Explanation: Request processed successfully.

08 xxxx0801 Equate Symbol : IxgRsnCodeBadParmlist

Explanation: Program error. The parameter list could not be
accessed.

Action: Ensure that the storage area for the parameter list is
accessible to the system logger for the duration of the request. The
parameter list storage must be addressable in the caller's primary
address space and in the same key as the caller.

08 xxxx0802 Equate Symbol : IxgRsnCodeXESError

Explanation: System error. A severe cross-system extended
services (XES) error has occurred.

Action: See ANSAA_DIAG1 for the XES return code and
ANSAA_DIAG2 for the XES reason code.

760 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

Figure 47 (Page 2 of 9). Return and Reason Codes for the IXGINVNT Macro

Return Code Reason Code Meaning and Action

08 xxxx0805 Equate Symbol : IxgRsnCodeAllocError

Explanation: Environment error. The system encountered a severe
dynamic allocation error while processing data sets related to the log
stream. ANSAA_DIAG1 of the answer area contains the dynamic
allocation return code. ANSAA_DIAG2 of the answer area contains
either the dynamic allocation error code or the DFSMS reason code.
To obtain further information about the error, either check for
message IXG251I, which is issued for data set allocation errors, or
check for messages issued by the access method.

Action: If the problem persists, search problem reporting data bases
for a fix for the problem. If no fix exists, contact the IBM Support
Center.

08 xxxx0808 Equate Symbol : IxgRsnCodeIOError

Explanation: System error. A severe log data set I/O error has
occurred.

Action: Contact the IBM Support Center. Provide the return and
reason code.

08 xxxx080A Equate Symbol : IxgRsnCodeRequestLocked

Explanation: Program error. The program issuing the request is
holding a lock.

Action: Ensure that the program issuing the request is not holding a
lock.

08 xxxx080B Equate Symbol : IxgRsnCodeNoStream

Explanation: Program error. The log stream name specified has not
been defined in the LOGR policy.

Action: Ensure that the required log stream name has been defined
in the LOGR policy. If the definition appears to be correct, ensure that
the application is passing the correct log stream name to the service.

08 xxxx080D Equate Symbol : IxgRsnCodeNoSAFAuth

Explanation: Environment error. The user does not have correct SAF
authorization for the request. The caller is not authorized for one of
the following:

� The log stream being updated or defined.
� The log stream named on the LIKE parameter.
� The structure specified.

Action: Define SAF authorization for any log streams and structures
specified.

08 xxxx080E Equate Symbol : IxgRsnCodeStreamDefined

Explanation: Program error. The log stream name specified already
been defined in the LOGR inventory couple data set.

Action: Do one of the following:

� Use the existing definition for the log stream.
� Change the name of the log stream being defined.
� Delete the existing log stream definition from the inventory and

then reissue the IXGINVNT request to redefine it.

08 xxxx0810 Equate Symbol : IxgRsnCodeStreamInuse

Explanation: Environment error. You cannot alter or delete a log
stream while an application is connected to it.

Action: Reissue the request when there are no active connections to
the log stream.

08 xxxx0811 Equate Symbol : IxgRsnCodeBadStrname

Explanation: Environment error. The structure name specified on
the STRUCTNAME parameter is not defined in the CFRM policy.

Action: Make sure that the structure you want to specify is defined in
the CFRM policy.

08 xxxx0814 Equate Symbol : IxgRsnCodeNotAvailForIPL

Explanation: Environment error. The system logger address space
is not available for the remainder of this IPL. The system issues
messages about this error during system logger initialization.

Action: See the explanation for system messages issued during
system logger initialization.

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 761

 IXGINVNT Macro

Figure 47 (Page 3 of 9). Return and Reason Codes for the IXGINVNT Macro

Return Code Reason Code Meaning and Action

08 xxxx0815 Equate Symbol : IxgRsnCodeNotEnabled

Explanation: Program error. The program issuing the request is not
enabled for I/O and external interrupts, so the request fails.

Action: Make sure the program issuing the request is enabled for
I/O and external interrupts.

08 xxxx0816 Equate Symbol : IxgRsnCodeBadAnslen

Explanation: Program error. The answer area length (ANSLEN
parameter) is not large enough. The system logger returned the
required size in the Ansaa_Preferred_Size field of the answer area,
mapped by IXGANSAA macro.

Action: Reissue the request, specifying an answer area of the
required size.

08 xxxx0817 Equate Symbol : IxgRsnCodeBadAnsarea

Explanation: Program error. The storage area specified on the
ANSAREA parameter cannot be accessed. This may occur after the
system logger address space has terminated.

Action: Specify storage that is in the caller's primary address space
and in the same key as the calling program at the time the system
logger service was issued. This storage must be accessible until the
request completes.

08 xxxx0819 Equate Symbol : IxgRsnCodeSRBMode

Explanation: Program error. The calling program is in SRB mode,
but task mode is the required dispatchable unit mode for this system
logger service.

Action: Make sure the calling program is in task mode.

08 xxxx081A Equate Symbol : IxgRsnCodeMaxStreamConn

Explanation: Environment error. This system has reached the limit
for the maximum number of log streams that can be concurrently
active. System logger allows 4096 concurrently active log streams
per system.

Action: Your work load may need to be planned to either consolidate
log streams or balance system activity such that fewer log streams
are needed during this time frame.

08 xxxx081B Equate Symbol : IxgRsnCodePrimaryNotHome

Explanation: Program error. The primary address space does not
equal the home address space.

Action: Make sure that the primary address space equals the home
address space when issuing this system logger service.

08 xxxx081E Equate Symbol : IxgRsnCodeXESStrNotAuth

Explanation: Environment error. The system logger address space
does not have access authority to the coupling facility structure
associated with the log stream specified.

Action: Make sure the system logger address space has SAF access
to the structure.

08 xxxx081F Equate Symbol : IxgRsnCodeXcdsError

Explanation: System error. System logger encountered an internal
problem while processing the LOGR couple data set.

Action: Contact the IBM Support Center. Provide the return and
reason code and the contents of the answer area (ANSAREA field).

08 xxxx0821 Equate Symbol : IxgRsnCodeDspCreateFailed

Explanation: System error. A data space create failed during
inventory report processing.

Action: See ANSAA_DIAG1 for the DSPSERV return code and
ANSAA_DIAG2 for the DSPSERV reason code.

08 xxxx0822 Equate Symbol : IxgRsnCodeBadHlq

Explanation: Program error. The high level qualifier specified on the
HLQ parameter was incorrect.

Action: Specify a valid high level qualifier and reissue the request.

762 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

Figure 47 (Page 4 of 9). Return and Reason Codes for the IXGINVNT Macro

Return Code Reason Code Meaning and Action

08 xxxx0823 Equate Symbol : IxgRsnCodeNoInvrecSpace

Explanation: Environment error. The LOGR couple data set cannot
be updated because the maximum number of entries for the specified
type has already been reached.

Action:

� Format a new LOGR couple data set using the IXCL1DSU utility.
In the new LOGR couple data set either delete unused entries or
increase the allowed number of entries on the LSR parameter
(for log stream entries) or the LSTRR parameter (for coupling
facility structure entries).

� PSWITCH the current alternate LOGR couple data set to
primary.

� Add the new LOGR couple data set as alternate.
� PSWITCH the new LOGR couple data set from alternate to

primary.

08 xxxx0824 Equate Symbol : IxgRsnCodeMaxStreamStr

Explanation: Program error. A program issued IXGINVNT to
associate a structure with a log stream, but the maximum number of
log streams allowed (as defined on the LOGSNUM parameter) has
been reached for the specified structure.

Action: Either specify a structure that has not reached its
LOGSNUM limit, or specify a larger LOGSNUM value on the
definition for the structure.

08 xxxx0825 Equate Symbol : IxgRsnCodeStrDefined

Explanation: Program error. The structure specified on the
IXGINVNT request is already defined in the LOGR inventory couple
data set.

Action: Either use the existing structure definition, change the name
of the structure being defined or delete the existing structure and
redefine it.

08 xxxx0826 Equate Symbol : IxgRsnCodeBadLogsnum

Explanation: Program error. The LOGSNUM value specified for a
structure definition was not within the valid range between 1 and 512.

Action: Change the LOGSNUM value to be within the valid range.

08 xxxx0827 Equate Symbol : IxgRsnCodeNoStrRecord

Explanation: Program error. The coupling facility structure specified
in the definition for a log stream is not defined in the LOGR inventory
couple data set.

Action: Either define the coupling facility structure before referencing
it in a log stream definition, or specify an existing structure definition.

08 xxxx0828 Equate Symbol : IxgRsnCodeStrRecordInuse

Explanation: Program error. The request to delete a structure
definition from the LOGR inventory couple data set cannot be
completed because several log stream definitions reference it. You
cannot delete a structure definition until all the log streams associated
with it have been deleted first.

Action: Delete all the log streams associated with the structure you
wish to delete, then reissue the request.

08 xxxx0829 Equate Symbol : IxgRsnCodeBadStgStorClas

Explanation: Program error. The name specified on the
STG_STORCLAS parameter is incorrect.

Action: Change the staging data set storage class specified to meet
the STG_STORCLAS syntax requirements.

08 xxxx082A Equate Symbol : IxgRsnCodeBadLSStorClas

Explanation: The name specified on the LS_STORCLAS parameter
is incorrect.

Action: Change the log stream data set storage class specified to
meet the LS_STORCLAS syntax requirements.

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 763

 IXGINVNT Macro

Figure 47 (Page 5 of 9). Return and Reason Codes for the IXGINVNT Macro

Return Code Reason Code Meaning and Action

08 xxxx082B Equate Symbol : IxgRsnCodeBadStreamLike

Explanation: Program error. The log stream name specified on the
LIKE parameter was not valid.

Action: Reissue the request with a valid log stream name on the
LIKE parameter.

08 xxxx082C Equate Symbol : IxgRsnCodeBadStructName

Explanation: Program error. The coupling facility structure name
specified on the STRUCTNAME parameter is not valid.

Action: Reissue the request with a valid structure name on the
STRUCTNAME parameter.

08 xxxx082E Equate Symbol : IxgRsnCodeNoLogrCDSAvail

Explanation: Environment error. The request failed because no
LOGR couple data set is available. The operator was prompted to
either make a couple data set available or to indicate that the current
request should be rejected. The operator specified that the current
request should be rejected.

Action: System logger services are unavailable for the remainder of
this IPL.

08 xxxx082F Equate Symbol : IxgRsnCodeBadStgDataClas

Explanation: Program error. The name specified on the
LS_DATACLAS parameter is not valid.

Action: Change the data class specified to meet the LS_DATACLAS
syntax requirements.

08 xxxx0830 Equate Symbol : IxgRsnCodeBadLSDataClas

Explanation: Program error. The name specified on the
STG_DATACLAS parameter is not valid.

Action: Change the data class specified to meet the
STG_DATACLAS syntax requirements.

08 xxxx0831 Equate Symbol : IxgRsnCodeBadStreamName

Explanation: Program error. The log stream name specified on the
STREAMNAME parameter is not valid.

Action: Reissue the request with a valid log stream name on the
STREAMNAME parameter.

08 xxxx0832 Equate Symbol : IxgRsnCodeBadStgMgmtClas

Explanation: Program error. The name specified on the
STG_MGMTCLAS parameter is not valid.

Action: Change the staging data set management class specified to
meet the STG_MGMTCLAS syntax requirements.

08 xxxx0833 Equate Symbol : IxgRsnCodeBadLSMgmtClas

Explanation: Program error. The name specified on the
LS_MGMTCLAS parameter is not valid.

Action: Change the log stream data set management class specified
to meet the LS_MGMTCLAS syntax requirements.

08 xxxx0834 Equate Symbol : IxgRsnCodeInvalidLSSize

Explanation: Program error. A non-zero LS_SIZE is specified, but is
not in the range valid for a VSAM linear data set.

Action: Either change the LS_SIZE or omit it from the DEFINE
request to accept the default value.

08 xxxx0835 Equate Symbol : IxgRsnCodeInvalidStgSize

Explanation: Program error. A non-zero STG_SIZE is specified, but
is not in the range valid for a VSAM linear data set.

Action: Either change the STG_SIZE or omit it from the DEFINE
request to accept the default value.

08 xxxx0838 Equate Symbol : IxgRsnCodeUnDefSmsClas

Explanation: Program error. At least one of the names specified for
DATACLAS, MGMTCLAS, or STORCLAS is not defined to SMS.

Action: Specify names that are defined to the active SMS
configuration.

764 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

Figure 47 (Page 6 of 9). Return and Reason Codes for the IXGINVNT Macro

Return Code Reason Code Meaning and Action

08 xxxx0839 Equate Symbol : IxgRsnCodeBadCdsLevel

Explanation: The active primary LOGR couple data set is not
formatted at the level required for the request. See the explanation
of the parameters for the level each requires.

Action: Do one of the following:

Bring a new new active primary LOGR couple data set at the
required level into the sysplex and then retry the request.

� Remove the keywords requiring an new level of the LOGR
couple data set and retry the request.

08 xxxx083C Equate Symbol : IxgRsnCodeBadMaxBufSize

Explanation: Program error. The value specified for MAXBUFSIZE
on a DEFINE or UPDATE request was incorrect. It must be a value
between 1 and 65,532.

If the request was UPDATE, one of the following is causing the error:

� The value specified is less than the MAXBUFSIZE value
currently associated with a DASD-only log stream, or the current

� The current DASD-only value MAXBUFSIZE value is greater
than the MAXBUFSIZE value associated with the structure
specified on the UPDATE request.

Action: Do one of the following, depending on the request:

For a DEFINE request , specify a valid value for MAXBUFSIZE and
reissue the request.

For an UPDATE request, do one of the following:

� Specify a valid MAXBUFSIZE value that is greater than or equal
to the current MAXBUFSIZE for the DASD-only log stream.

� Ensure that the structure specified on the STRUCTNAME
parameter has a MAXBUFSIZE greater than or equal to the
MAXBUFSIZE for the DASD-only log stream specified on the
UPDATE request.

08 xxxx083E Equate Symbol : IxgRsnCodeNoAvailSysRec

Explanation: System error. There were no available system records.

Action: Contact the IBM support center. Provide the return and
reason codes and the contents of the system logger trace.

08 xxxx0840 Equate Symbol : IxgRsnCodeBadVersion

Explanation: Environment error. The parameter list passed to the
service routine had an invalid version indicator.

Action: Ensure the level of MVS executing the request and the
macro library used to compile the invoking routine are compatible.

08 xxxx0842 Equate Symbol : IxgRsnCodeBadAvgBufSize

Explanation: Program error. The value specified for AVGBUFSIZE
was specified as incorrect. It must be a value between and 65,536
that is less than MAXBUFSIZE.

Action: Reissue the request with a valid AVGBUFSIZE value.

08 xxxx084E Equate Symbol : IxgRsnCodeStrSpaceTooSmall

Explanation: Environment error. Structure resources are not
available to satisfy the request. All structure resources are allocated
as system logger control resources. This condition occurs when the
structure resources are consumed by the logstreams connection.

Action: Increase the size of the structure in the CFRM policy, or use
SETXCF ALTER support to dynamically increase the size of the
structure.

08 xxxx0843 Equate Symbol : IxgRsnCodeXcdsReformat

Explanation: Program error. A couple data set record is not valid.

Action: Reformat the system logger couple data set.

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 765

 IXGINVNT Macro

Figure 47 (Page 7 of 9). Return and Reason Codes for the IXGINVNT Macro

Return Code Reason Code Meaning and Action

08 xxxx0844 Equate Symbol : IxgRsnCodeNoStreamLike

Explanation: Program error. The log stream name specified on the
LIKE parameter is not defined in the LOGR couple data set.

Action: Do one of the following:

� Define the log stream you wish to reference in the LOGR
inventory couple data set and reissue the request.

� Reissue the request, specifying a different log stream that is
already defined in the LOGR couple data set.

08 xxxx0845 Equate Symbol : IxgRsnCodeInvalidFunc

Explanation: System error. The parameter list for this service
contains an unrecognizable function code. The parameter list storage
may have been overlaid.

Action: Fix the problem and then reissue the request.

08 xxxx0850 Equate Symbol : IxgRsnCodeBadVectorLen

Explanation: Environment error. The connect request was rejected.
System logger was unable to locate a vector table in the hardware
system area (HSA) that is large enough for the number of log
streams associated with it.

Action: Add storage to the vector storage table, and/or retry the
connect request later when storage may be available.

08 xxxx0851 Equate Symbol : IxgRsnCodeBadCFLevel

Explanation: Environment error. The connect request was rejected.
The operational level of the coupling facility is not sufficient to support
logger functions.

Action: Ensure that the coupling facility operational level for logger
structures is at least CFLEVEL=1.

08 xxxx0853 Equate Symbol : IxgRsnCodeNoCF

Explanation: The connect request was rejected. System logger
could not allocate coupling facility structure space, because no
suitable coupling facility was available.

Action: Check accompanying message IXG206I for a list of the
coupling facilities, where space allocation was attempted and the
reason why each attempt failed.

08 xxxx0854 Equate Symbol : IxgRsnCodeBadLowoffload

Explanation: Program error. The value specified for LOWOFFLOAD
is not valid.

Action: Change the value to meet the LOWOFFLOAD syntax
requirements.

08 xxxx0855 Equate Symbol : IxgRsnCodeBadHighoffload

Explanation: Program error. The value specified for HIGHOFFLOAD
is invalid.

Action: Change the value to meet the HIGHOFFLOAD syntax
requirements.

08 xxxx0856 Equate Symbol : IxgRsnCodeBadLowHighOffLoad

Explanation: Program error. The value specified or defaulted to for
the low offload value is equal to or higher than the high offload value.
The low offload value must be lower than the high offload value.

Action: Change either the LOWOFFLOAD parameter or the
HIGHOFFLOAD parameter so that the low offload value is less than
the high offload value.

08 xxxx0857 Equate Symbol : IxgRsnCodeDuplexmodeDuplexNo

Explanation: Program error. DUPLEXMODE was specified, but the
log stream was defined with STG_DUPLEX=NO. The DUPLEXMODE
parameter is only valid with STG_DUPLEX=YES.

Action: Either change the log stream definition to specify
STG_DUPLEX=YES or else omit DUPLEXMODE from the request.

766 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

Figure 47 (Page 8 of 9). Return and Reason Codes for the IXGINVNT Macro

Return Code Reason Code Meaning and Action

08 xxxx0858 Equate Symbol : IxgRsnCodeStgsizeDuplexNo

Explanation: Program error. A non-zero STG_SIZE is specified but
the log stream is defined with STG_DUPLEX=NO.

Action: Either change the log stream definition to specify
STG_DUPLEX=YES, or else omit the non-zero STG_SIZE from the
request.

08 xxxx0859 Equate Symbol : IxgRsnCodeDataClasDuplexNo

Explanation: Program error. A non-blank STG_DATACLAS is
specified but the log stream is defined with STG_DUPLEX=NO.

Action: Either change the log stream definition to specify
STG_DUPLEX=YES. or else omit the non-blank STG_DATACLAS
from the request.

08 xxxx085A Equate Symbol : IxgRsnCodeMgmtClasDuplexNo

Explanation: Program error. A non-blank STG_MGMTCLAS is
specified but the log stream is defined with STG_DUPLEX=NO.

Action: Either change the log stream definition to specify
STG_DUPLEX=YES, or else omit the non-blank STG_MGMTCLAS
from the request.

08 xxxx085B Equate Symbol : IxgRsnCodeStorClasDuplexNo

Explanation: Program error. A non-blank STG_STORCLAS is
specified but the log stream was defined with STG_DUPLEX=NO.

Action: Either change the log stream definition to specify
STG_DUPLEX=YES, or else omit the non-blank STG_STORCLAS
from the request.

08 xxxx085E Equate Symbol : IxgRsnCodeNoStructName

Explanation: Program error. A structure name was not provided for
this log stream via the STRUCTNAME parameter or defined for a log
stream named on a LIKE parameter. A STRUCTNAME value is
required to successfully define a log stream to the LOGR couple data
set.

Action: Provide a value for the STRUCTNAME parameter or define a
structure for the log stream referenced on the LIKE parameter.

08 xxxx0890 Equate Symbol : IxgRsnCodeAddrSpaceNotAvail

Explanation: System error. The system logger address space failed
and is not available.

Action: Do not issue system logger requests.

08 xxxx0891 Equate Symbol : IxgRsnCodeAddrSpaceInitializing

Explanation: System error. The system logger address space is not
available because it is IPLing.

Action: Listen for ENF signal 48, which will indicate when the
system logger address space is available. Reissue this request. You
can also listen for ENF signal 48, which will indicate if the system
logger address space will not be available for the life of the IPL. In
that case, do not issue system logger services.

08 xxxx08D4 Equate Symbol : IxgRsnCodeBadRMName

Explanation: Program Error. The name of the resource manager
specified on the RMNAME parameter was not valid.

Action: Correct the RMNAME and retry the request.

08 xxxx08D5 Equate Symbol : IxgRsnCodeBadLSDescription

Explanation: Program Error. The name of the field specified in the
DESCRIPTION parameter was not valid. DESCRIPTION must be 16
alphanumeric or national ($,#,@) characters, underscore (_) or period
(.), padded on the right with blanks if necessary.

Action: Correct the DESCRIPTION field name and retry the request.

08 xxxx08D8 Equate Symbol : IxgRsnCodeBadRetpd

Explanation: Program Error. The value specified for RETPD was
incorrect. It must be a value >= 0 and <= 65,536.

Action: Specify a valid value for RETPD and reissue the request.

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 767

 IXGINVNT Macro

Figure 47 (Page 9 of 9). Return and Reason Codes for the IXGINVNT Macro

Return Code Reason Code Meaning and Action

08 xxxx08DF Equate Symbol : IxgRsnCodeBadStructUpdate

Explanation: Program Error. A structure name was specified on the
STRUCTNAME parameter on the UPDATE request to upgrade a log
stream from DASD-only to coupling facility log stream. The log
stream specified, however, is already a coupling facility log stream
associated with a structure. You can only specify STRUCTNAME on
an update request for a DASD-only log stream.

Action: Either correct the request to specify a DASD-only log stream
or eliminate the STRUCTNAME parameter.

08 xxxx08E0 Equate Symbol : IxgRsnCodeStgDuplexDasdOnly

Explanation: Program Error. The STG_DUPLEX parameter was
specified on an UPDATE request, but the log stream specified was
defined as DASDONLY=YES. STG_DUPLEX is only valid with a
coupling facility log stream (DASDONLY=NO).

Action: Either correct the request to specify a coupling facility log
stream or eliminate the STG_DUPLEX parameter on this request.

08 xxxx08E1 Equate Symbol : IxgRsnCodeDuplexModeDasdOnly

Explanation: Program Error. The DUPLEXMODE parameter was
specified on an UPDATE request, but the log stream specified was
defined as DASDONLY=YES. DUPLEXMODE is only valid with a
coupling facility log stream (DASDONLY=NO).

Action: Either correct the request to specify a coupling facility log
stream or eliminate the DUPLEXMODE parameter on this request.

08 xxxx08E3 Equate Symbol : IXGRSNCODELOGSTREAMNOTSUPPORTED

Explanation: Environment error. A request to define or alter a log
stream definition in the LOGR policy was rejected on this system
because the system release level does not support a DASD-only log
stream. The system must be at OS/390 Release 3 or higher to
define, update, or delete a DASD-only log stream.

Action: If you must issue a request against a DASD-only log stream,
make sure you issue it from a system that is OS/390 Release 3 or
higher. Otherwise, define the log stream as a coupling facility log
stream by specifying a structure name in the log stream definition.

08 xxxx08E4 Equate Symbol : IXGRSNCODEMAXBUFSIZEDASDONLY

Explanation: Program error. A value was specified for
MAXBUFSIZE on this request, but the log stream was defined as a
coupling facility log stream (DASDONLY=NO). MAXBUFSIZE is not
a valid parameter on a log stream definition request for a coupling
facility log stream.

Action: Either remove the MAXBUFSIZE parameter from this
request or specify DASDONLY=YES with MAXBUFSIZE.

0C xxxx0000 Equate Symbol : IxgRetCodeCompError

Explanation: User or System error. One of the following occurred:

� You issued the FORCE IXGLOGR,ARM command to terminate
the system logger address space.

� System logger component error occurred.

Action: If this reason code is not the result of forcing the system
logger address space, search problem reporting data bases for a fix
for the problem. If no fix exists, contact the IBM Support Center.
Provide the diagnostic data in the answer area (IXGANSAA) and any
dumps or LOGREC entries from system logger.

 Example 1
Issue IXGINVNT REQUEST=DEFINE to define a coupling facility structure associated with
one or more log streams.

768 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

 IXGINVNT REQUEST=DEFINE, X
 TYPE=STRUCTURE, X
 STRUCTNAME=STRUCT, X
 LOGSNUM=LOGNUM, X
 AVGBUFSIZE=AVGBUF, X
 MAXBUFSIZE=MAXBUF, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
STRUCT DC CL16'LISTð1' structure name
LOGNUM DC F'1ð' num allocated logstreams allowed
AVGBUF DC F'256' average buffer size
MAXBUF DC F'4ð96' maximum buffer size
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
ANSLEN DC A(L'ANSAREA) length of logger's answer area
RETCODE DS F return code from logger
RSNCODE DS F reason code from logger
DATAREA DSECT
 IXGANSAA LIST=YES answer area

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 769

 IXGINVNT Macro

 Example 2
Issue IXGINVNT REQUEST=DEFINE to define a log stream that writes to both the coupling
facility and DASD log data sets as a model and issue IXGINVNT REQUEST=DEFINE a
second time to define another log stream modeled on the first using the LIKE parameter.

 IXGINVNT REQUEST=DEFINE, X
 TYPE=LOGSTREAM, X
 STREAMNAME=STRNAME, X
 STRUCTNAME=STRUCT, X
 DATACLAS=DATACLAS, X
 MGMTCLAS=MGMTCLAS, X
 STORCLAS=STORCLAS, X
 HLQ=HLQ, X
 MODEL=YES, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
 IXGINVNT REQUEST=DEFINE, X
 TYPE=LOGSTREAM, X
 STREAMNAME=STRNAME1, X
 LIKE=STRNAME, X
 STRUCTNAME=STRUCT, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
ANSLEN DC A(L'ANSAREA) length of logger's answer area
STRNAME DC CL26'LOG.STREAM.NAME' stream name for model
STRNAME1 DC CL26'LOG.STREAM1.NAME' stream name for like
STRUCT DC CL16'LISTð1' associated structure name
DATACLAS DC CL8'VSAMLS' data class name
MGMTCLAS DC CL8'INTERIM' management class name
STORCLAS DC CL8'STANDARD' storage class name
HLQ DC CL8'USERNAME' high level qualifier
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code from logger
RSNCODE DS F reason code from logger
DATAREA DSECT
 IXGANSAA LIST=YES answer area

770 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

 Example 3
Issue IXGINVNT REQUEST=UPDATE to update a log stream definition.

 IXGINVNT REQUEST=UPDATE, X
 TYPE=LOGSTREAM, X
 STREAMNAME=STRNAME, X
 DATACLAS=DATACLAS, X
 MGMTCLAS=MGMTCLAS, X
 STORCLAS=STORCLAS, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
STRNAME DC CL26'LOG.STREAM.NAME' stream name
DATACLAS DC CL8'NEWCLASS' data class name
MGMTCLAS DC CL8'NEWMGMNT' management class name
STORCLAS DC CL8'NEWSTOR' storage class name
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
ANSLEN DC A(L'ANSAREA) length of logger's answer area
RETCODE DS F return code from logger
RSNCODE DS F reason code from logger
DATAREA DSECT
 IXGANSAA LIST=YES answer area

 Example 4
Issue IXGINVNT to define a log stream with a resource manager associated with it. exit for
the log stream.

IXGINVNT REQUEST=DEFINE,
 TYPE=LOGSTREAM,
 STREAMNAME=SNAME,
 STRUCTNAME=STRUCT,
 RMNAME=RMNAME,
 STG_DUPLEX=NO,
 DESCRIPTION=DESCR,
 ANSAREA=XANSAREA,
 ANSLEN=XANSLEN,
 RSNCODE=RSCODE
\
SNAME DS CL26 Stream name
STRUCT DS CL16 Structure name
RMNAME DS CL8 Res Man name
DESCR DS CL16 Description
XANSAREA DS CL(ANSAA_LEN) Logger answer area
XANSLEN DC A(ANSAA_LEN) Answer area length
RSCODE DS F Reason code
 DSECT ,

IXGANSAA , The answer area macro

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 771

 IXGINVNT Macro

 Example 5
Issue IXGINVNT to define a log stream with a no retention period and autodeletion. This
means that log data is deleted whenever IXGDELET is issued against the log stream.

 IXGINVNT REQUEST=DEFINE,
 TYPE=LOGSTREAM,
 STREAMNAME=SNAME,
 STRUCTNAME=STRUCT,
 STG_DUPLEX=NO,
 RETPD=ð,AUTODELETE=YES,
 ANSAREA=XANSAREA,
 ANSLEN=XANSLEN,
 RSNCODE=RSCODE
SNAME DS CL26 Stream name
STRUCT DS CL16 Structure name
XANSAREA DS CL(ANSAA_LEN) Logger answer area
XANSLEN DC A(ANSAA_LEN) Answer area length
RSCODE DS F Reason code
 DSECT ,

IXGANSAA , The answer area macro

 Example 6
Issue IXGINVNT to define a log stream with staging data sets and a policy of unconditional
duplexing. This means that data will always be duplexed to staging data sets, even if the
configuration is not volatile.

IXGINVNT REQUEST=DEFINE,
 TYPE=LOGSTREAM,
 STREAMNAME=SNAME,
 STRUCTNAME=STRUCT,
 STG_DUPLEX=YES,DUPLEXMODE=UNCOND,
 ANSAREA=XANSAREA,
 ANSLEN=XANSLEN,
 RSNCODE=RSCODE
SNAME DS CL26 Stream name
STRUCT DS CL16 Structure name
XANSAREA DS CL(ANSAA_LEN) Logger answer area
XANSLEN DC A(ANSAA_LEN) Answer area length
RSCODE DS F Reason code
 DSECT ,

IXGANSAA , The answer area macro

 Example 7
Issue IXGINVNT REQUEST=DELETE to delete a structure definition.

 IXGINVNT REQUEST=DELETE, X
 TYPE=STRUCTURE, X
 STRUCTNAME=STRUCT, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
STRUCT DC CL16'LISTð1' structure name
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
ANSLEN DC A(L'ANSAREA) length of logger's answer area
RETCODE DS F return code from logger
RSNCODE DS F reason code from logger
DATAREA DSECT
 IXGANSAA LIST=YES answer area

772 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGINVNT Macro

 Example 8
Issue IXGINVNT with in list, execute and modify forms.

 IXGINVNT MF=(L,IXGINVNT_PLIST)
 IXGINVNT REQUEST=DEFINE, X
 STREAMNAME=STRNAME, X
 MF=(M,IXGINVNT_PLIST,NOCHECK)

 IXGINVNT REQUEST=DEFINE, X
 TYPE=LOGSTREAM, X
 MODEL=NO, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=(E,IXGINVNT_PLIST,NOCHECK) X
 RETCODE=RETCODE
ANSLEN DC A(L'ANSAREA) length of logger's answer area
STRNAME DC CL26'LOG.STREAM.NAME' stream name
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code from logger
RSNCODE DS F reason code from logger
DATAREA DSECT
 IXGANSAA LIST=YES answer area

 Example 9
Issue IXGINVNT using registers.

LA R6,STRUCT load struture name into reg 6
 IXGINVNT REQUEST=DELETE, X
 TYPE=STRUCTURE, X
 STRUCTNAME=(6), X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
STRUCT DC CL16'LISTð1' structure name
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
ANSLEN DC A(L'ANSAREA) length of logger's answer area
RETCODE DS F return code from logger
RSNCODE DS F reason code from logger
DATAREA DSECT
 IXGANSAA LIST=YES answer area
R6 EQU 6 set up register 6

 IXGINVNT — Managing the LOGR Inventory Couple Data Set 773

 IXGINVNT Macro

 Example 10
Issue IXGINVNT REQUEST=DEFINE to define a log stream as DASD-only:

 IXGINVNT REQUEST=DEFINE, X
 TYPE=LOGSTREAM, X
 STREAMNAME=STRNAME, X
 DASDONLY=YES, X
 MAXBUFSIZE=MAXBUF, X
 HLQ=HLQ, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
ANSLEN DC A(L'ANSAREA) length of logger's answer area
STRNAME DC CL26'LOG.STREAM.NAME' log stream name
MAXBUF DC F'65532' maximum buffer size
HLQ DC CL8'USERNAME' high level qualifier
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code from logger
RSNCODE DS F reason code from logger
DATAREA DSECT
 IXGANSAA LIST=YES answer area

 Example 11
Issue IXGINVNT REQUEST=DEFINE to define a log stream as DASD-only and then issue
the IXGINVNT REQUEST=UPDATE request to upgrade the DASD-only log stream to a
coupling facility log stream, associating it with structure 1:

 IXGINVNT REQUEST=DEFINE, X
 TYPE=LOGSTREAM, X
 STREAMNAME=STRNAME, X
 DASDONLY=YES, X
 MAXBUFSIZE=MAXBUF, X
 HLQ=HLQ, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
 IXGINVNT REQUEST=UPDATE, X
 TYPE=LOGSTREAM, X
 STREAMNAME=STRNAME, X
 STRUCTNAME=STRUCT, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
ANSLEN DC A(L'ANSAREA) length of logger's answer area
STRNAME DC CL26'LOG.STREAM.NAME' log stream name
STRUCT DC CL16'STRUCTURE1' structure name
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code from logger
RSNCODE DS F reason code from logger
DATAREA DSECT
 IXGANSAA LIST=YES answer area

774 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGOFFLD

IXGOFFLD — Initiate Offload to DASD Log Data Sets

 Description
The IXGOFFLD macro allows the caller to intiate an offload of log data from the coupling
facility structure associated with a log stream to DASD log data sets.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts

The caller's parameter list must be resident in the caller's primary
address space.

All storage areas specified must be in the same storage key as the
caller.

Locks: No locks may be held.
Control parameters: None.

 Programming Requirements
� Before issuing this request, the caller must have issed IXGCONN to connect to the log

stream. The caller must specify specify AUTH=WRITE on the IXGCONN request.

� The current primary address space must be the same as the HOME address space at
the time you issued the IXGCONN macro.

� The parameter list for this service must be addressable in the caller's primary address
space.

� Include the IXGCON mapping macro in your program. This macro provides a list of
equate symbols for the system logger services.

� Include mapping macro IXGANSAA in your program. This macro shows the format of
the answer area output returned for each system logger service in the ANSAREA
parameter.

 Restrictions
All storage areas specified must be in the same storage key as the caller. Storage areas
must exist in the caller's primary address space.

Input Register Information
Before issuing the IXGOFFLD macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code, if register 15 contains a non-zero return code.
2 - 13 Unchanged
14 Used as a work register by the system.
15 Return code

 Copyright IBM Corp. 1988, 1999 775

 IXGOFFLD

When control returns to the caller, the ARs contain:

Register Contents
0 - 1 Used as a work register by the system.
2 - 13 Unchanged
14 - 15 Used as a work register by the system.

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
IBM recommends that you use IXGOFFLD only when essential. The offloading process
does entail some overhead and may degrade system logger performance.

 Syntax
The IXGOFFLD macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IXGOFFLD.

IXGOFFLD

␣ One or more blanks must follow IXGOFFLD.

STREAMTOKEN=streamtoken streamtoken: RS-type address or address in register (2) - (12).

,ANSAREA=ansarea ansarea: RS-type address or address in register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or address in register (2) - (12).

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX
 ,PLISTVER=0

 ,MF=S Default: MF=S
 ,MF=(L,list addr) list addr: RS-type address or register (1) - (12).
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)
 ,MF=(E,list addr,NOCHECK)
 ,MF=(M,list addr)
 ,MF=(M,list addr,COMPLETE)
 ,MF=(M,list addr,NOCHECK)

776 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGOFFLD

 Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IXGOFFLD macro
invocation. The name must conform to the rules for an ordinary assembler language
symbol.

STREAMTOKEN=streamtoken
A required input parameter that specifies the log stream token that was returned on the
IXGCONN service.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character
field.

,ANSAREA= ansarea
A required input parameter of a virtual storage area, called the answer area. The
ANSAREA contains additional error status when the IXGOFFLD service generates an
error return code. The format of the returned data is defined by the IXGANSAA mapping
macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a field.

,ANSLEN=anslen
A required input parameter that contains the length in bytes of the virtual storage area
provided for ANSAREA .

The length of the answer area is described by the IXGANSAA mapping macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default. Note that on the list form, the default will cause
the smallest parameter list to be created.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form when both forms are assembled using the same level
of the system. In this way, MAX ensures that the parameter list does not overwrite
nearby storage.

� 0, which supports all parameters except those referenced in higher versions.

To code: Specify one of the following:

 IXGOFFLD — Initiate Offload to DASD Log Data Sets 777

 IXGOFFLD

 � IMPLIED_VERSION
 � MAX
� A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter can be specified on the list form of the macro. IBM recommends
that you always specify PLISTVER=MAX on the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together
with the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list form,
and generates the macro invocation to transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines
that need to provide different options according to user-provided input. Use the list form
to define a storage area; use the modify form to set the appropriate options; then use
the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following order:

� Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters, including all
required ones.

� Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to change.

� Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value that is valid
on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to
supply defaults for omitted optional parameters.

778 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGOFFLD

 ABEND Codes
1C5 Ixg_Abend_Code - A System Logger abend has occurred.

Reason
Code
(Hex) Explanation

xxxx085F IxgRsnCodePercToRequestor -

Explanation: Environment error. Percolation to the service requestor's task
occurred because of an abend during system logger processing. Retry was not
allowed.

Action: Issue the request again. If the problem persists, contact the IBM
Support Center.

Return and Reason Codes
When the IXGOFFLD macro returns control to your program:

� GPR 15 (and retcode, if you coded RETCODE) contains a return code.
� When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE)

contains a reason code.

00 IxgRetCodeOk - Successful Completion
04 IxgRetCodeWarning - The request was processed successfully, however a warning

condition was encountered.
08 IxgRetCodeError - An error has been encountered. The associated reason code

provides more information.
0C IxgRetCodeCompError - A System Logger component error has been encountered.

The following table contains hexadecimal return and reason codes, the equate symbols
associated with each reason code, and the meaning and suggested action for each return
and reason code.

Figure 48 (Page 1 of 4). Return and Reason Codes for the IXGOFFLD Macro

Return Code Reason Code Meaning and Action

00 xxxx0000 IxgRsnCodeOk -

Explanation: Request processed successfully.

08 xxxx0801 IxgRsnCodeBadParmlist -

Explanation: Program error. The parameter list is not valid. Either
the parameter list storage is inaccessible, or the version of the macro
used was not valid.

Action: Ensure that the storage area for the parameter list is
accessible to the system logger for the duration of the request, and
that the macro version is correct. The parameter list storage must be
addressable in the caller's primary address space and in the same
key as the caller.

08 xxxx0802 IxgRsnCodeXESError -

Explanation: System error. A severe cross-system extended
services (XES) error has occurred.

Action: In the answer area mapped by IXGANSAA, see
ANSAA_DIAG1 for the XES return code and ANSAA_DIAG2 for the
XES reason code.

08 xxxx0806 IxgRsnCodeBadStmToken -

Explanation: Program error. One of the following occurred:

� The stream token was not valid.

� The specified request was issued from an address space other
than the connector's address space.

Action: Do one of the following:

� Make sure that the stream token specified is valid.

� Ensure that IXGOFFLD requests were issued from the
connector's address space.

 IXGOFFLD — Initiate Offload to DASD Log Data Sets 779

 IXGOFFLD

Figure 48 (Page 2 of 4). Return and Reason Codes for the IXGOFFLD Macro

Return Code Reason Code Meaning and Action

08 xxxx080A IxgRsnCodeRequestLocked -

Explanation: Program error. The program issuing the request is
holding a lock.

Action: Ensure that the program issuing the request is not holding a
lock.

08 xxxx0814 IxgRsnCodeNotAvailForIPL -

Explanation: Environment error. The system logger address space
is not available for the remainder of this IPL. The system issues
messages about this error during system logger initialization.

Action: See the explanation for system messages issued during
system logger initialization.

08 xxxx0815 IxgRsnCodeNotEnabled -

Explanation: Program error. The program issuing the request is not
enabled for I/O and external interrupts, so the request fails.

Action: Make sure the program issuing the request is enabled for
I/O and external interrupts.

08 xxxx0816 IxgRsnCodeBadAnslen -

Explanation: Program error. The answer area length (ANSLEN
parameter) is not large enough. The system logger returned the
required size in the Ansaa_Preferred_Size field of the answer area,
mapped by IXGANSAA macro.

Action: Reissue the request, specifying an answer area of the
required size.

08 xxxx0817 IxgRsnCodeBadAnsarea -

Explanation: Program error. The storage area specified on the
ANSAREA parameter cannot be accessed. This might occur after the
system logger address space has terminated.

Action: Specify storage that is in the callers primary address space
and in the same key as the calling program at the time the system
logger service was issued. This storage must be accessible until the
request completes.

08 xxxx0819 IxgRsnCodeSRBMode -

Explanation: Program error. The calling program is in SRB mode,
but task mode is the required dispatchable unit mode for this system
logger service.

Action: Make sure the calling program is in task mode.

08 xxxx081C IxgRsnCodeNotAuthFunc -

Explanation: Program error. The program connected to the log
stream with the AUTH=READ parameter and then tried to delete,
write, offload or update data. You cannot write, delete, update or
offload data when connected with read authority.

Action: Issue the IXGCONN service with AUTH=WRITE authority
and then reissue this request.

08 xxxx082D IxgRsnCodeExpiredStmToken -

Explanation: Environment error. The stream token is no longer valid
because the connector has been disconnected.

Action: Reconnect to the logstream before issuing any functional
requests.

08 xxxx0840 IxgRsnCodeBadVersion -

Explanation: Environment error. The parameter list passed to the
service routine has an incorrect version indicator.

Action: Make sure that the level of MVS executing the request and
the macro library used to compile the invoking routine are compatible.

780 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGOFFLD

Figure 48 (Page 3 of 4). Return and Reason Codes for the IXGOFFLD Macro

Return Code Reason Code Meaning and Action

08 xxxx0861 IxgRsnCodeRebuildInProgress -

Explanation: Environment error. No requests can be processed for
this log stream because a coupling facility structure rebuild is in
progress for the structure associated with this log stream.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the rebuild completed
successfully. Reissue the request.

� The rebuild failed and the log stream is not available.

08 xxxx0862 IxgRsnCodeXESPurge -

Explanation: Environment error. An cross-system extended services
(XES) request has been purged due to rebuild processing.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the rebuild completed
successfully. Reissue the request.

� The rebuild failed and the log stream is not available. .

08 xxxx0863 IxgRsnCodeStructureFailed -

Explanation: Environment error. Either the coupling facility structure
associated with the log stream has failed or the coupling facility itself
has failed.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the rebuild completed
successfully. Reissue the request.

� The rebuild failed and the log stream is not available.

08 xxxx0864 IxgRsnCodeNoConnectivity -

Explanation: Environment error. No connectivity exists to the
coupling facility associated with the log stream. The system logger
will either attempt to rebuild the log stream in another coupling facility
or the log stream will be disconnected.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the rebuild completed
successfully. Reissue the request.

� The rebuild failed and the log stream is not available.

� The log stream has been disconnected from this system.

08 xxxx0890 IxgRsnCodeAddrSpaceNotAvail -

Explanation: System error. The system logger address space failed
and is not available.

Action: Do not issue system logger requests.

08 xxxx0891 IxgRsnCodeAddrSpaceInitializing -

Explanation: System error. The system logger address space is not
available because it is IPLing.

Action: Listen for ENF signal 48, which will indicate when the
system logger address space is available. When it's available,
reconnect to the log stream, then reissue this request. You can also
listen for ENF signal 48, which will indicate if the system logger
address space will not be available for the life of the IPL. In that
case, do not issue system logger services.

08 xxxx08DF IxgRsnCodeOffLoadFlushError -

Explanation: System error. The flush service called by IXGOFFLD
encountered a XES error.

Action: Examine the answer area, which contains more detailed
information about the error.

 IXGOFFLD — Initiate Offload to DASD Log Data Sets 781

 IXGOFFLD

Figure 48 (Page 4 of 4). Return and Reason Codes for the IXGOFFLD Macro

Return Code Reason Code Meaning and Action

0C xxxx0000 Equate Symbol : IxgRetCodeCompError

Explanation: User or System error. One of the following occurred:

� You issued the FORCE IXGLOGR,ARM command to terminate
the system logger address space.

� System logger component error occurred.

Action: If this reason code is not the result of forcing the system
logger address space, search problem reporting data bases for a fix
for the problem. If no fix exists, contact the IBM Support Center.
Provide the diagnostic data in the answer area (IXGANSAA) and any
dumps or LOGREC entries from system logger.

 Example
Issue IXGOFFLD to initiate offload processing for a log stream.

 IXGOFFLD @
 STREAMTOKEN=OTOKEN, @
 ANSAREA=XANSAREA, @
 ANSLEN=XANSLEN, @
 RSNCODE=RSCODE
OTOKEN DS CL16 Output Stream token
XANSAREA DS CL(ANSAA_LEN) Logger answer area
XANSLEN DC A(ANSAA_LEN) Answer area length
RSCODE DS F Reason code
 DSECT ,

IXGANSAA , The answer area macro

782 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGQUERY

IXGQUERY — Query a Log Stream for Information

 Description
The IXGQUERY macro allows a user to retrieve information about a log stream.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: None.

 Programming Requirements
� The caller must have a valid connection to the log stream.

� The current primary address space must be the same as the HOME address space at
the time you issued the IXGCONN macro.

� The parameter list for this service must be addressable in the caller's primary address
space.

� Include the IXGCON mapping macro in your program. This macro provides a list of
equate symbols for the system logger services.

� Include mapping macro IXGANSAA in your program. This macro shows the format of
the answer area output returned for each system logger service in the ANSAREA
parameter.

� Include mapping macro IXGBQBUF in your program. This macro shows the format of
the data returned by IXGQUERY.

 Restrictions
� The caller's buffer must be in the caller's primary address space and cannot be

ALET-qualified.

� All storage areas specified must be in the same storage key as the caller. Storage areas
must exist in the caller's primary address space.

� The caller cannot have any enabled, unlocked task (EUT) FRRs established.

Input Register Information
Before issuing the IXGQUERY macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code, if register 15 contains a non-zero return code.
2 - 13 Unchanged
14 Used as a work register by the system.
15 Return code

 Copyright IBM Corp. 1988, 1999 783

 IXGQUERY

When control returns to the caller, the ARs contain:

Register Contents
0 - 1 Used as a work register by the system.
2 - 13 Unchanged
14 - 15 Used as a work register by the system.

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The IXGQUERY macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IXGQUERY.

IXGQUERY

␣ One or more blanks must follow IXGQUERY.

STREAMTOKEN=streamtoken streamtoken: RS-type address or address in register (2) - (12).

,BUFFER=buffer buffer: RS-type address or address in register (2) - (12).

,BUFFLEN=bufflen bufflen: RS-type address or address in register (2) - (12).

,ANSAREA=ansarea ansarea: RS-type address or address in register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or address in register (2) - (12).

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX
 ,PLISTVER=0

 ,MF=S Default: MF=S
 ,MF=(L,list addr) list addr: RS-type address or register (1) - (12).
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)
 ,MF=(E,list addr,NOCHECK)
 ,MF=(M,list addr)
 ,MF=(M,list addr,COMPLETE)
 ,MF=(M,list addr,NOCHECK)

784 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGQUERY

 Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IXGQUERY macro
invocation. The name must conform to the rules for an ordinary assembler language
symbol.

STREAMTOKEN=streamtoken
A required input parameter that specifies the log stream token that was returned by the
IXGCONN service.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character
field.

,BUFFER=buffer
A required output parameter that specifies the buffer into which the requested data are
to be copied. The contents of the buffer are mapped by IXGQBUF.

The buffer cannot be ALET qualified.

To code: Specify the RS-type address, or address in register (2)-(12), of a character
field.

,BUFFLEN=bufflen
A required input parameter that specifies the length of the buffer identified by the
BUFFER keyword.

If the user-specified buffer is not large enough to return the specified data, a specific
return/reason code will be returned.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,ANSAREA= ansarea
A required input parameter of a virtual storage area, called the answer area. The
ANSAREA contains additional error status when the IXGQUERY service generates an
error return code. The format of the returned data is defined by the IXGANSAA mapping
macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a field.

,ANSLEN=anslen
A required input parameter that contains the length in bytes of the virtual storage area
provided for ANSAREA .

The length of the answer area is described by the IXGANSAA mapping macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

 IXGQUERY — Query a Log Stream for Information 785

 IXGQUERY

The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default. Note that on the list form, the default will cause
the smallest parameter list to be created.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form when both forms are assembled using the same level
of the system. In this way, MAX ensures that the parameter list does not overwrite
nearby storage.

� 0, which supports all parameters except those referenced in higher versions.

To code: Specify one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter can be specified on the list form of the macro. IBM recommends
that you always specify PLISTVER=MAX on the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together
with the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list form,
and generates the macro invocation to transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines
that need to provide different options according to user-provided input. Use the list form
to define a storage area; use the modify form to set the appropriate options; then use
the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following order:

� Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters, including all
required ones.

� Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to change.

� Use MF=(E,list_addr,NOCHECK), to execute the macro.

786 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGQUERY

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value that is valid
on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to
supply defaults for omitted optional parameters.

 ABEND Codes
The IXGQUERY service can issue abend X'1C5' with reason code X'0805'. This abend
indicates an abend during system logger processing. If you receive this abend, reissue the
request. If the problem persists, contact the IBM Support Center.

Return and Reason Codes
When the IXGQUERY macro returns control to your program:

� GPR 15 (and retcode, if you coded RETCODE) contains a return code.
� When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE)

contains a reason code.

00 IxgRetCodeOk - Successful Completion
04 IxgRetCodeWarning - The request was processed successfully, however a warning

condition was encountered.
08 IxgRetCodeError - An error has been encountered. The associated reason code

provides more information.
0C IxgRetCodeCompError - A System Logger component error has been encountered.

The following table contains hexadecimal return and reason codes, the equate symbols
associated with each reason code, and the meaning and suggested action for each return
and reason code.

Figure 49 (Page 1 of 4). Return and Reason Codes for the IXGQUERY Macro

Return Code Reason Code Meaning and Action

00 xxxx0000 IxgRsnCodeOk -

Explanation: Request processed successfully.

08 xxxx0801 IxgRsnCodeBadParmlist -

Explanation: Program error. The parameter list is not valid. Either
the parameter list storage is inaccessible, or the version of the macro
used was not valid.

Action: Ensure that the storage area for the parameter list is
accessible to the system logger for the duration of the request, and
that the macro version is correct. The parameter list storage must be
addressable in the caller's primary address space and in the same
key as the caller.

08 xxxx0802 IxgRsnCodeXESError -

Explanation: System error. A severe cross-system extended
services (XES) error has occurred.

Action: In the answer area mapped by IXGANSAA, see
ANSAA_DIAG1 for the XES return code and ANSAA_DIAG2 for the
XES reason code.

 IXGQUERY — Query a Log Stream for Information 787

 IXGQUERY

Figure 49 (Page 2 of 4). Return and Reason Codes for the IXGQUERY Macro

Return Code Reason Code Meaning and Action

08 xxxx0803 IxgRsnCodeBadBuffer -

Explanation: The virtual storage area specified by the BUFFER
keyword not addressable.

Action: Ensure the storage area is accessible to the Logger Services
for the duration of the request.

08 xxxx0806 IxgRsnCodeBadStmToken -

Explanation: Program error. One of the following occurred:

� The stream token was not valid.

� The specified request was issued from an address space other
than the connectors address space.

Action: Do one of the following:

� Make sure that the stream token specified is valid.

� Ensure that IXGQUERY requests were issued from the
connectors address space.

08 xxxx080A IxgRsnCodeRequestLocked -

Explanation: Program error. The program issuing the request is
holding a lock.

Action: Ensure that the program issuing the request is not holding a
lock.

08 xxxx080F IxgRsnCodeBadBufsize -

Explanation: The BUFFER specified is not large enough to contain
the data being returned. No data is returned.

Action: Obtain a buffer of the length of IXGQBUF and redrive the
request.

08 xxxx0814 IxgRsnCodeNotAvailForIPL -

Explanation: Environment error. The system logger address space
is not available for the remainder of this IPL. The system issues
messages about this error during system logger initialization.

Action: See the explanation for system messages issued during
system logger initialization.

08 xxxx0815 IxgRsnCodeNotEnabled -

Explanation: Program error. The program issuing the request is not
enabled for I/O and external interrupts, so the request fails.

Action: Make sure the program issuing the request is enabled for
I/O and external interrupts.

08 xxxx0816 IxgRsnCodeBadAnslen -

Explanation: Program error. The answer area length (ANSLEN
parameter) is not large enough. The system logger returned the
required size in the Ansaa_Preferred_Size field of the answer area,
mapped by IXGANSAA macro.

Action: Reissue the request, specifying an answer area of the
required size.

08 xxxx0817 IxgRsnCodeBadAnsarea -

Explanation: Program error. The storage area specified on the
ANSAREA parameter cannot be accessed. This may occur after the
system logger address space has terminated.

Action: Specify storage that is in the callers primary address space
and in the same key as the calling program at the time the system
logger service was issued. This storage must be accessible until the
request completes.

08 xxxx0819 IxgRsnCodeSRBMode -

Explanation: Program error. The calling program is in SRB mode,
but task mode is the required dispatchable unit mode for this system
logger service.

Action: Make sure the calling program is in task mode.

788 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGQUERY

Figure 49 (Page 3 of 4). Return and Reason Codes for the IXGQUERY Macro

Return Code Reason Code Meaning and Action

08 xxxx082D IxgRsnCodeExpiredStmToken -

Explanation: Environment error. The stream token is no longer valid
because the connector has been disconnected.

Action: Reconnect to the logstream before issuing any functional
requests.

08 xxxx0840 IxgRsnCodeBadVersion -

Explanation: Environment error. The parameter list passed to the
service routine has an incorrect version indicator.

Action: Make sure that the level of MVS executing the request and
the macro library used to compile the invoking routine are compatible.

08 xxxx0861 IxgRsnCodeRebuildInProgress -

Explanation: Environment error. No requests can be processed for
this log stream because a coupling facility structure rebuild is in
progress for the structure associated with this log stream.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the rebuild completed
successfully. Reissue the request.

� The rebuild failed and the log stream is not available.

08 xxxx0862 IxgRsnCodeXESPurge -

Explanation: Environment error. An cross-system extended services
(XES) request has been purged due to rebuild processing.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the rebuild completed
successfully. Reissue the request.

� The rebuild failed and the log stream is not available.

08 xxxx0863 IxgRsnCodeStructureFailed -

Explanation: Environment error. Either the coupling facility structure
associated with the log stream has failed or the coupling facility itself
has failed.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the rebuild completed
successfully. Reissue the request.

� The rebuild failed and the log stream is not available.

08 xxxx0864 IxgRsnCodeNoConnectivity -

Explanation: Environment error. No connectivity exists to the
coupling facility associated with the log stream. The system logger
will either attempt to rebuild the log stream in another coupling facility
or the log stream will be disconnected.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the rebuild completed
successfully. Reissue the request.

� The rebuild failed and the log stream is not available.

� The log stream has been disconnected from this system.

08 xxxx0890 IxgRsnCodeAddrSpaceNotAvail -

Explanation: System error. The system logger address space failed
and is not available.

Action: Do not issue system logger requests.

 IXGQUERY — Query a Log Stream for Information 789

 IXGQUERY

Figure 49 (Page 4 of 4). Return and Reason Codes for the IXGQUERY Macro

Return Code Reason Code Meaning and Action

08 xxxx0891 IxgRsnCodeAddrSpaceInitializing -

Explanation: System error. The system logger address space is not
available because it is IPLing.

Action: Listen for ENF signal 48, which will indicate when the
system logger address space is available. Once it's available,
reconnect to the log stream, then reissue this request. You can also
listen for ENF signal 48, which will indicate if the system logger
address space will not be available for the life of the IPL. In that
case, do not issue system logger services.

08 xxxx08D3 IxgRsnCodeFuncNotSupported -

Explanation: Environment error. The query request failed because
the LOGR couple data set is not at the correct level. The inventory
must be at least at the OS390R3 level.

0C xxxx0000 Equate Symbol : IxgRetCodeCompError

Explanation: User or System error. One of the following occurred:

� You issued the FORCE IXGLOGR,ARM command to terminate
the system logger address space.

� System logger component error occurred.

Action: If this reason code is not the result of forcing the system
logger address space, search problem reporting data bases for a fix
for the problem. If no fix exists, contact the IBM Support Center.
Provide the diagnostic data in the answer area (IXGANSAA) and any
dumps or LOGREC entries from system logger.

 Example
Issue IXQUERY to get information about a log stream.

 IXGQUERY @
 STREAMTOKEN=OTOKEN, @
 BUFFER=QRYBUFF, @
 BUFFLEN=QRYBUFF_LEN, @
 ANSAREA=XANSAREA, @
 ANSLEN=XANSLEN, @
 RSNCODE=RSCODE
OTOKEN DS CL16 Output Stream token
QRYBUFF DS CL(QBUF_LEN) IXGQUERY data area
QRYBUFF_LEN DC A(QBUF_LEN) IXGQUERY data length
XANSAREA DS CL(ANSAA_LEN) Logger answer area
XANSLEN DC A(ANSAA_LEN) Answer area length
RSCODE DS F Reason code
 DSECT ,

IXGQBUF , The macro for IXGQUERY data
IXGANSAA , The answer area macro

790 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGUPDAT

IXGUPDAT — Update Log Stream Control Information

 Description
The IXGUPDAT macro allows the caller to update the GMT time stamp maintained in the
control information for a log stream. When this field is successfully updated, any future log
blocks written to the log stream cannot will have a time stamp less than the updated time
stamp. (Note that this service does not affect time stamps that the application imbeds in the
log block.)

 Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: None.

 Programming Requirements
� The caller must have a valid connection to the target log stream, specifying

AUTH=WRITE.
� The parameter list for this service must be addressable in the caller's primary address

space.
� Include the IXGCON mapping macro in your program. This macro provides a list of

equate symbols for the system logger services.
� Include mapping macro IXGANSAA in your program. This macro shows the format of

the answer area output returned for each system logger service in the ANSAREA
parameter.

� The current primary address space must be the same as the HOME address space at
the time you issued the IXGCONN macro.

 Restrictions
All storage areas specified must be in the same storage key as the caller. Storage areas that
must exist in the caller's primary address space.

Input Register Information
Before issuing the IXGUPDAT macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code, if register 15 contains a non-zero return code.
2 - 13 Unchanged
14 Used as a work register by the system.
15 Return code

 Copyright IBM Corp. 1988, 1999 791

 IXGUPDAT

When control returns to the caller, the ARs contain:

Register Contents
0 - 1 Used as a work register by the system.
2 - 13 Unchanged
14 - 15 Used as a work register by the system.

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The IXGUPDAT macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IXGUPDAT.

IXGUPDAT

␣ One or more blanks must follow IXGUPDAT.

STREAMTOKEN=streamtoken streamtoken: RS-type address or address in register (2) - (12).

 ,GMT_TIMESTAMP=gmt_timestampgmt_timestamp: RS-type address or address in register (2) - (12).
 ,GMT_TIMESTAMP=NO_GMT_TIMESTAMP
 Default: GMT_TIMESTAMP=NO_GMT_TIMESTAMP

,ANSAREA=ansarea ansarea: RS-type address or address in register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or address in register (2) - (12).

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX
 ,PLISTVER=0

 ,MF=S Default: MF=S
 ,MF=(L,list addr) list addr: RS-type address or register (1) - (12).
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)
 ,MF=(E,list addr,NOCHECK)
 ,MF=(M,list addr)
 ,MF=(M,list addr,COMPLETE)
 ,MF=(M,list addr,NOCHECK)

792 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGUPDAT

 Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IXGUPDAT macro
invocation. The name must conform to the rules for an ordinary assembler language
symbol.

STREAMTOKEN=streamtoken
A required input parameter that specifies the log stream token that was returned on the
IXGCONN service.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character
field.

,GMT_TIMESTAMP=gmt_timestamp
,GMT_TIMESTAMP=NO_GMT_TIMESTAMP

An optional input parameter that lets you modify the GMT time stamp in the coupling
facility structure list controls. You must supply a time stamp that is equal to or greater
than the current time stamp maintained in the Log Stream Control information. Once
modified, the next log blocks written to the log stream will be assigned a GMT time
stamp equal to or greater than the one specified on the IXGUPDAT request. The
default is NO_GMT_TIMESTAMP.

If NO_Gmt_TimeStamp is specified for GMT_TimeStamp the macro will be invoked as if
GMT_TimeStamp was not specified.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character
field.

,ANSAREA= ansarea
A required input parameter of a virtual storage area, called the answer area. The
ANSAREA contains additional error status when the IXGUPDAT service generates an
error return code. The format of the returned data is defined by the IXGANSAA mapping
macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a field.

,ANSLEN=anslen
A required input parameter that contains the length in bytes of the virtual storage area
provided for ANSAREA .

The length of the answer area is described by the IXGANSAA mapping macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default. Note that on the list form, the default will cause
the smallest parameter list to be created.

 IXGUPDAT — Update Log Stream Control Information 793

 IXGUPDAT

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form when both forms are assembled using the same level
of the system. In this way, MAX ensures that the parameter list does not overwrite
nearby storage.

� 0, which supports all parameters except those referenced in higher versions.

To code: Specify one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter can be specified on the list form of the macro. IBM recommends
that you always specify PLISTVER=MAX on the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together
with the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list form,
and generates the macro invocation to transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines
that need to provide different options according to user-provided input. Use the list form
to define a storage area; use the modify form to set the appropriate options; then use
the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following order:

� Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters, including all
required ones.

� Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to change.

� Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value that is valid
on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

794 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGUPDAT

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to
supply defaults for omitted optional parameters.

 ABEND Codes
The IXGQUERY service can issue abend X'1C5' with reason code X'085F'. This abend
indicates an abend during system logger processing. If you receive this abend, reissue the
request. If the problem persists, contact the IBM Support Center.

Return and Reason Codes
When the IXGUPDAT macro returns control to your program:

� GPR 15 (and retcode, if you coded RETCODE) contains a return code.
� When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE)

contains a reason code.

00 IxgRetCodeOk - Successful Completion
04 IxgRetCodeWarning - The request was processed successfully, however a warning

condition was encountered.
08 IxgRetCodeError - An error has been encountered. The associated reason code

provides more information.
0C IxgRetCodeCompError - A System Logger component error has been encountered.

The following table contains hexadecimal return and reason codes, the equate symbols
associated with each reason code, and the meaning and suggested action for each return
and reason code.

Figure 50 (Page 1 of 4). Return and Reason Codes for the IXGUPDAT Macro

Return Code Reason Code Meaning and Action

00 xxxx0000 IxgRsnCodeOk -

Explanation: Request processed successfully.

08 xxxx0801 IxgRsnCodeBadParmlist -

Explanation: Program error. The parameter list is invalid. Either the
parameter list storage is inaccessible, or an invalid version of the
macro was used.

Action: Ensure that the storage area for the parameter list is
accessible to the system logger for the duration of the request, and
that the macro version is correct. The parameter list storage must be
addressable in the caller's primary address space and in the same
key as the caller.

08 xxxx0802 IxgRsnCodeXESError -

Explanation: System error. A severe cross-system extended
services (XES) error has occurred.

Action: See ANSAA_DIAG1 for the XES return code and
ANSAA_DIAG2 for the XES reason code.

08 xxxx0806 IxgRsnCodeBadStmToken -

Explanation: Program error. One of the following occurred:

� The stream token was not valid.
� The specified request was issued from an address space other

than the connectors address space.

Action: Do one of the following:

� Make sure that the stream token specified is valid.
� Ensure that IXGUPDAT requests were issued from the

connectors address space.

 IXGUPDAT — Update Log Stream Control Information 795

 IXGUPDAT

Figure 50 (Page 2 of 4). Return and Reason Codes for the IXGUPDAT Macro

Return Code Reason Code Meaning and Action

08 xxxx080A IxgRsnCodeRequestLocked -

Explanation: Program error. The program issuing the request is
holding a lock.

Action: Ensure that the program issuing the request is not holding a
lock.

08 xxxx0814 IxgRsnCodeNotAvailForIPL -

Explanation: Environment error. The system logger address space
is not available for the remainder of this IPL. The system issues
messages about this error during system logger initialization.

Action: See the explanation for system messages issued during
system logger initialization.

08 xxxx0815 IxgRsnCodeNotEnabled -

Explanation: Program error. The program issuing the request is not
enabled for I/O and external interrupts, so the request fails.

Action: Make sure the program issuing the request is enabled for
I/O and external interrupts.

08 xxxx0816 IxgRsnCodeBadAnslen -

Explanation: Program error. The answer area length (ANSLEN
parameter) is not large enough. The system logger returned the
required size in the Ansaa_Preferred_Size field of the answer area,
mapped by IXGANSAA macro.

Action: Reissue the request, specifying an answer area of the
required size.

08 xxxx0817 IxgRsnCodeBadAnsarea -

Explanation: Program error. The storage area specified on the
ANSAREA parameter cannot be accessed. This may occur after the
system logger address space has terminated.

Action: Specify storage that is in the callers primary address space
and in the same key as the calling program at the time the system
logger service was issued. This storage must be accessible until the
request completes.

08 xxxx0819 IxgRsnCodeSRBMode -

Explanation: Program error. The calling program is in SRB mode,
but task mode is the required dispatchable unit mode for this system
logger service.

Action: Make sure the calling program is in task mode.

08 xxxx081C IxgRsnCodeNotAuthFunc -

Explanation: Program error. The program connected to the log
stream with the AUTH=READ parameter and then tried to delete,
write, offload or update data. You cannot write, delete, offload or
update data when connected with read authority.

Action: Issue the IXGCONN service with AUTH=WRITE authority
and then reissue this request.

08 xxxx082D IxgRsnCodeExpiredStmToken -

Explanation: Environment error. The stream token is no longer valid
because the connector has been disconnected.

Action: Reconnect to the logstream before issuing any functional
requests.

08 xxxx0840 IxgRsnCodeBadVersion -

Explanation: Environment error. The parameter list passed to the
service routine has an incorrect version indicator.

Action: Make sure that the level of MVS executing the request and
the macro library used to compile the invoking routine are compatible.

796 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGUPDAT

Figure 50 (Page 3 of 4). Return and Reason Codes for the IXGUPDAT Macro

Return Code Reason Code Meaning and Action

08 xxxx0861 IxgRsnCodeRebuildInProgress -

Explanation: Environment error. No requests can be processed for
this log stream because a coupling facility structure rebuild is in
progress for the structure associated with this log stream.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the rebuild completed
successfully. Reissue the request.

� The rebuild failed and the log stream is not available.

08 xxxx0862 IxgRsnCodeXESPurge -

Explanation: Environment error. An cross-system extended services
(XES) request has been purged due to rebuild processing.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the rebuild completed
successfully. Reissue the request.

� The rebuild failed and the log stream is not available.

08 xxxx0863 IxgRsnCodeStructureFailed -

Explanation: Environment error. Either the coupling facility structure
associated with the log stream has failed or the coupling facility itself
has failed.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the rebuild completed
successfully. Reissue the request.

� The rebuild failed and the log stream is not available.

08 xxxx0864 IxgRsnCodeNoConnectivity -

Explanation: Environment error. No connectivity exists to the
coupling facility associated with the log stream. The system logger
will either attempt to rebuild the log stream in another coupling facility
or the log stream will be disconnected.

Action: Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the rebuild completed
successfully. Reissue the request.

� The rebuild failed and the log stream is not available.
� The log stream has been disconnected from this system.

08 xxxx0890 IxgRsnCodeAddrSpaceNotAvail -

Explanation: System error. The system logger address space failed
and is not available.

Action: Do not issue system logger requests.

08 xxxx0891 IxgRsnCodeAddrSpaceInitializing -

Explanation: System error. The system logger address space is not
available because it is IPLing.

Action: Listen for ENF signal 48, which will indicate when the
system logger address space is available. Once it's available,
reconnect to the log stream, then reissue this request. You can also
listen for ENF signal 48, which will indicate if the system logger
address space will not be available for the life of the IPL. In that
case, do not issue system logger services.

08 xxxx08DD IxgRsnCodeUpdateTimeStampTooSmall -

Explanation: Program error. The replacement GMT time stamp is
smaller than the time stamp maintained in the coupling facility for the
log stream. This error can be caused because the application did in
fact specify an invalid time stamp or the time stamp value has
changed after its current value was retrieved (e.g., via the
IXGQUERY service) because a write or another update request was
successfully processed for the log stream somewhere in the sysplex.

Action: Invoke the IXGQUERY service to obtain the current time
stamp value and determine if the update request should be retried.

 IXGUPDAT — Update Log Stream Control Information 797

 IXGUPDAT

Figure 50 (Page 4 of 4). Return and Reason Codes for the IXGUPDAT Macro

Return Code Reason Code Meaning and Action

08 xxxx08DE IxgRsnCodeUpdateNoOptions -

Explanation: Program error. The IXGUPDAT macro was invoked
with no options specified.

Action - - Specify at least one option and retry the request.

0C xxxx0000 Equate Symbol : IxgRetCodeCompError

Explanation: User or System error. One of the following occurred:

� You issued the FORCE IXGLOGR,ARM command to terminate
the system logger address space.

� System logger component error occurred.

Action: If this reason code is not the result of forcing the system
logger address space, search problem reporting data bases for a fix
for the problem. If no fix exists, contact the IBM Support Center.
Provide the diagnostic data in the answer area (IXGANSAA) and any
dumps or LOGREC entries from system logger.

 Example
Issue IXGUPDAT to update the time stamp for a log stream.

 IXGUPDAT @
 STREAMTOKEN=OTOKEN, @
 GMT_TIMESTAMP=GMTTIME, @
 ANSAREA=XANSAREA, @
 ANSLEN=XANSLEN, @
 RSNCODE=RSCODE
OTOKEN DS CL16 Output Stream token
GMTTIME DS CL8 GMT
XANSAREA DS CL(ANSAA_LEN) Logger answer area
XANSLEN DC A(ANSAA_LEN) Answer area length
RSCODE DS F Reason code
 DSECT ,

IXGANSAA , The answer area macro

798 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGWRITE Macro

IXGWRITE — Write Log Data to a Log Stream

 Description
Use the IXGWRITE macro to allow a program to write a log block to a log stream.
IXGWRITE returns a unique identifier for each log block written to the log stream.

System logger generates a time stamp for each log block as they are received from
applications issuing IXGWRITE and writes the blocks to the log stream in that order.
Applications that imbed their own time stamps in log blocks will find that the blocks may not
be in application-generated time stamp order, especially if multiple applications are writing to
a log stream simultaneously. In order to ensure chronological order of log blocks by
application-generated time stamp, applications should provide their own serialization on the
log stream.

For information on using the system logger services and the LOGR policy, see OS/390 MVS
Programming: Assembler Services Guide, which also includes information about related
macros IXGCONN, IXGBRWSE, IXGINVNT, and IXGDELET.

 Environment
The requirements for the caller are:

Minimum authorization : Problem state with any PSW key.
Dispatchable unit mode : Task
Cross memory mode : Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode : Primary or access register (AR)
Interrupt status : Enabled for I/O and external interrupts.
Locks : No locks held.
Control parameters : All control parameters (except for ECB) must be in the primary

address space. ECB must be addressable from home address
space.

 Programming Requirements
� Before issuing IXGWRITE, you must put the data you wish to write to the log stream

into a buffer specified on the BUFFER parameter. IXGWRITE will then write this buffer
to the log stream as a log block.

� The current primary address space from which you issue the IXGWRITE service must
be the same as the primary address space at the time you issued the IXGCONN
request.

� The parameter list for this service must be addressable in the caller's primary address
space.

� The calling program must be connected to the log stream with write authority through
the IXGCONN service.

� IXGWRITE cannot be issued if the connection is an import connection
(IMPORTCONNECT=YES on the IXGCONN service). The IXGWRITE service must be
issued under a write connection (IMPORTCONNECT=NO, which is the default).

� Include the IXGCON mapping macro in your program. This macro provides a list of
equate symbols for the system logger services.

� Include mapping macro IXGANSAA in your program. This macro shows the format of
the answer area output returned for each system logger service in the ANSAREA
parameter.

 Copyright IBM Corp. 1988, 1999 799

 IXGWRITE Macro

 Restrictions
� All storage areas specified on this macro must be in the same storage key as the

caller's storage key, with the exception of the BUFFKEY parameter.

Storage areas that are not ALET-qualified must exist in the caller's primary address
space. The ECB should be addressable from the home address space.

� There is more than one version of this macro available. The parameters you can use
depend on the version you specify on the PLISTVER parameter. See the description of
the PLISTVER parameter for more information.

Input Register Information
Before issuing the IXGWRITE macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code, if register 15 contains a non-zero return code.
1 Used as a work register by the system
2 - 13 Unchanged
14 Used as a work register by the system.
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0 - 1 Used as a work register by the system.
2 - 13 Unchanged
14 - 15 Used as a work register by the system.

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The standard form of the IXGWRITE macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede IXGWRITE.

IXGWRITE

␣ One or more blanks must follow IXGWRITE.

,STREAMTOKEN=streamtoken streamtoken: RS-type address or register (2) - (12).

,BUFFER=buffer buffer: RS-type address or register (2) - (12).

,BLOCKLEN=blocklen blocklen: RS-type address or register (2) - (12).

800 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGWRITE Macro

,RETBLOCKID=retblockid retblockid: RS-type address or register (2) - (12).

,ANSAREA=ansarea ansarea: RS-type address or register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or register (2) - (12).

 ,TIMESTAMP=timestamp timestamp: RS-type address or register (2) - (12).

Default : NO_TIMESTAMP

 MODE=SYNC Default : MODE=SYNC
 MODE=ASYNCNORESPONSE
 MODE=SYNCECB

 ,ECB=ecb ecb: RS-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default : IMPLIED_VERSION
 ,PLISTVER=plistver
 ,PLISTVER=0
 ,PLISTVER=1

 ,RETCODE=retcode retcode: RS-type address or register (2) - (12).

 ,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

 ,MF=S Default: MF=S
 ,MF=(L,list addr)
 ,MF=(L,list addr,attr)
 ,MF=(L,list addr,0D)
 ,MF=(E,list addr)
 ,MF=(E,list addr,COMPLETE)
 ,MF=(E,list addr,NOCHECK)
 ,MF=(M,list addr)
 ,MF=(M,list addr,COMPLETE)
 ,MF=(M,list addr,NOCHECK)

 Parameters
The parameters are explained as follows:

,STREAMTOKEN=streamtoken
Specifies the name (or address in a register) of a required 16-byte input field containing
the token for the log stream that you want to write to. The stream token is returned by
the IXGCONN service at connection to the log stream.

,BUFFER=buffer
Specifies the name (or address in a register) of a required character input field that
contains the buffer that contains the log block data you are writing to the log stream.

,BLOCKLEN= blocklen
Specifies the name (or address in a register) of a 4-byte input field that contains the
length in bytes of the log block you are writing to the log stream.

The value of BLOCKLEN must be between 1 and the value for MAXBUFSIZE.

RETBLOCKID= retblockid
Specifies the name (or address in a register) of a 8-byte output field where IXGWRITE
returns the unique block identifier for the log block written to the log stream.

,ANSAREA= ansarea
Specifies the name (or address in a register) of an answer area containing information
about this request. The answer area must be at least 40 bytes. To map this
information, use the IXGANSAA macro.

 IXGWRITE — Write Log Data to a Log Stream 801

 IXGWRITE Macro

,ANSLEN=anslen
Specifies the name (or address in a register) of the 4-byte field containing the answer
area length. The length of the answer area must be at least 40 bytes and must be the
same length as the field specified in ANSAREA.

To ascertain the optimal answer area length, look at the ANSAA_PREFERRED_SIZE
field of the IXGANSAA macro.

BUFFALET= buffalet
Specifies the name (or address in a register) of a 4-byte input field specifying the access
list entry table (ALET) to be used to access the buffer specified on the BUFFER
keyword. If the buffer is ALET-qualified, the ALET must index a valid entry on the task's
dispatchable unit access list (DUAL) or specify a SCOPE=COMMON data space. An
ALET that indexes the system logger PASN-AL list will not work.

The default is 0, which means that the buffer is in the calling program's primary address
space.

TIMESTAMP=timestamp
Specifies the name (or address in a register) of a 16-byte output field where the
Greenwich mean time and local time stamps associated with the requested log block are
returned when the right request is successful. Both time stamps will be in time of day
(TOD) clock format.

MODE=SYNC
MODE=ASYNCNORESPONSE
MODE=SYNCECB

Specifies that the request should be processed in one of the following ways:

� MODE=SYNC: Specifies that the request process synchronously. Control is not
returned to the caller until request processing is complete. If necessary, the calling
program will be suspended until the request completes.

� MODE=ASYNCNORESPONSE: Specifies that the request process asynchronously.
The caller is not notified when the request completes and the answer area
(ANSAREA) fields will not contain valid information.

To use this parameter, the system where the application is running must be IPLed
at OS/390 Release 3 level or above. If you specify this request on a pre-OS/390
Release 3 level system, the request is processed as a MODE=SYNC request.

� MODE=SYNCECB: Specifies that the request process synchronously if possible. If
the request processes asynchronously, control returns to the caller before the
request completes and the event control block (ECB) specified on the ECB keyword
is posted when the request completes. The ECB keyword is required with
MODE=SYNCECB.

,ECB=ecb
Specifies the name (or address in a register) of a 4-byte input field that contains the
event control block (ECB) to be posted when the request completes.

Before coding ECB, you must ensure that:

� You initialize the ECB to zero.

� The ECB must reside in either common storage or the home address space where
the IXGWRITE service was issued.

� The virtual storage area specified for the ECB must reside on a fullword boundary.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates.

802 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGWRITE Macro

The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default. Note that on the list form, the default will cause
the smallest parameter list to be created.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form when both forms are assembled using the same level
of the system. In this way, MAX ensures that the parameter list does not overwrite
nearby storage.

� 0, which supports all parameters except those specifically referenced in higher
versions.

� 1, which supports both the following parameters and parameters from version 0:

 – REQDATA

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION

 � MAX

� A decimal value of 0 or 1

,RETCODE=retcode
Specifies a name (or address in a register) of a 4-byte output field where the system will
place the return code. The return code is also in general purpose register (GPR) 15.

,RSNCODE=rsncode
Specifies a name (or address in a register) of a 4-byte output field where the system will
place the reason code. The reason code is also in general purpose register (GPR) 0, if
you received a non-zero return code.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Use MF=S to specify the standard form of the macro, which builds an inline parameter
list and generates the macro invocation to transfer control to the service. MF=S is the
default.

Use MF=L to specify the list form of the macro. Use the list form together with the
execute form of the macro for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters. Only the
PLISTVER parameter can be specified on the list form of the macro. IBM recommends
that you always specify PLISTVER=MAX on the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together
with the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list form,
and generates the macro invocation to transfer control to the service.

 IXGWRITE — Write Log Data to a Log Stream 803

 IXGWRITE Macro

Use MF=M together with the list and execute forms of the macro for service routines
that need to provide different options according to user-provided input. Use the list form
to define a storage area; use the modify form to set the appropriate options; then use
the execute form to call the service.

IBM recommends that you use the modify and execute forms in the following order:

� Use MF=(M,list_addr,COMPLETE), specifying appropriate parameters, including all
required ones.

� Use MF=(M,list_addr,NOCHECK), specifying the parameters you want to change.

� Use MF=(E,list_addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters.

,attr
An optional 1- to 60-character input string, which can contain any value that is valid
on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value
of 0D, which forces the parameter list to a doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults
for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to
supply defaults for omitted optional parameters.

 ABEND Codes
None.

Return and Reason Codes
When IXGWRITE macro returns control to your program, GPR 15 contains a return code
and GPR 0 contains a reason code.

Note: The return and reason codes will be put into the answer area mapped by IXGANSAA
only when system logger completes asynchronous processing of the request.

The IXGCONN macro provides equate symbols for the return and reason codes. The equate
symbols associated with each hexadecimal return code are as follows:

00 IXGRSNCODEOK
04 IXGRSNCODEWARNING
08 IXGRETCODEERROR
0C IXGRETCODECOMPERROR

The following table contains hexadecimal return and reason codes, the equate symbols
associated with each reason code, and the meaning and suggested action for each return
and reason code.

Figure 51 (Page 1 of 7). Return and Reason Codes for the IXGWRITE Macro

Return Code Reason Code Meaning and Action

00 xxxx0000 Equate Symbol : IxgRsnCodeOk

Explanation : Request processed successfully.

804 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGWRITE Macro

Figure 51 (Page 2 of 7). Return and Reason Codes for the IXGWRITE Macro

Return Code Reason Code Meaning and Action

04 xxxx0401 Equate Symbol : IxgRsnCodeProcessedAsynch

Explanation : Program error. The program specified
MODE=SYNCECB and the request must be processed
asynchronously.

Action : Wait for the ECB specified on the ECB parameter to be
posted, indicating that the request is complete. Check the
ANSAA_ASYNCH_RETCODE and ANSAA_ASYNCH_RSNCODE
fields, mapped by IXGANSAA, to determine whether the request
completed successfully.

04 xxxx0405 Equate Symbol : IxgRsnCodeWarningLossOfData

Explanation : Environment error. The request was successful
however the log stream has previously lost log blocks. This condition
occurs when a system and coupling facility fail and not all of the log
data in the log stream could be recovered.

Action : If your application cannot tolerate any data loss, stop issuing
system logger services to this log stream, disconnect from the log
stream, and reconnect to a new, undamaged log stream. You can
continue using the log stream if your applications can tolerate data
loss.

04 xxxx0407 Equate Symbol : IxgRsnCodeConnPossibleLossOfData

Explanation : Environment error. The request was successful, but
there may be log blocks permanently missing between this log block
and the one previously returned. This condition occurs when a
system or coupling facility fails and not all of the data in the log
stream could be recovered.

Action : If your application cannot tolerate any data loss, stop issuing
system logger services to this log stream, disconnect from the log
stream, and reconnect to a new, undamaged log stream. You can
continue using the log stream if your applications can tolerate data
loss.

04 xxxx0408 Equate Symbol : IxgRsnCodeDsDirectoryFullWarning

Explanation : Environment error. The request was successful, but the
log streams DASD data set directory is full. System logger cannot
offload any further data from the coupling facility structure to DASD.
The system logger will continue to process IXGWRITE requests until
this log streams portion of the coupling facility structure becomes full.

Action : Either delete enough data from the log stream to free up
space in the log streams data set directory so that offloading can
occur or disconnect from the log stream.

04 xxxx0409 Equate Symbol : IxgRsnCodeWowWarning

Explanation : Environment error. The request was successful, but an
error condition was detected during a previous offload of data.
System logger might not be able to offload further data. System
logger will continue to process IXGWRITE requests only until the
interim storage for the log stream is filled. (Interim storage is the
coupling facility for a coupling facility log stream and local storage
buffers for a DASD-only log stream.)

Action : Do not issue any further requests for this log stream and
disconnect. Connect to another log stream. Check the system log for
message IXG301I to determine the cause of the error. If you cannot
fix the error, search problem reporting data bases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

04 xxxx040A Equate Symbol : IxgRsnCodeDuplexFailureWarning

Explanation : Environment error. The request was successful, but the
system logger was unable to duplex log data to staging data sets,
even though the log stream definition requested unconditional
duplexing to staging data sets (STG_DUPLEX=YES,
DUPLEXMODE=UNCOND).

Action : If duplexing to staging data sets is required, disconnect from
this log stream and connect to a log stream that can be duplexed to
staging data sets.

 IXGWRITE — Write Log Data to a Log Stream 805

 IXGWRITE Macro

Figure 51 (Page 3 of 7). Return and Reason Codes for the IXGWRITE Macro

Return Code Reason Code Meaning and Action

08 xxxx0801 Equate Symbol : IxgRsnCodeBadParmlist

Explanation : Program error. The parameter list could not be
accessed.

Action : Ensure that the storage area for the parameter list is
accessible to the system logger for the duration of the request. The
parameter list storage must be addressable in the caller's primary
address space and in the same key as the caller.

08 xxxx0802 Equate Symbol : IxgRsnCodeXESError

Explanation : System error. A severe cross-system extended
services (XES) error has occurred.

Action : See ANSAA_DIAG1 for the XES return code and
ANSAA_DIAG2 for the XES reason code.

08 xxxx0803 Equate Symbol : IxgRsnCodeBadBuffer

Explanation : Program error. The virtual storage area specified on the
BUFFER parameter is not addressable.

Action : Ensure that the storage area specified on the BUFFER
parameter is accessible to system logger for the duration of the
request. If the BUFFKEY parameter is specified, make sure it
contains a valid key associated with the storage area. If BUFFKEY is
not used, ensure that the storage is in the same key as the program
at the time the logger service was requested. The storage must be
addressable in the caller's primary address space.

08 xxxx0806 Equate Symbol : IxgRsnCodeBadStmToken

Explanation : Program error. One of the following occurred:

� The stream token was not valid.
� The specified request was issued from an address space other

than the connector's address space.

Action : Do one of the following:

� Make sure that the stream token specified is valid.
� Ensure the request was issued from the connector's address

space.

08 xxxx0809 Equate Symbol : IxgRsnCodeBadWriteSize

Explanation : Program error. The size of the log block specified in
the BLOCKLEN parameter is not valid. The value for BLOCKLEN
must be greater than zero and less than or equal to the maximum
buffer size (MAXBUFSIZE) defined in the LOGR policy for the
structure associated with this log stream.

Action : Ensure that the value specified on the BLOCKLEN parameter
is greater than 0 and less than or equal to the MAXBUFSIZE which is
returned on the log stream connect request.

08 xxxx080A Equate Symbol : IxgRsnCodeRequestLocked

Explanation : Program error. The program issuing the request is
holding a lock.

Action : Ensure that the program issuing the request is not holding a
lock.

08 xxxx0814 Equate Symbol : IxgRsnCodeNotAvailForIPL

Explanation : Environment error. The system logger address space
is not available for the remainder of this IPL. The system issues
messages about this error during system logger initialization.

Action : See the explanation for system messages issued during
system logger initialization.

08 xxxx0815 Equate Symbol : IxgRsnCodeNotEnabled

Explanation : Program error. The program issuing the request is not
enabled for I/O and external interrupts, so the request fails.

Action : Make sure the program issuing the request is enabled for
I/O and external interrupts.

806 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGWRITE Macro

Figure 51 (Page 4 of 7). Return and Reason Codes for the IXGWRITE Macro

Return Code Reason Code Meaning and Action

08 xxxx0816 Equate Symbol : IxgRsnCodeBadAnslen

Explanation : Program error. The answer area length (ANSLEN
parameter) is not large enough. The system logger returned the
required size in the Ansaa_Preferred_Size field of the answer area,
mapped by IXGANSAA macro.

Action : Re-issue the request, specifying an answer area of the
required size.

08 xxxx0817 Equate Symbol : IxgRsnCodeBadAnsarea

Explanation : Program error. The storage area specified on the
ANSAREA parameter cannot be accessed. This may occur after the
system logger address space has terminated.

Action : Specify storage that is in the caller's primary address space
and in the same key as the calling program at the time the system
logger service was issued. This storage must be accessible until the
request completes.

08 xxxx0818 Equate Symbol : IxgRsnCodeBadBlockidStor

Explanation : Program error. The storage area specified by BLOCKID
cannot be accessed.

Action : Ensure that the storage area is accessible to system logger
for the duration of the request. The storage must be addressable in
the caller's primary address space and in the same key as the caller.

08 xxxx081C Equate Symbol : IxgRsnCodeNotAuthFunc

Explanation : Program error. The program connected to the log
stream with the AUTH=READ parameter and then tried to delete or
write data. You cannot write or delete data when connected with read
authority.

Action : Issue the IXGCONN service with AUTH=WRITE authority
and then re-issue this request.

08 xxxx082D Equate Symbol : IxgRsnCodeExpiredStmToken

Explanation : Environment error. The stream token is no longer valid
because the connector has been disconnected.

Action : Connect to the log stream again before issuing any functional
requests.

08 xxxx0837 Equate Symbol : IxgRsnCodeBadTimestamp

Explanation : Program error. The storage area specified by
TIMESTAMP cannot be accessed.

Action : Ensure that the storage area is accessible to the system
logger service for the duration of the request. The storage must be
addressable in the caller's primary address space and in the same
key as the caller.

08 xxxx083D Equate Symbol : IxgRsnCodeBadECBStor

Explanation : Program error. The ECB storage area was not
accessible to the system logger.

Action : Ensure that the storage area is accessible to the system
logger for the duration of the request. The storage must be
addressable in the caller's home address space and in the same key
as the caller.

08 xxxx083F Equate Symbol : IxgRsnCodeTestartError

Explanation : System error. An unexpected error was encountered
while attempting to validate the buffer ALET.

Action : See ANSAA_DIAG1 in the answer area mapped by the
IXGANSAA macro for the return code from the TESTART system
service.

08 xxxx0841 Equate Symbol : IxgRsnCodeBadBufferAlet

Explanation : Program error. The buffer ALET specified is not zero
and does not represent a valid entry on the caller's dispatchable unit
access list (DUAL). See the ANSAA_DIAG1 field of the answer area,
mapped by the IXGANSAA macro, for the return code from the
TESTART system service.

Action : Ensure that the correct ALET was specified. If not, provide
the correct ALET. Otherwise, add the correct ALET to dispatchable
unit access list (DUAL).

 IXGWRITE — Write Log Data to a Log Stream 807

 IXGWRITE Macro

Figure 51 (Page 5 of 7). Return and Reason Codes for the IXGWRITE Macro

Return Code Reason Code Meaning and Action

08 xxxx0849 Equate Symbol : IxgRsnCodeBadBuffkey

Explanation : Program error. The buffer key specified on the
BUFFKEY parameter specifies an invalid key. Either the key is
greater than 15 or the program is running in problem state and the
specified key is not the same key as the PSW key at the time the
system logger service was issued.

Action : For problem state programs, either do not specify the
BUFFKEY parameter or else specify the same key as the PSW key
at the time the system logger service was issued. For supervisor
state programs, specify a valid storage key (0 <= key <= 15).

08 xxxx085C Equate Symbol : IxgRsnCodeDsDirectoryFull

Explanation : Program error. The coupling facility structure space
allocated for this log stream is full. Attempts to offload the coupling
facility data to DASD failed because the log stream's data set
directory is full. If this reason code is issued by the IXGWRITE
request, no further write requests can be processed until additional
directory space is available for the log stream.

The system issues related messages IXG257I and ISG301I.

Action : You must make more log stream data set directory space
available. See OS/390 MVS Setting Up a Sysplex for more
information.

08 xxxx085D Equate Symbol : IxgRsnCodeWowError

| Explanation : Environment error. The coupling facility structure
| space allocated for this log stream is full, or the staging data set
| space is full. Attempts to offload the interim storage data to DASD

failed because of severe errors. No further write requests can be
processed.

| Action : Wait for the ENF signal that indicates that the logstream has
| been successfully offloaded, or disconnect from this log stream and

connect to another log stream. Check log for message IXG301I to
determine the cause of the error. If error was related to the your
installation, correct the error. Otherwise, search problem reporting
data bases for a fix for the problem. If no fix exists, contact the IBM
Support Center.

08 xxxx0860 Equate Symbol : IxgRsnCodeCFLogStreamStorFull

Explanation : Environment error. The coupling facility structure space
allocated for this log stream is full. No further requests can be
processed until the log data in the coupling facility structure is
offloaded to DASD log data sets.

Action : Listen to the ENF signal 48 which will indicate that the log
stream is available after the data has been offloaded to DASD. For
IXGCONN requests, Listen to the ENF signal 48 which will indicate
that the structure is available. Then, re-issue the request.

08 xxxx0861 Equate Symbol : IxgRsnCodeRebuildInProgress

Explanation : Environment error. No requests can be processed for
this log stream because a coupling facility structure re-build is in
progress for the structure associated with this log stream.

Action : Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the re-build completed
successfully. Re-issue the request.

� The re-build failed and the log stream is not available.

08 xxxx0862 Equate Symbol : IxgRsnCodeXESPurge

Explanation : Environment error. An cross-system extended services
(XES) request has been purged due to re-build processing.

Action : Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the re-build completed
successfully. Re-issue the request.

� The re-build failed and the log stream is not available.

808 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGWRITE Macro

Figure 51 (Page 6 of 7). Return and Reason Codes for the IXGWRITE Macro

Return Code Reason Code Meaning and Action

08 xxxx0863 Equate Symbol : IxgRsnCodeStructureFailed

Explanation : Environment error. Either the coupling facility structure
associated with the log stream has failed or the coupling facility itself
has failed.

Action : Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the re-build completed
successfully. Re-issue the request.

� The re-build failed and the log stream is not available.

08 xxxx0864 Equate Symbol : IxgRsnCodeNoConnectivity

Explanation : Environment error. No connectivity exists to the
coupling facility associated with the log stream. The system logger
will either attempt to re-build the log stream in another coupling
facility or the log stream will be disconnected.

Action : Listen for ENF signal 48 that will indicate one of the
following:

� The log stream is available because the re-build completed
successfully. Re-issue the request.

� The re-build failed and the log stream is not available.
� The log stream has been disconnected from this system.

08 xxxx0865 Equate Symbol : IxgRsnCodeStagingDSFull

Explanation : Environment error. The staging data set allocated for
this log stream on this system is full. No further requests can be
processed until enough log data in the coupling facility structure is
offloaded to DASD log data sets to relieve the staging data set's full
condition.

Action : Listen to the ENF signal 48 which will indicate that the log
stream is available after room becomes available in the staging data
set. Then, re-issue the request.

08 xxxx0867 Equate Symbol : IxgRsnCodeLocalBufferFull

Explanation : Environment error. The available local buffer space for
the system logger address space is full. No further requests can be
processed until the log data in the local storage buffer is offloaded to
DASD log data sets. Note that this reason code applies only to a
IXGWRITE or IXGIMPRT request issued against a DASD-only log
stream.

Action : Listen for the ENF signal 48 indicating that the DASD-only
log stream is available again after the data has been offloaded to
DASD log data sets. Then re-issue the request.

08 xxxx0868 Equate Symbol : IxgRsnCodeStagingDSFormat

Explanation : Environment error. The staging data set allocated for
this log stream on this system has not finished being formatted for
use by System Logger. No further IXGWRITE requests can be
processed until the formatting completes.

Action : Listen to the ENF signal 48 which will indicate that the
logstream is available after formatting process is finished. Then,
re-issue the request.

08 xxxx0890 Equate Symbol : IxgRsnCodeAddrSpaceNotAvail

Explanation : System error. The system logger address space failed
and is not available.

Action : Do not issue system logger requests.

08 xxxx0891 Equate Symbol : IxgRsnCodeAddrSpaceInitializing

Explanation : System error. The system logger address space is not
available because it is IPLing.

Action : Listen for ENF signal 48, which will indicate when the
system logger address space is available. Re-connect to the log
stream, then re-issue this request. You can also listen for ENF signal
48, which will indicate if the system logger address space will not be
available for the life of the IPL. In that case, do not issue system
logger services.

 IXGWRITE — Write Log Data to a Log Stream 809

 IXGWRITE Macro

Figure 51 (Page 7 of 7). Return and Reason Codes for the IXGWRITE Macro

Return Code Reason Code Meaning and Action

08 xxxx08D1 Equate Symbol : IxgRsnCodePrgramKey

Explanation : Environment error. The request was rejected because
of one of the following:

� The request was issued in SRB mode while the requestor was in
problem program key (key 8-F).

� The SYNCEXIT parameter was specified while the requestor's
PSW key was in problem program key.

Action : Change the invoking environment to a system key (key 0-7).

08 xxxx08D2 Equate Symbol : IxgRsnCodeNoCompleteExit

Explanation : Program error. MODE=SYNCEXIT was specified, but
the connection request did not identify a complete exit.

Action : Either change this request to a different MODE option, or
reconnect to the log stream with a complete exit specified on the
COMPLETEXIT parameter.

08 xxxx08D7 Equate Symbol : IxgRsnCodeRequestNotAllowed

Explanation : Program error. The caller issued an IXGWRITE
request while an import connection was active on this system
(IXGCONN IMPORTCONNECT=YES).

Action : Re-issue the request, based on the type of connection active.

0C xxxx0000 Equate Symbol : IxgRetCodeCompError

Explanation : User or System error. One of the following occurred:

� You issued the FORCE IXGLOGR,ARM command to terminate
the system logger address space.

� System logger component error occurred.

Action : If this reason code is not the result of forcing the system
logger address space, search problem reporting data bases for a fix
for the problem. If no fix exists, contact the IBM Support Center.
Provide the diagnostic data in the answer area (IXGANSAA) and any
dumps or LOGREC entries from system logger.

810 OS/390 V2R8.0 MVS Assembler Services Reference

 IXGWRITE Macro

 Example 1
Write data to the log stream synchronously.

 IXGWRITE STREAMTOKEN=TOKEN, X
 BUFFER=BUFF, X
 BLOCKLEN=BLKLEN, X
 BUFFALET=BUFALET, X
 RETBLOCKID=RETBLK, X
 BUFFKEY=BUFKEY, X
 TIMESTAMP=RET_TIME, X
 MODE=SYNC, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
BUFF DC CL256'BUFFER TEXT' buffer to write to log stream
BLKLEN DC F'256' length of block to be written
ANSLEN DC A(L'ANSAREA) length of logger's answer area
BUFKEY DC F'8' buffer key
TOKEN DS CL16 stream token from connect
RET_TIME DS CL16 returned timestamp of block
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code
RSNCODE DS F reason code
BUFALET DC F'1' buffer alet secondary
RETBLK DS CL8 returned block id
DATAREA DSECT
 IXGANSAA LIST=YES answer area

 IXGWRITE — Write Log Data to a Log Stream 811

 IXGWRITE Macro

 Example 2
Write data to the log stream asynchronously, if synchronous processing is not possible.

 IXGWRITE STREAMTOKEN=TOKEN, X
 BUFFER=BUFF, X
 BLOCKLEN=BLKLEN, X
 BUFFALET=BUFALET, X
 RETBLOCKID=RETBLK, X
 MODE=SYNCECB, X
 ECB=ANECB, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
\+++
\ if return code = 'ððððð4ð1'X then wait
\ on the ecb ANECB for the request to complete
\+++
BUFF DC CL256'BUFFER TEXT' buffer to write to log stream
BLKLEN DC F'256' length of block to be written
ANSLEN DC A(L'ANSAREA) length of logger's answer area
TOKEN DS CL16 stream token from connect
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code
RSNCODE DS F reason code
BUFALET DC F'1' buffer alet secondary
ANECB DS F ecb to wait on
RETBLK DS CL8 returned block id
DATAREA DSECT
 IXGANSAA LIST=YES answer area

 Example 3
Write data to the log stream using registers.

LA R6,TOKEN load stream token in register 6
 IXGWRITE STREAMTOKEN=(6), X
 BUFFER=BUFF, X
 BLOCKLEN=BLKLEN, X
 RETBLOCKID=RETBLK, X
 MODE=SYNC, X
 ANSAREA=ANSAREA, X
 ANSLEN=ANSLEN, X
 RSNCODE=RSNCODE, X
 MF=S, X
 RETCODE=RETCODE
BUFF DC CL256'BUFFER TEXT' buffer to write to log stream
BLKLEN DC F'256' length of block to be written
ANSLEN DC A(L'ANSAREA) length of logger's answer area
TOKEN DS CL16 stream token from connect
ANSAREA DS CL(ANSAA_LEN) answer area for log requests
RETCODE DS F return code
RSNCODE DS F reason code
RETBLK DS CL8 returned block id
DATAREA DSECT
 IXGANSAA LIST=YES answer area
R6 EQU 6 set up register 6

812 OS/390 V2R8.0 MVS Assembler Services Reference

 LINK and LINKX Macros

LINK and LINKX — Pass Control to a Program in Another Load Module

 Description
The LINK macro is used to pass control to a specified entry name in another load module;
the entry name must be a member name or an alias in the directory of a partitioned data set
(PDS) or must have been specified in an IDENTIFY macro. The load module containing the
program is brought into virtual storage if a usable copy is not available.

If your program is in access register (AR) address space control (ASC) mode, use LINKX.
All the parameters on LINK are valid on LINKX.

Descriptions of the LINK and LINKX macro in this book are:

� The standard form of the LINK macro, which includes general information about the
LINK and LINKX macros with specific information about the LINK macro. The syntax of
the LINK macro and all LINK parameters are explained.

� The standard form of the LINKX macro, which presents information specific to the
LINKX macro and callers in AR mode.

� The list form of the LINK and LINKX macros.

� The execute form of the LINK and LINKX macros.

LINK and LINKX processing ensure that the called program receives control in the correct
addressing mode. If the called program has an address mode of ANY, it receives control in
the AMODE of the calling program. The program issuing the LINK or LINKX macro regains
control in its own addressing mode.

The caller optionally can provide a parameter list to be passed to the called program. If the
called program terminates abnormally, or if the specified entry point cannot be located, the
task is abnormally terminated unless the caller provides an ERRET exit.

 Note

The LINK and LINKX macros have the same environment specifications, register
information, programming requirements, restrictions and limitations, performance
implications, and return and reason codes described below, except where noted in the
explanation for LINKX.

 Environment
The requirements for the caller of LINK are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=SASN=HASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt Status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Copyright IBM Corp. 1988, 1999 813

 LINK and LINKX Macros

 Programming Requirements
None.

 Restrictions
� The caller cannot have an EUT FRR established.

 Register Information
After the caller issues the macro, the system might use some registers as work registers or
might change the contents of some registers. When the system returns control to the caller,
the contents of these registers are not the same as they were before the macro was issued.
Therefore, if the caller depends on these registers containing the same value before and
after issuing the macro, the caller must save these registers before issuing the macro and
restore them after the system returns control.

If the LINK is successful, the GPRs contain the following when the called program receives
control:

Register Contents
0 Unchanged
1 One of the following:

� Address of the PARAM address list if that is coded.

� Otherwise, unchanged if LSEARCH=YES not specified and LINKX not
specified, and LINK not issued with SYSSTATE ASCENV=AR.

� Otherwise, used as a work register by the system.

2-13 Unchanged
14 Used as a work register by the system
15 Requested program's entry point address

Upon return to the caller, the GPRs contain whatever values the called program placed
there.

If the LINK is not successful and the caller provided an ERRET exit to receive control, the
GPRs contain the following:

Register Contents
0 Unchanged
1 Abend code for the ABEND that would have been issued if the caller had not

provided an ERRET exit.
2-13 Unchanged
14 Used as a work register by the system
15 Address of the ERRET exit.

 Performance Implications
None.

 Syntax
The standard form of the LINK macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede LINK.

LINK

␣ One or more blanks must follow LINK.

814 OS/390 V2R8.0 MVS Assembler Services Reference

 LINK and LINKX Macros

EP=entry name entry name: Symbol.
EPLOC=entry name addr entry name addr: A-type address, or register (2) - (12).
DE=list entry addr list entry addr: A-type address, or register (2) - (12).

 ,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).

 ,PARAM=(addr) addr: A-type address, or register (2) - (12).
 ,PARAM=(addr),VL=1 Note: addr is one or more addresses, separated by commas.

For example, (addr,addr,addr)

 ,ID=id nmbr id nmbr: Symbol or decimal digit, with a maximum value of 4095.

,ERRET=err rtn addr err rtn addr: A-type address, or register (2) - (12).

 ,LSEARCH=NO Default: No
 ,LSEARCH=YES

 Parameters
The parameters are explained as follows:

EP=entry name
EPLOC=entry name addr
DE=list entry addr

Specifies the entry name, the address of the entry name, or the address of the name
field in a 62-byte list entry for the entry name that was constructed using the BLDL
macro. If EPLOC is coded, entry name addr points to an eight-byte field. If the name is
less than eight characters, left-justify the name and pad with blanks on the right to make
up the eight characters.

The system ignores the information you specify on the DE parameter if the parameter
does one or both of the following:

� Specifies an entry in an authorized library (that is, defined in IEAAPFxx member of
parmlib)

� Requests access to a program or library that is controlled by the system
authorization facility (SAF)

Instead, the system uses the BLDL macro to construct a new list entry containing the
DE information.

Note: When you use the DE parameter with the LINK macro, DE specifies the address
of a list that was created by a BLDL macro. BLDL and LINK must be issued from the
same task; otherwise, the system might terminate the program with an abend code of
106 and a return code of 15. Therefore, do not issue ATTACH or DETACH between
issuances of BLDL and LINK.

 LINK and LINKX — Pass Control to a Program in Another Load Module 815

 LINK and LINKX Macros

,DCB=dcb addr
Specifies the address of the opened data control block for the partitioned data set
containing the entry name described above. This parameter must indicate the same
DCB specified in the BLDL used to locate the entry name.

If the DCB parameter is omitted or if DCB=0 is specified when the LINK macro is issued
by the job step task, the data sets referred to by either the STEPLIB or JOBLIB DD
statement are first searched for the entry point name. If the entry point name is not
found, the link library is searched.

If the DCB parameter is omitted or if DCB=0 is specified when the LINK macro is issued
by a subtask, the data sets associated with one or more data control blocks referred to
by the TASKLIB operand of previous ATTACH macros in the subtasking chain are first
searched for the entry point name. If the entry point name is not found, the search is
continued as if LINK had been issued by the job step task.

Note: DCB must reside in 24-bit addressable storage.

,PARAM=(addr)
,PARAM=(addr),VL=1

Specifies address(es) to be passed to the called program. To form the parameter list,
the macro expands each address inline to a fullword on a fullword boundary, in the
order designated. GPR 1 contains the address of the first parameter when the program
is given control. (If this parameter is not coded, GPR 1 is not altered unless the execute
form of the LINK macro is coded or LSEARCH=YES is specified.)

Specify VL=1 only if the called program can be passed a variable number of
parameters. VL=1 causes the high-order bit of the last address parameter to be set to
1; the bit can be checked to find the end of the list.

,ID=id nmbr
Specifies an identifier for this invocation of the macro, useful for debugging purposes.
The last fullword of the macro expansion is a NOP instruction containing, in bytes 3 and
4, the identifier you specified.

,ERRET=err rtn addr
Specifies the address of an exit to receive control when an error condition that would
cause abnormal termination of the task is detected. The ERRET exit does not receive
control when input parameter errors are detected.

,LSEARCH=NO
,LSEARCH=YES

Specifies whether (YES) or not (NO) the search is to be limited to the job pack area and
the first library in the normal search sequence.

Return and Reason Codes
None.

 Example 1
Pass control to a specified entry name (PGMLKRUS) in another load module. Let the
system find the module from available libraries.

LINK EP=PGMLKRUS

 Example 2
Pass control to a specified entry name (PGMA) in another load module, specifying (in
registers 4, 6, 8) three addresses to be passed to the called program.

LINK EP=PGMA,PARAM=((4),(6),(8))

816 OS/390 V2R8.0 MVS Assembler Services Reference

 LINK and LINKX Macros

LINKX — Pass Control to a Program in Another Load Module
The LINKX macro performs the same function as LINK. It passes control to a specified entry
name in another load module. LINKX is intended for use by programs running in access
register (AR) mode.

 Note

The LINKX macro has the same environment specifications, register information,
programming requirements, restrictions and limitations, performance implications, and
return and reason codes as the LINK macro, except where noted below.

 Environment
The LINKX macro can be used by callers in AR or primary ASC mode.

 Programming Requirements
If your program is in AR mode, issue the SYSSTATE ASCENV=AR macro before you issue
LINKX.

Parameters passed to the called program using the PARAM parameter must reside in your
primary address space.

 Register Information
When the caller regains control or the ERRET exit receives control, the access registers
(ARs) are unchanged.

 Syntax
The standard form of the LINKX macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede LINKX.

LINKX

␣ One or more blanks must follow LINKX.

EP=entry name entry name: Symbol.
EPLOC=entry name addr entry name addr: A-type address, or register (2) - (12).
DE=list entry addr list entry addr: A-type address, or register (2) - (12).

 ,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).

 ,PARAM=(addr) addr: A-type address, or register (2) - (12).
 ,PARAM=(addr),VL=1 Note: addr is one or more addresses, separated by commas.

For example, (addr,addr,addr)

 ,ID=id nmbr id nmbr: Symbol or decimal digit, with a maximum value of 4095.

,ERRET=err rtn addr err rtn addr: A-type address, or register (2) - (12).

 ,LSEARCH=NO Default: No
 ,LSEARCH=YES

 LINK and LINKX — Pass Control to a Program in Another Load Module 817

 LINK and LINKX Macros

 Parameters
The parameters are explained under LINK. The parameter list on the PARAM parameter is
different for callers in AR mode. It is described as follows:

PARAM=(addr)
PARAM=(addr),VL=1

Specifies addresses to be passed to the called program. The macro expands each
address inline to a fullword on a fullword boundary, in the order designated.

LINKX builds the parameter list so that the addresses passed to the called program are
in the first half of the parameter list and their corresponding ALETs are in the last half of
the list.

When the program that is the target of the LINKX receives control, general purpose
register 1 contains the address of the parameter list. If the program that issued the
LINKX macro was in AR mode, access register 1 contains the ALET that qualifies the
parameter list address.

Specify VL=1 if the called program can be passed a variable number of parameters.
VL=1 causes the macro to set the high-order of the last address parameter to 1. For
callers in AR mode, the ALETs follow this last address parameter. For more information
about passing parameters in AR mode, see “User Parameters” on page 3.

LINK and LINKX—List Form
Two parameter lists are used in a LINK or LINKX macro: a control program parameter list
and problem program parameter list. Only the control program parameter list can be
constructed in the list form of LINK or LINKX. Address parameters to be passed in a
parameter list to the problem program can be provided using the list form of CALL. This
parameter list can be referred to in the execute form of LINK or LINKX.

 Syntax
The list form of the LINK or LINKX macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede LINK or LINKX.

LINK
LINKX

␣ One or more blanks must follow LINK or LINKX.

EP=entry name entry name: Symbol.
EPLOC=entry name addr entry name addr: A-type address.
DE=list entry addr list entry addr: A-type address.

 ,DCB=dcb addr dcb addr: A-type address.

,ERRET=err rtn addr err rtn addr: A-type address.

 ,LSEARCH=NO Default: No
 ,LSEARCH=YES

,SF=L

818 OS/390 V2R8.0 MVS Assembler Services Reference

 LINK and LINKX Macros

 Parameters
The parameters are explained under the standard form of the LINK and LINKX macros, with
the following exception:

,SF=L
Specifies the list form of the LINK or LINKX macro.

Notes:

1. Coding the LSEARCH parameter causes a parameter list to be created that is different
from the list created when LSEARCH is omitted. If you code LSEARCH=YES in either
the list or execute form of the macro, you must code it in both forms.

2. If ERRET is coded in the list form and not specified in the execute form, the error
routine specified in the list form will be retained and used in the execute form of the
macro. If ERRET is specified in both the list and the execute form, the error routine
specified in the execute form of the macro will be used.

 LINK and LINKX — Pass Control to a Program in Another Load Module 819

 LINK and LINKX Macros

LINK and LINKX—Execute Form
Two parameter lists are used in a LINK or LINKX macro: a control program parameter list
and an optional problem program parameter list. Either or both of these lists can be remote
and can be referred to and modified by the execute form of LINK or LINKX. If only one of
the parameter lists is remote, parameters that require use of the other parameter list cause
that list to be constructed inline as part of the macro expansion.

 Syntax
The execute form of the LINK or LINKX macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede LINK or LINKX.

LINK
LINKX

␣ One or more blanks must follow LINK or LINKX.

EP=entry name entry name: Symbol.
EPLOC=entry name addr entry name addr: RX-type address or register (2) - (12).
DE=list entry addr list entry addr: RX-type address, or register (2) - (12).

 ,DCB=dcb addr dcb addr: RX-type address, or register (2) - (12).

 ,PARAM=(addr) addr: RX-type address, or register (2) - (12).
 ,PARAM=(addr),VL=1 Note: addr is one or more addresses, separated by commas.

For example, (addr,addr,addr)

 ,ID=id nmbr id nmbr: Symbol or decimal digit, with a maximum value of 4095.

,ERRET=err rtn addr err rtn addr: RX-type address or register (2) - (12).

 ,LSEARCH=NO Default: No
 ,LSEARCH=YES

,MF=(E,prob addr) prob addr: RX-type address, or register (1) or (2) - (12).
,SF=(E,ctrl addr) ctrl addr: RX-type address, or register (2) - (12) or (15).
,MF=(E,prob addr),SF=(E,ctrl
addr)

 Parameters
The parameters are explained under the standard form of the LINK and LINKX macros, with
the following exceptions:

,MF=(E,prob addr)
,SF=(E,ctrl addr)
,MF=(E,prob addr),SF=(E,ctrl addr)

Specifies the execute form of the LINK or LINKX macro. This form uses a remote
problem program parameter list, a remote control program parameter list, or both.

820 OS/390 V2R8.0 MVS Assembler Services Reference

 LINK and LINKX Macros

Notes:

1. Coding the LSEARCH parameter causes a parameter list to be created that is different
from the list created when LSEARCH is omitted. If you code LSEARCH=YES in either
the list or execute form of the macro, you must code it in both forms.

2. If ERRET is coded in the list form and not specified in the execute form, the error
routine specified in the list form will be retained and used in the execute form of the
macro. If ERRET is specified in both the list and the execute form, the error routine
specified in the execute form of the macro will be used.

 LINK and LINKX — Pass Control to a Program in Another Load Module 821

 LINK and LINKX Macros

822 OS/390 V2R8.0 MVS Assembler Services Reference

 LOAD Macro

LOAD — Bring a Load Module into Virtual Storage

 Description
The LOAD macro is used to bring the load module containing the specified entry name into
virtual storage, if a usable copy is not available in virtual storage. Control is not passed to
the load module; instead, the load module's entry point address is returned in GPR 0. LOAD
services places the load module in storage above or below 16 megabytes depending on the
module's RMODE. The responsibility count for the load module is increased by one.

The load module remains in virtual storage until the responsibility count is reduced to 0
through task terminations or until the effects of all outstanding LOAD requests for the module
have been canceled (using the DELETE macro), and there is no other requirement for the
module.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt Status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Programming Requirements
If you code the parameters LSEARCH or LOADPT, you will obtain a macro-generated
parameter list. Therefore, except for the error routine address, all addresses must be
specified as A-type addresses or registers (2) - (12).

 Restrictions
� Any module loaded by a task will not be removed from virtual storage unless the task

that loaded the module invokes the DELETE macro or terminates.

� The load module entry name must be listed as a member name or alias in a partitioned
dataset directory or it must have been specified previously using the IDENTIFY macro. If
the LOAD macro cannot find the specified entry name, the caller's task is abended
unless the caller provides an ERRET exit.

� The caller cannot have an EUT FRR established.

Input Register Information
Before issuing the LOAD macro, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter, or using it as a base
register.

Output Register Information
If the LOAD is successful, the GPRs contain the following when control returns to the caller:

Register Contents
0 Entry point address of the requested load module. Load services sets the

high-order bit of the entry point address to the load module's AMODE. If the
module's AMODE is ANY, it sets the indicator to the caller's AMODE.

 Copyright IBM Corp. 1988, 1999 823

 LOAD Macro

1 The high-order byte contains the load module's APF authorization code.

The three low-order bytes contain a length value for the module. When the
module is a program object, bound with FETCHOPT=NOPACK option, the
length value returned is the number of doublewords equivalent to the
fullpage–multiple area obtained with GETMAIN to hold the program object. If
the program object is bound with FETCHOPT=PACK, the length value returned
is the number of doublewords equivalent to the virtual storage size indicated in
the directory entry. See DFSMS/MVS Program Management for further
information.

2-13 Unchanged.
14 Used as a work register by the system
15 Zero, indicating successful completion.

If the LOAD is not successful and the caller provided an ERRET exit to receive control, the
GPRs contain:

Register Contents
0 Used as a work register by the system
1 System completion code for the abend that would have been issued had the

caller not provided an ERRET exit
2-13 Unchanged
14 Used as a work register by the system
15 Reason code (never zero) associated with the system completion code

contained in GPR 1

When control returns to the caller or the ERRET exit receives control, the access registers
(ARs) are unchanged.

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The standard form of the LOAD macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede LOAD.

LOAD

␣ One or more blanks must follow LOAD.

EP=entry name entry name: Symbol.
EPLOC=entry name addr entry name addr: If LSEARCH or LOADPT is specified, A-type

address or register (2) - (12); otherwise, RX-type address or
register (0) or (2) - (12).

DE=list entry addr list entry addr: If LSEARCH or LOADPT is specified, A-type
address or register (2) - (12); otherwise, RX-type address, or
register (2) - (12).

 ,DCB=dcb addr dcb addr: If LSEARCH or LOADPT is specified, A-type address or

register (2) - (12); otherwise, RX-type address, or register (1) or (2)
- (12).

824 OS/390 V2R8.0 MVS Assembler Services Reference

 LOAD Macro

,ERRET=err rtn addr err rtn addr: RX-type address or register (2) - (12).

 ,LSEARCH=NO Default: NO
 ,LSEARCH=YES

 ,LOADPT=addr addr: A-type address or register (2) - (12).

 ,RELATED=value

 Parameters
The parameters are explained as follows:

EP=entry name
EPLOC=entry name addr
DE=list entry addr

Specifies the entry name, the address of the name, or the address of the name field in a
62-byte list entry for the entry name that was constructed using the BLDL macro. If
EPLOC is coded, the name must be padded to eight bytes, if necessary.

The system ignores the information you specify on the DE parameter if the parameter
does one or both of the following:

� Specifies an entry in an authorized library (that is, defined in IEAAPFxx member of
parmlib)

� Requests access to a program or library that is controlled by the system
authorization facility (SAF)

Instead, the system uses the BLDL macro to construct a new list entry containing the
DE information.

Note: When you use the DE parameter with the LOAD macro, DE specifies the
address of a list that was created by a BLDL macro. BLDL and LOAD must be issued
from the same task; otherwise, the system might terminate the program with an abend
code of 106 and a return code of 15. Therefore, do not issue an ATTACH or a
DETACH macro between issuances of the BLDL and the LOAD macros.

,DCB=dcb addr
Specifies the address of the opened data control block for the partitioned data set
containing the entry name described above. This parameter must indicate the same
DCB specified in the BLDL used to locate the entry name.

If the DCB parameter is omitted or if DCB=0 is specified when the LOAD macro is
issued by the job step task, the data sets referred to by either the STEPLIB or JOBLIB
DD statement are first searched for the entry name. If the entry name is not found, the
link library is searched.

If the DCB parameter is omitted or if DCB=0 is specified when the LOAD macro is
issued by a subtask, the data sets associated with one or more data control blocks
referred to by the TASKLIB operand of previous ATTACH macro in the subtasking chain
are first searched for the entry name. If the entry name is not found, the search is
continued as if the LOAD had been issued by the job step task.

Note: DCB must reside in 24-bit addressable storage.

,ERRET=err rtn addr
Specifies the address of a routine to receive control when an error condition that would
cause an abnormal termination of the task is detected. Register 1 contains the abend
code that would have resulted had the task abended, and register 15 contains the
reason code that is associated with the abend. The routine does not receive control
when input parameter errors are detected.

 LOAD — Bring a Load Module into Virtual Storage 825

 LOAD Macro

,LSEARCH=NO
,LSEARCH=YES

Specifies whether (YES) or not (NO) the search is to be limited to the job pack area and
the first library in the normal search sequence.

,LOADPT=addr
Specifies that the starting address at which the module was loaded is to be returned to
the caller at the indicated address.

,RELATED=value
Specifies information used to self-document macros by ‘relating’ functions or services to
corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

The RELATED parameter is available on macros that provide opposite services (for
example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE), and on
macros that relate to previous occurrences of the same macros (for example, CHAP and
ESTAE).

The RELATED parameter may be used, for example, as follows:

LOAD1 LOAD EP=APGIOHK1,RELATED=(DEL1,'LOAD APGIOHK1')
 .
 .
 .

 DEL1 DELETE EP=APGIOHK1,RELATED=(LOAD1,'DELETE APGIOHK1')

Return and Reason Codes
When the LOAD macro returns control to the caller, GPR 15 is set to zero if the load request
was successful. If the load request was not successful and a caller-provided error routine
(specified using the ERRET keyword) receives control, GPR 1 contains the abend code for
the abend that would have been issued had the caller not provided an ERRET exit. GPR 15
contains the reason code associated with the abend code in GPR 1.

 Example 1
Bring a load module containing a specified entry name (PGMLKRUS) into virtual storage.
Let the system find the module from available libraries.

LOAD EP=PGMLKRUS

 Example 2
Bring a load module containing the entry name EPNAME into virtual storage. Indicate that
register 7 contains the address of the DCB associated with the partitioned data set that
contains this load module. Return the load address of the requested module in the location
pointed to by register 8. If an error occurs during this processing, transfer control to the
error routine located at ERRADDR.

LOAD EP=EPNAME,DCB=(7),LOADPT=(8),ERRET=ERRADDR

826 OS/390 V2R8.0 MVS Assembler Services Reference

 LOAD Macro

 LOAD—List Form
The list form of the LOAD macro builds a nonexecutable problem program parameter list that
can be referred to or modified by the execute form of the LOAD macro.

 Syntax
The list form of the LOAD macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede LOAD.

LOAD

␣ One or more blanks must follow LOAD.

EP=entry name entry name: Symbol.
EPLOC=entry name addr entry name addr: A-type address.
DE=list entry addr list entry addr: A-type address.

 ,DCB=dcb addr dcb addr: A-type address.

 ,LSEARCH=NO Default: No
 ,LSEARCH=YES

 ,LOADPT=addr addr: A-type address.

 ,RELATED=value

,SF=L

 Parameters
The parameters are explained under the standard form of the LOAD macro with the following
exception:

,SF=L
Specifies the list form of the LOAD macro.

 LOAD — Bring a Load Module into Virtual Storage 827

 LOAD Macro

 LOAD—Execute Form
The execute form of the LOAD macro can refer to and modify the parameter list constructed
by the list form of the macro.

 Syntax
The execute form of the LOAD macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede LOAD.

LOAD

␣ One or more blanks must follow LOAD.

EP=entry name entry name: Symbol.
EPLOC=entry name addr entry name addr: RX-type address, or register (2) - (12).
DE=list entry addr list entry addr: RX-type address, or register (2) - (12).

 ,DCB=dcb addr dcb addr: RX-type address, or register (2) - (12).

,ERRET=err rtn addr err rtn addr: RX-type address, or register (2) - (12).

 ,LSEARCH=NO Default: No
 ,LSEARCH=YES

 ,LOADPT=addr addr: RX-type address or register (2) - (12).

 ,RELATED=value

,SF=(E,list addr) list addr: RX-type address or register (2) - (12) or (15).

 Parameters
The parameters are explained under the standard form of the LOAD macro with the following
exception:

,SF=(E,list addr)
Specifies the execute form of the LOAD macro.

828 OS/390 V2R8.0 MVS Assembler Services Reference

 LSEXPAND Macro

LSEXPAND — Expand a Linkage Stack to a Specified Size

 Description
The LSEXPAND macro expands a normal linkage stack or a recovery linkage stack to a
specified number of entries. The work unit associated with the calling program uses the
normal linkage stack to save program status information. When the system needs an entry
and finds that all entries are used, it issues a “stack full” program interruption. After the
“stack full” interruption occurs, the system uses the recovery linkage stack for recovery.

If a program does not specify the LSEXPAND macro, it receives a normal linkage stack with
96 entries and a recovery linkage stack with 24 entries.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Not applicable

 Programming Requirements
If the system has already issued a stack full program interruption, the system will not accept
the LSEXPAND macro. In other words, do not wait until the normal or recovery linkage
stacks are full to issue this macro.

 Restrictions
None.

Input Register Information
Before issuing the LSEXPAND macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the

 Copyright IBM Corp. 1988, 1999 829

 LSEXPAND Macro

caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The LSEXPAND macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede LSEXPAND.

LSEXPAND

␣ One or more blanks must follow LSEXPAND.

NORMAL=n n: Symbol or number or value in register (2) - (12).

RECOVERY=n n: Symbol or number or value in register (2) - (12).

 Parameters
LSEXPAND

Specifies the number of entries that a task has for its normal linkage stack or its
recovery linkage stack.

NORMAL=n
Specifies the number of entries in the normal linkage table, where n can be
between 97 and 16000. If you don't specify this parameter, the normal linkage
stack has 96 entries.

RECOVERY=n
Specifies the number of entries in the recovery linkage stack, where n can be
between 25 and 4000. If you don't specify this parameter, the recovery linkage
stack has 24 entries.

 ABEND Codes
None.

830 OS/390 V2R8.0 MVS Assembler Services Reference

 LSEXPAND Macro

 Return Codes
When LSEXPAND macro returns control to your program, GPR 15 contains a return code.

Figure 52. Return and Reason Codes for the LSEXPAND Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning : Successful completion.

Action : None.

08 Meaning : Program error. The caller was not unlocked.

Action : Release locks before calling LSEXPAND.

0C Meaning : Program error. The caller was not in task mode.

Action : Change your code to run in task mode.

10 Meaning : Program error. The specified normal stack size exceeds 16000.

Action : Specify a stack size less than 16000.

14 Meaning : Program error. The specified recovery stack size exceeds 4000.

Action : Specify a stack size less than 4000.

18 Meaning : Program error. The recovery stack cannot be expanded because it is currently in
use.

Action : Restructure your program to issue the LSEXPAND before the stack becomes full.

1C Meaning : Program error. The normal stack cannot expand because the specified value is
smaller than the current normal stack size.

Action : Specify a larger stack size.

20 Meaning : Program error. The recovery stack cannot expand because the specified value is
smaller than the current recovery stack size.

Action : Specify a larger stack size.

24 Meaning : Environmental error. Not enough virtual storage was available for the normal
linkage stack or the recovery linkage stack.

Action : Retry the request one or more times. If the problem persists, check with the
operator to see why there is a storage constraint.

28 Meaning : System error. The normal linkage stack is unchanged. The recovery linkage
stack might be expanded.

Action : Retry the request.

 Example 1
Expand the normal linkage stack to 192 entries.

LSEXPAND NORMAL=192

 Example 2
Expand the recovery linkage stack to 96 entries.

LA 6,96
LSEXPAND RECOVERY=(6)

 LSEXPAND — Expand a Linkage Stack to a Specified Size 831

 LSEXPAND Macro

832 OS/390 V2R8.0 MVS Assembler Services Reference

 PGLOAD Macro

PGLOAD — Load Virtual Storage Areas into Central Storage

 Description
Note: IBM recommends that you use the PGSER macro rather than PGLOAD.

The PGLOAD macro is used to load specified virtual storage areas into central (also called
real) storage in anticipation of future needs. That is, PGLOAD is essentially a page-ahead
function. The PGLOAD macro performs this function for virtual addresses below 16
megabytes; the LOAD option of the PGSER macro performs the same function for virtual
addresses either above or below 16 megabytes. Note, however, that a page that has been
loaded via PGLOAD is eligible for page-out selection in the same manner as a page that has
been demand-paged into central storage.

The misuse of this function can have adverse effects on system performance. Causing
unnecessary pages to be brought into central storage will force other pages to be displaced
and, consequently, cause unnecessary paging activity. Proper use of this function, however,
will tend to decrease system overhead resulting from page faults.

 Syntax
The standard form of the PGLOAD macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede PGLOAD.

PGLOAD

␣ One or more blanks must follow PGLOAD.

R

,A=start addr start addr: A-type address, or register (1) or (2) - (12).

 ,ECB=ecb addr ecb addr: A-type address, or register (0) or (2) - (12).

 ,EA=end addr end addr: A-type address, or register (2) - (12) or (15).

Default: start addr + 1

 ,RELEASE=N Default: RELEASE=N
 ,RELEASE=Y Note: RELEASE=Y may only be specified with EA above.

 Parameters
The parameters are explained as follows:

R Specifies that no parameter list is being supplied with this request.

,A=start addr
Specifies the start address of the virtual area to be loaded.

,ECB=ecb addr
Specifies the address of an ECB that is used to signal event completion.

 Copyright IBM Corp. 1988, 1999 833

 PGLOAD Macro

,EA=end addr
Specifies the end address + 1 of the virtual area to be loaded.

,RELEASE=N
,RELEASE=Y

Specifies that the contents of the virtual area is to remain intact (N) or be released (Y).

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning

00 Operation completed normally; ECB posted complete.

08 Operation proceeding; ECB will be posted when all page-ins are complete.

If control is not returned, an ABEND is issued with the following reason codes in register 15:

Hexadecimal
Code Meaning

10 Virtual subarea list entry or ECB address invalid. No ECB is posted.

If the ECB parameter is coded, the ECB is unchanged if the request was initiated but not
complete (return code 8), or if an ABEND was issued with return code 10. Otherwise, the
ECB is posted complete with code

0 - Operation completed successfully.

If the return code issued is 8, the ECB is posted asynchronously when paging I/O has
completed, with code

0 - Operation completed successfully.

 Example 1
Page-in a single byte of virtual storage, causing the entire 4096-byte page containing that
byte to be paged into central storage.

PGLOAD R,A=(R3)

 Example 2
Page-in the virtual storage lying in the range addressed by registers 3 and 4, and notify the
requestor via posting of the ECB when the page-ins are complete.

PGLOAD R,A=(R3),EA=(R4),ECB=(R5)

 Example 3
Discard the contents of the virtual pages totally encompassed by STARTAD and ENDAD
before new real frames are assigned.

PGLOAD R,A=STANDARD,EA=ENDAD,RELEASE=Y

 PGLOAD—List Form
The list form of the PGLOAD macro uses a virtual subarea list.

 Syntax
The list form of the PGLOAD macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede PGLOAD.

834 OS/390 V2R8.0 MVS Assembler Services Reference

 PGLOAD Macro

PGLOAD

␣ One or more blanks must follow PGLOAD.

L

,LA=list addr list addr: A-type address, or register (1) or (2) - (12).

 ,ECB=ecb addr ecb addr: A-type address, or register (0) - (2) or (15).

 ,RELEASE=N Default: RELEASE=N
 ,RELEASE=Y

 Parameters
The parameters are explained under the standard form of the PGLOAD macro, with the
following exceptions:

L Specifies that a parameter list is being supplied with this request.

,LA= list addr
Specifies the address of the first entry of a virtual subarea list.

 PGLOAD — Load Virtual Storage Areas into Central Storage 835

 PGLOAD Macro

836 OS/390 V2R8.0 MVS Assembler Services Reference

 PGOUT Macro

PGOUT — Page Out Virtual Storage Areas from Central Storage

 Description
Note: IBM recommends that you use the PGSER macro rather than PGOUT.

The PGOUT macro is used to initiate page-out operations for specified virtual storage areas
that are in central (also called real) storage. The PGOUT macro performs this function for
virtual addresses below 16 megabytes; the OUT option of the PGSER macro performs the
same function for virtual addresses either above or below 16 megabytes. The PGOUT
function is complementary to the PGLOAD function. You have the option of specifying that
the virtual pages to be paged out either remain valid in central storage, or be marked invalid
and the real frames assigned to them be made available for reuse. The use of this option
will not prevent page faults from occurring on the specified storage.

The misuse of this function, like the misuse of the PGLOAD function, can have adverse
effects on system performance. On the other hand, proper use of this function will tend to
clean out of central storage those pages no longer needed for program execution or not
required for some period in the future.

 Syntax
The standard form of the PGOUT macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede PGOUT.

PGOUT

␣ One or more blanks must follow PGOUT.

R

,A=start addr start addr: A-type address, or register (1) or (2) - (12).

 ,EA=end addr end addr: A-type address, or register (2) - (12) or (15).

 ,KEEPREL=N Default: KEEPREL=N
 ,KEEPREL=Y

 Parameters
The parameters are explained as follows:

R Specifies that no parameter list is being supplied with this request.

,A=start addr
Specifies the start address of the virtual area to be paged out.

,EA=end addr
Specifies the end address + 1 of the virtual area to be paged out.

 Copyright IBM Corp. 1988, 1999 837

 PGOUT Macro

,KEEPREL=N
,KEEPREL=Y

Specifies that the virtual pages will be marked invalid and the real frames freed for
reuse (N) or that the virtual pages will not be invalidated (Y).

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning

00 Operation completed normally; paging I/O proceeding asynchronously.

0C One or more pages specified to be paged out were not paged out. Either
the pages were in the nucleus in unusable real frames, in SQA or LSQA, in
V=R area allocated region, were page fixed, or the system resources
necessary to perform the page out operations were momentarily unavailable.
Paging I/O is proceeding normally for all other pages.

10 Operation abnormally terminated. Virtual subarea list entry invalid.

 Example 1
Page out the area of central storage totally encompassed by the start and end virtual
boundaries specified.

PGOUT R,A=(R3),EA=(R4)

 Example 2
Create an auxiliary storage copy of a virtual area before continuing to use the area. The
area will remain in central storage after the page-outs complete.

PGOUT R,A=(R3),EA=(R4),KEEPREL=Y

838 OS/390 V2R8.0 MVS Assembler Services Reference

 PGOUT Macro

 PGOUT—List Form
The list form of the PGOUT macro uses a virtual subarea list.

 Syntax
The list form of the PGOUT macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede PGOUT.

PGOUT

␣ One or more blanks must follow PGOUT.

L

,LA=list addr list addr: A-type address, or register (1) or (2) - (12).

 ,KEEPREL=N Default: KEEPREL=N
 ,KEEPREL=Y

 Parameters
The parameters are explained under the standard form of the PGOUT macro, with the
following exceptions:

L Specifies that a parameter list is being supplied with this request.

,LA= list addr
Specifies the address of the first entry of a virtual subarea list (VSL). See the topic
“Virtual Subarea List (VSL)” in OS/390 MVS Programming: Assembler Services Guide
for a description of the VSL.

 PGOUT — Page Out Virtual Storage Areas from Central Storage 839

 PGOUT Macro

840 OS/390 V2R8.0 MVS Assembler Services Reference

 PGRLSE Macro

PGRLSE — Release Virtual Storage Contents

 Description
Note: IBM recommends that you use the PGSER macro rather than PGRLSE.

The PGRLSE macro is used to release to the system all central (also called real) storage
and auxiliary storage associated with specified pageable virtual storage areas. The PGRLSE
macro performs this function for virtual addresses below 16 megabytes; the RELEASE option
of the PGSER macro performs the same function for virtual addresses either above or below
16 megabytes. Use PGRLSE when a large area (one or more complete pages) of virtual
storage within your program no longer has significant contents.

Functionally, PGRLSE is equivalent to a FREEMAIN macro followed by a GETMAIN macro.
That is, the virtual space is maintained, but the data is discarded. When a released page is
next referred to, its contents are binary zeros. Thus, you can help reduce system overhead
by releasing virtual storage when you no longer need it.

Proper use of this function can increase the amount of storage available to the system and
prevent needless paging I/O activity. Usage of PGRLSE may improve operating efficiency
when the using program can discard the contents of a large virtual storage area and reuse
the virtual storage pages; paging operations may be eliminated for those virtual storage
pages when they are reused.

 Syntax
The standard form of the PGRLSE macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede PGRLSE.

PGRLSE

␣ One or more blanks must follow PGRLSE.

LA=low addr low addr: A-type address, or register (0) or (2) - (12).

,HA=high addr high addr: A-type address, or register (1) or (2) - (12).

 Parameters
The parameters are explained as follows:

LA= low addr
Specifies the address of the lower boundary of the area to be released.

,HA=high addr
Specifies the address of the upper boundary + 1 of the area to be released.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning

00 Successful completion.

 Copyright IBM Corp. 1988, 1999 841

 PGRLSE Macro

04 Execution failed. The area specified, or a portion of the area, is protected
from the requesting program. Any valid portion of the area preceding the
protected area is released.

 Example 1
Release the contents of the pages included within the specified areas. Only those pages
fully encompassed will be nullified.

PGRLSE LA=(R4),HA=(R5)

 Example 2
Perform the operation in Example 1, but use A-type addresses.

PGRLSE LA=LOWADDR,HA=HIGHADDR

 PGRLSE—List Form
The list form of the PGRLSE macro is used to construct a control program parameter list.

 Syntax
The list form of the PGRLSE macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede PGRLSE.

PGRLSE

␣ One or more blanks must follow PGRLSE.

 LA=low addr, low addr: A-type address.

 ,HA=high addr, high addr: A-type address.

,MF=L

 Parameters
The parameters are explained under the standard form of the PGRLSE macro, with the
following exception:

,MF=L
Specifies the list form of the PGRLSE macro.

 PGRLSE—Execute Form
A remote control program parameter list is referred to, and can be modified by, the execute
form of the PGRLSE macro.

842 OS/390 V2R8.0 MVS Assembler Services Reference

 PGRLSE Macro

 Syntax
The execute form of the PGRLSE macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede PGRLSE.

PGRLSE

␣ One or more blanks must follow PGRLSE.

 LA=low addr, low addr: A-type address, or register (0) or (2) - (12).

 ,HA=high addr, high addr: A-type address, or register (1) or (2) - (12).

,MF=(E,ctrl addr) ctrl addr: RX-type address, or register (2) - (12).

 Parameters
The parameters are explained under the standard form of the PGRLSE macro, with the
following exception:

,MF=(E,ctrl addr)
Specifies the execute form of the PGRLSE macro using a remote control program
parameter list.

 PGRLSE — Release Virtual Storage Contents 843

 PGRLSE Macro

844 OS/390 V2R8.0 MVS Assembler Services Reference

 PGSER Macro

PGSER — Page Services

 Description
Note: IBM recommends that you use the PGSER macro for paging services .

The PGSER macro performs the same paging services as the PGLOAD, PGOUT, and
PGRLSE macros. PGSER performs these services for addresses either above or below 16
megabytes.

The services are:

� Page load equivalent to the PGLOAD macro.

� Page out equivalent to the PGOUT macro.

� Page release equivalent to the PGRLSE macro.

� The PGSER macro with the PROTECT parameter makes a range of virtual storage
pages read-only.

� The PGSER macro with the UNPROTECT parameter makes a range of virtual storage
pages modifiable.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state, and any PSW key. To use the PROTECT and
UNPROTECT options, the caller must have a PSW key that
matches the key of the storage.

Dispatchable unit mode: Task
Cross memory mode: PASN=SASN=HASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Programming Requirements
� The caller must include the IHAPVT mapping macro.

� Regardless of the addressing mode, all addresses passed in registers are used as
31-bit addresses.

� All RX-type addresses are assumed to be in the addressing mode of the caller.

 Restrictions
None.

Input Register Information
Before issuing the PGSER macro, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter, or using it as a base
register.

 Copyright IBM Corp. 1988, 1999 845

 PGSER Macro

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-4 Used as work registers by the system
5-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) are unchanged.

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The PGSER macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede PGSER.

PGSER

␣ One or more blanks must follow PGSER.

R
L

,LOAD
,OUT
,PROTECT
,UNPROTECT
,RELEASE

,LA=list addr list addr: RX-type address or register (1), (2) - (12).

Note: This parameter is valid only with L.

,A=start addr start addr: RX-type address or register (1), (2) - (12).

Note: This parameter is valid only with R.

 ,EA=end addr Default: EA=start addr

end addr: RX-type address or register (15), (2) - (12).
Note: This parameter is valid only with R.

 ,ECB=ecb addr Default: If LOAD is specified, ECB=0.

ecb addr: RX-type address or register (0) or (2) - (12).
Note: This parameter is optional if LOAD is specified and is not
valid for OUT and RELEASE.

 ,RELEASE=Y Default: RELEASE=N
 ,RELEASE=N Note: This parameter may be specified only if LOAD is specified.

 ,KEEPREL=Y Default: KEEPREL=N
 ,KEEPREL=N Note: This parameter may be specified only if OUT is specified.

 ,RELATED=value value: Any valid macro keyword specification.

846 OS/390 V2R8.0 MVS Assembler Services Reference

 PGSER Macro

 Parameters
R
L

Specifies the manner in which the input is supplied. If R is specified, the user supplies
the starting and ending addresses of the virtual area for which the service needs to be
performed. If L is specified, the user supplies the address of the page services list
(PSL), which specifies the virtual area for which the service is to be performed. See the
topic “Page Service List (PSL)” in OS/390 MVS Programming: Assembler Services
Guide for a description of the PSL.

,LOAD
,OUT
,PROTECT
,UNPROTECT
,RELEASE

Indicates the function to be performed.

LOAD specifies that a page-in operation is to be initiated for the virtual storage area
specified, in anticipation of future needs.

OUT specifies that a page-out operation is to be initiated for the virtual storage area
specified.

PROTECT specifies that a range of virtual storage be made read-only. R, L, LA, A, EA,
and RELATED are valid keywords with the PROTECT option.

UNPROTECT specifies that a range of virtual storage be made modifiable. R, L, LA, A,
EA, and RELATED are valid keywords with the UNPROTECT option.

RELEASE specifies the release of all physical paging resources, including both
processor storage and auxiliary storage. Functionally, RELEASE is equivalent to a
FREEMAIN macro followed by a GETMAIN macro. That is, the virtual space is
maintained, but the data is discarded. When a released page is next referred to, its
contents are binary zeros.

Note: You must unprotect protected storage before releasing it.

,LA= list addr
Specifies the address of the page services list (PSL) for L requests.

,A=start addr
Specifies the address of the start of the virtual area for R requests.

,EA=end addr
Specifies the address of the last byte on the last page of the virtual area for R requests.

,ECB=ecb addr
Specifies the address of the ECB that is used to signal event completion for a LOAD
request.

If an ECB is supplied, the caller must check the return code because the ECB will not
be posted if the return code is zero. If an ECB is not supplied, it is not necessary to
check the return code because control returns to the caller only if the request was
successfully completed; if unsuccessful, page services abnormally terminates the caller.
You must ensure that the storage area containing the ECB is not freed and that the key
is not altered. If either test fails, page services does not post the ECB.

,RELEASE=Y
,RELEASE=N

Specifies that all the central (also called real) and auxiliary storage associated with the
virtual storage areas is to be released to the system (Y), or that all the central and
auxiliary storage associated with the virtual storage areas is not to be released to the
system (N).

 PGSER — Page Services 847

 PGSER Macro

,KEEPREL=Y
,KEEPREL=N

Specifies that the virtual pages should be validated again after the page-out completes
(Y), or that the virtual pages will be marked invalid and the real frames freed for reuse
(N).

,RELATED=value
Provides information to document the macro by relating the service performed to some
corresponding function or service. The format can be any valid coding value that the
user chooses.

 ABEND Codes
PGSER might abnormally terminate with one of the following abend codes: X'18A', X'28A'.
See OS/390 MVS System Codes for explanations and programmer responses.

Return and Reason Codes
When the PGSER macro returns control to your program, GPR 15 contains one of the
following hexadecimal return codes.

Option Code Meaning and Action

LOAD 0 Meaning : The operation completed normally and the ECB will not be
posted. If no ECB is supplied, the operation is completed or proceeding.

Action : None. If the ECB parameter was specified, do not issue a WAIT
macro for the ECB after receiving this return code because it will not be
posted.

LOAD 8 Meaning : The operation is proceeding. The ECB, if applicable and
available, will be posted with X‘00’ when all page-ins are complete.

Action : None. However, if the ECB parameter was specified, issuing a
WAIT macro for this ECB will allow your program to synchronize with the
completion of the page load operation.

OUT 0 Meaning : The operation completed normally.

Action : None.

OUT C Meaning : At least one page specified to be paged out was not paged
out. The page service is proceeding for the other pages.

Action : None.

RELEASE 0 Meaning : The operation completed normally.

Action : None.

 Examples
Example 1: Perform the page-load function for the 4096-byte virtual area starting at
BUFFER, supplying no ECB. Include the IHAPVT mapping macro.

PGSER R,LOAD,A=BUFFER,EA=BUFFER+4ð95,ECB=ð
IHAPVT

Example 2: Release the virtual area specified in the PSL located at LOADWORD. Include
the IHAPVT mapping macro.

PGSER L,RELEASE,LA=LOADWORD
IHAPVT

Example 3: Protect the storage area that starts at the address in GPR 4 and ends at the
address in the variable ENDIT. Include the IHAPVT mapping macro.

PGSER R,PROTECT,A=(4),EA=ENDIT
IHAPVT

848 OS/390 V2R8.0 MVS Assembler Services Reference

 POST Macro

POST — Signal Event Completion

 Description
Use the POST macro to set an event control block (ECB) to indicate the occurrence of an
event. If this event satisfies the requirements of an outstanding WAIT or EVENTS macro,
the waiting task is taken out of the wait state and dispatched according to its priority. POST
processing sets the bits in the ECB as follows:

Bit 0 to 0 (wait bit)
Bit 1 to 1 (complete bit)
Bits 2 through 31 to the specified completion code.

Note: After the bits in the ECB are set, the ECB is considered posted and the awaited
event can be recognized as having occurred by programs running in the system. If a
program issues another POST against an ECB that is already posted, the other POST has
no effect.

For more information on how to use the POST macro to synchronize tasks, see OS/390
MVS Programming: Assembler Services Guide.

 Environment
The requirements for callers of POST are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: One of the following:

� For LINKAGE=SVC: PASN=HASN=SASN

� For LINKAGE=SYSTEM: PASN=HASN=SASN or
PASN¬=HASN¬=SASN

AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: � For LINKAGE=SVC: No locks held and no enabled unlocked

task (EUT) functional recovery routines (FRR) established

� For LINKAGE=SYSTEM: No locks held
Control parameters: The event control block (ECB) must be in the primary address

space.

 Programming Requirements
None.

 Restrictions
None.

Input Register Information
Before issuing the POST macro, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter, or using it as a base
register.

 Copyright IBM Corp. 1988, 1999 849

 POST Macro

Output Register Information
When control returns to the caller the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 One of the following:

� If LINKAGE=SVC is specified: Used as a work register by the system
� If LINKAGE=SYSTEM is specified: Return code of 0

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The POST macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede POST.

POST

␣ One or more blanks must follow POST.

ecb addr ecb addr: RX-type address, or register (1) or (2) - (12).

 ,comp code comp code: Symbol, decimal digit, or register (0) or (2) - (12).

Range of values: 0 to 230-1
Default: 0

 ,LINKAGE=SVC Default: LINKAGE=SVC
 ,LINKAGE=SYSTEM

 ,RELATED=value value: Any valid macro keyword specification.

 Parameters
The explanation of the parameters is as follows:

ecb addr
Specifies the address of the fullword event control block representing the event.

,comp code
Specifies the completion code to be placed in the event control block upon completion.

,LINKAGE=SVC
,LINKAGE=SYSTEM

Specifies the type of linkage that the caller is using to invoke the POST service routine.

For LINKAGE=SVC, the linkage is through an SVC instruction. This linkage is valid only
when the caller is in primary mode and the primary, home, and secondary address
spaces are the same.

850 OS/390 V2R8.0 MVS Assembler Services Reference

 POST Macro

For LINKAGE=SYSTEM, the linkage uses a non-SVC entry. This linkage is valid in
cross memory mode or in non-cross memory mode. The ECB must be in the caller's
primary address space. LINKAGE=SYSTEM is intended to be used by programs in
cross memory mode.

The default is LINKAGE=SVC.

,RELATED=value
Specifies information used to self-document macros by ‘relating’ functions or services to
corresponding functions or services. The format and contents of the information
specified are at the discretion of the user and may be any valid coding values.

The RELATED parameter is available on macros that provide opposite services (for
example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE) and on
macros that relate to previous occurrences of the same macros (for example, CHAP and
ESTAE).

The RELATED parameter may be used, for example, as follows:

WAIT1 WAIT 1,ECB=ECB,RELATED=(RESUME1,'WAIT FOR EVENT')
 .
 .
 .
RESUME1 POST ECB,ð,RELATED=(WAIT1,'RESUME WAITER')

Return and Reason Codes
For LINKAGE=SYSTEM, the return code in register 15 is always zero. Otherwise, the POST
macro has no return codes.

 Example 1
Signal event completion with a default completion code. POSTECB is the address of an
ECB.

POST POSTECB

 Example 2
Signal event completion with a completion code of X‘7FF’. POSTECB is the address of an
ECB.

POST POSTECB,X'7FF'

 POST — Signal Event Completion 851

 POST Macro

852 OS/390 V2R8.0 MVS Assembler Services Reference

 QRYLANG Macro

QRYLANG — Determine Languages Available for Message Translation

 Description
The QRYLANG macro enables you to check if a particular language is available into which
you can translate system or application messages. It can also provide a list of all active
languages currently available for translation. Once you know that the language you want is
available, you can issue TRANMSG to retrieve the translated message.

QRYLANG returns the information you request in the language query block (LQB). This
block contains the following:

� The standard 3-character code for the language
� The name of the language
� A flag indicating whether the language contains double-byte characters

If you asked for a list of all available languages, QRYLANG returns an LQB with one
language entry for each language.

See OS/390 MVS Programming: Assembler Services Guide for more information on using
QRYLANG.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt Status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Not applicable

 Programming Requirements
Before invoking QRYLANG you must allocate storage for the LQB.

You must include the following mapping macros:

 � CNLMLQB
 � CNLMMCA

 Restrictions
None.

Input Register Information
Before issuing the SAMPLE macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Before issuing the QRYLANG macro, the caller must ensure that the following general
purpose register (GPR) contains the specified information:

Register Contents
13 Points to a save area

 Copyright IBM Corp. 1988, 1999 853

 QRYLANG Macro

Output Register Information
When control returns to the caller, the output registers contain:

Register Contents
0

� The contents of the high-order halfword are not part of the intended
programming interface.

� The low-order halfword contains a reason code.
1 Used as a work register by system
2-13 Unchanged
14 Used as a work register by system
15 Return code

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The QRYLANG macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede QRYLANG.

QRYLANG

␣ One or more blanks must follow QRYLANG.

LQB=lang qblock addr lang qblock addr: RX-type address or register (2) - (12).

,LQBLEN=length of block addr length of block addr: RX-type address or register (2) - (12).

 ,LANGNAME=lang addr lang addr: RX-type address or register (2) - (12).

 Parameters
The parameters are explained as follows:

LQB= lang qblock addr
Specifies the storage area or a register pointing to the storage area where QRYLANG is
to build the LQB.

,LQBLEN= length of block addr
Specifies the fullword or a register containing the length in bytes of the LQB. You must
supply the length of the LQB if you are querying more than one language. See OS/390
MVS Programming: Authorized Assembler Services Guide for information on how to
calculate the length of the LQB. If you do not specify LQBLEN, QRYLANG will default
to the length of the storage area you specified for the LQB. If you use an RX-type
address or register notation for the LQB parameter, you must specify LQBLEN.

,LANGNAME= lang addr
Specifies the 24-byte character field or a register pointing to the 24-byte character field
containing the name or code of the language to be queried. See OS/390 MVS
Programming: Assembler Services Guide for a listing of the language codes. The

854 OS/390 V2R8.0 MVS Assembler Services Reference

 QRYLANG Macro

language name must match the name you specified on the NAME parameter of the
LANGUAGE statement in the MMSLSTxx member of SYS1.PARMLIB. If you omit this
keyword, QRYLANG returns a list of all currently available languages.

Return and Reason Codes
When QRYLANG completes, register 15 contains one of the following hexadecimal return
codes:

The low-order halfword of register 0 contains the following hexadecimal reason codes from
QRYLANG:

Hexadecimal
Code

Meaning

00 Processing completed successfully.

04 Processing did not complete, and storage is not freed.

08 Processing is complete but QRYLANG returned an incomplete LQB to the calling
program. For example, the requested language may not be available.

0C Processing did not complete. The output is unusable.

10 The function did not complete. The output LQB is unusable.

 QRYLANG — Determine Languages Available for Message Translation 855

 QRYLANG Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

00 00 Successful processing.

04 07 This reason code is for internal diagnostic purposes only.
Record it and supply it to the appropriate IBM support
personnel.

04 08 This reason code is for internal diagnostic purposes only.
Record it and supply it to the appropriate IBM support
personnel.

04 0B This reason code is for internal diagnostic purposes only.
Record it and supply it to the appropriate IBM support
personnel.

04 0C The passed storage address is not valid.

04 0D This reason code is for internal diagnostic purposes only.
Record it and supply it to the appropriate IBM support
personnel.

08 0F There is insufficient LQB storage for LQB entries.

08 2C The language you requested is not available.

0C 0A No storage was obtained.

0C 16 The LQB is too small to handle returned data.

0C 17 The MVS message service is not available.

0C 26 The query request terminated. The MMS user exit has set
the processing indicator to a nonzero value.

0C 27 The entry installation exit has failed.

0C 28 The exit installation exit has failed.

0C 2D The acronym of the control block created when invoking
QRYLANG is not "LQB" and is therefore not valid.

0C 2E The length of the LQB is not valid.

0C 2F QRYLANG was unable to move the LQB from the caller's
address space.

0C 30 QRYLANG was unable to move the LQB to the caller's
address space.

10 09 This reason code is for internal diagnostic purposes only.
Record it and supply it to the appropriate IBM support
personnel.

 Example
Check if the language with a language code of JPN is active. If JPN is active, QUERY2A
sets a flag within the installation-created control block to "on", indicating that JPN is
available.

QUERY2A CSECT
QUERY2A AMODE 31
QUERY2A RMODE ANY
 STM 14,12,12(13)
 BALR 12,ð
 USING \,12
 ST 13,SAVE+4
 LA 15,SAVE
 ST 15,8(13)
 LR 13,15
\ \
\\\
\ OBTAIN STORAGE AREA FOR INSTLCB AND LQB \
\\\
\ \

856 OS/390 V2R8.0 MVS Assembler Services Reference

 QRYLANG Macro

 GETMAIN RU,LV=STORLEN,SP=SP228
\ \

LR R3,R1 SAVE ADDRESS OF STORAGE AREA
ST R3,CVTUSER-CVT(R2) ANCHOR INSTALLATION CONTROL BLOCK C

FROM GLOBAL COMMUNICATIONS WORD C
IN MCA CONTROL BLOCK

XC ð(STORLEN,3),ð(3) CLEAR STORAGE AREA
MVC INSTLACR-INSTLCB(4,R3),=C'INST' SET ACRONYM IN C

INSTALLATION CONTROL BLOCK
LA R4,INSTLLEN(,R3) OBTAIN ADDRESS OF LQB
LA R5,LQBLEN GET LQB LENGTH

\ \
 QRYLANG LANGNAME=JPN_CODE,LQB=(R4),LQBLEN=(R5)
\ \

LTR R15,R15 IS JAPANESE AVAILABLE
 BNZ END NO, EXIT

OI INSTLFLG-INSTLCB(R3),INSTLJPN YES, SET AVAIL. FLAG
\
\\\
\ RETURN \
\\\
\
END DS ðH
 L 13,SAVE+4
 LM 14,12,12(13)
 BR 14
\\\
JPN_CODE DC CL24'JPN'
SAVE DC 18F'ð'
SP228 EQU 228
LQBLEN EQU (LQBVDAT-LQB)+LQBEBL
STORLEN EQU INSTLLEN+LQBLEN
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R15 EQU 15
\\\
 DSECT
 CVT DSECT=YES
 CNLMMCA
 CNLMLQB
INSTLCB DSECT INSTALLATION CONTROL BLOCK
INSTLACR DS CL4'INST' INSTALLATION CONTROL BLOCK ACRONYM
INSTLFLG DS X LANGUAGE AVAILABILITY FLAGS
INSTLJPN EQU X'8ð' JAPANESE IS AVAILABLE
 DS CL23 RESERVED
INSTLLEN EQU \-INSTLCB
 END QUERY2A

 QRYLANG — Determine Languages Available for Message Translation 857

 QRYLANG Macro

858 OS/390 V2R8.0 MVS Assembler Services Reference

 REFPAT Macro

REFPAT — Define and End a Reference Pattern

 Description
The REFPAT macro identifies a large data area and tells the system how the program will
be referencing that area. Additionally, the program tells the system how many bytes of data
it wants the system to bring into central storage on a page fault (that is, each time the
program references data that is not in central storage). Use REFPAT if your program
accesses a very large data area in a reference pattern that is consistently in a forward or
backward direction. The system responds to REFPAT by bringing multiple pages into central
storage on a page fault. REFPAT might significantly improve the performance of the
program.

REFPAT INSTALL defines the reference pattern and REFPAT REMOVE removes the
definition.

Your program can reference an area with one pattern, then later reference the same area
with another pattern. Use REFPAT INSTALL to define the first reference pattern and
REFPAT REMOVE to remove the definition. Then, issue REFPAT INSTALL to define
another pattern for the same area.

On REFPAT INSTALL, you describe the data area, the reference pattern, and tell the system
how many bytes of data you want it to bring into central storage on a page fault. Two
parameters, UNITSIZE and GAP, determine the reference pattern:

� UNITSIZE specifies the size of a “reference unit.” A reference unit is a grouping of
contiguous bytes that the program references. You might decide a reference unit is the
group of bytes that make up an element of an array, or the group of bytes that occur
between gaps, or a page (4096 bytes).

� GAP defines the size of “gaps” in the reference pattern. Gaps are areas that the
program does not reference; they must be uniform in size and appear throughout the
data area at repeating intervals. Not all reference patterns include such a gap.

UNITS specifies how many reference units, as defined on UNITSIZE, you want the system to
bring into central storage on a page fault.

The data area can be located in the primary address space, or in a data space identified by
the STOKEN parameter.

Each pattern defined by REFPAT INSTALL is associated with the task that represents the
caller. A task can have up to 100 reference patterns for different data areas, but cannot
have multiple patterns for the same area. Multiple tasks can specify a different reference
pattern for the same data area. REFPAT REMOVE removes the association between the
pattern and the task.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space.

 Copyright IBM Corp. 1988, 1999 859

 REFPAT Macro

 Programming Requirements
If your program is in AR mode, make sure the SYSSTATE ASCENV=AR macro has been
issued to tell the system to generate code appropriate for AR mode.

 Restrictions
If you specify STOKEN for a data space, the data space must be owned by a task in the
primary address space.

Input Register Information
Before issuing the REFPAT macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Reason code if the return code in GPR 15 is not 0; otherwise, used as a work

register by the system
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
1 Used as a work register by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
The system rejects the REFPAT macro if the values you specify do not benefit the
performance of your program. To make sure the system accepts the macro, ask the system
to bring in more than three pages (that is, 12288 bytes) on each page fault.

860 OS/390 V2R8.0 MVS Assembler Services Reference

 REFPAT Macro

 Syntax
The standard form of the REFPAT macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede REFPAT.

REFPAT

␣ One or more blanks must follow REFPAT.

INSTALL
REMOVE

,PSTART=start start: RX-type address or register (2) - (12).

,PEND=end end: RX-type address or register (2) - (12).

 ,STOKEN=stoken stoken: RX-type address or register (2) - (12).

Default: STOKEN=0

 ,UNITSIZE=unit size unit size: RX-type address or register (2) - (12).

UNITSIZE is required with INSTALL.

 ,GAP=gap variable gap variable: RX-type address or register (2) - (12).

Default: GAP=0

 ,UNITS=unit number unit number: RX-type address or register (2) - (12).

Default: UNITS=1

 Parameters
The parameters are explained as follows:

INSTALL
REMOVE

INSTALL indicates that the program is to begin referencing the data area according to a
defined pattern. Required parameters on the INSTALL request are PSTART, PEND,
and UNITSIZE. UNITS, GAP, and STOKEN are optional.

REMOVE indicates that the program has finished referencing the data area, as specified
by the previous REFPAT INSTALL request. Required parameters on the REMOVE
request are PSTART and PEND. STOKEN is optional on the REMOVE request;
UNITSIZE, GAP, and UNITS are not valid.

PSTART and PEND on the INSTALL request must be exactly the same as PSTART and
PEND on the REMOVE request for the same reference pattern.

,PSTART=start
A required parameter that indicates the first byte of the data area for which the
reference pattern applies. PSTART and PEND addresses must not straddle the
common area boundaries. That is, for data in the primary address space, all data must
be either in low private, in common, or in high private storage.

When a gap exists, define PSTART according to the following rules:

� If direction is forward, PSTART must be the first byte (low-address end) of a
reference unit.

� If direction is backward, PSTART must be the last byte (high-address end) of a
reference unit.

 REFPAT — Define and End a Reference Pattern 861

 REFPAT Macro

,PEND=end
A required parameter that indicates the last byte of the data area for which the reference
pattern applies. If start is a higher address than end, the system knows that data
reference is in a backward direction.

Whether or not a gap exists, PEND can be any part of a reference unit or a gap.

,STOKEN=stoken
Specifies the STOKEN that identifies the data space that contains the data area. You
received the STOKEN either from DSPSERV or from another program.

If you use STOKEN=0 or do not specify STOKEN, the system assumes the data is in
the primary address space.

,UNITSIZE=unit size
Specifies the number of consecutive bytes that you want the system to treat as a
reference unit. If the pattern includes a gap, the reference unit is the grouping of bytes
that lie between the gaps. If the pattern does not include a gap, you can use any logical
grouping of bytes that your data structure suggests, such as an element, a row or two,
or a page (4096 bytes). UNITSIZE is required for the INSTALL request.

,GAP=gap variable
Specifies the gap, in bytes, of the reference pattern. The default is GAP=0.

,UNITS=unit number
Specifies the number of reference units, as defined on UNITSIZE, the system is to page
in at one time. The default is one reference unit or UNITS=1. To figure out how many
bytes the system brings in at a time:

� If there is no gap, multiply the UNITS value by the UNITSIZE value and round up to
the nearest 4096-byte boundary.

� If there is a gap, the number depends on values of UNITSIZE, GAP, UNITS, plus
the location of the reference units and gaps relative to a page boundary. The
system brings in the pages that contain the reference units. It does not bring in
pages that contain only data in the gap. OS/390 MVS Programming: Assembler
Services Guide can help you code the parameters.

Return and Reason Codes
Return and reason codes, in hexadecimal, from REFPAT are:

Return
code

Reason
code

Meaning

00 None. REFPAT completed successfully.

04 xx0001xx REFPAT completed successfully; however, the system did not
accept the reference pattern the caller specified. The system
decided that the normal paging algorithms would be more efficient.

08 xx0002xx Unsuccessful completion. The range that the caller specified on the
INSTALL request overlaps the range that a previous request
specified.

08 xx0003xx Unsuccessful completion. The number of existing REFPAT INSTALL
requests for the task exceeds 100, the maximum number the
system allows.

08 xx0004xx Unsuccessful completion. LSQA storage is not available for the
macro service.

08 xx0101xx Unsuccessful completion. The caller specified the REMOVE
request; however, no INSTALL request was in effect for the
specified range. Check to see if the system rejected the previous
INSTALL request for the range.

862 OS/390 V2R8.0 MVS Assembler Services Reference

 REFPAT Macro

 Example 1
Define a reference pattern in which the program processes 8192 bytes and skips over 4096
bytes in a continuing way throughout an array. Registers 4 and 5 contain pointers to
locations in storage which contain the starting and ending addresses of the array. Ask the
system to bring in eight pages on each page fault.

REFPAT INSTALL,PSTART=(4),PEND=(R5),GAP=4ð96,UNITSIZE=8192,UNITS=4

 Example 2
Tell the system you have finished using the array using that pattern:

REFPAT REMOVE,PSTART=(4),PEND=(R5)

 REFPAT — Define and End a Reference Pattern 863

 REFPAT Macro

 REFPAT—List Form
Use the list form of the REFPAT macro together with the execute form of the macro for
programs that require reentrant code. The list form of the macro defines an area of storage,
which the execute form of the macro uses to store the parameters.

 Syntax
The list form of the REFPAT macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede REFPAT.

REFPAT

␣ One or more blanks must follow REFPAT.

MF=(L,list addr) list addr: Symbol.
MF=(L,list addr,attr) attr: 1- to 60-character input string.

Default : 0D

 Parameters
The parameters are explained under the standard form of the REFPAT macro with the
following exception:

MF=(L,list addr,attr)
Specifies the list form of the REFPAT macro. list addr defines the area that the system
is to use for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
0D, which forces the parameter list to a doubleword boundary.

864 OS/390 V2R8.0 MVS Assembler Services Reference

 REFPAT Macro

 REFPAT—Execute Form
Use the execute form of the REFPAT macro together with the list form of the macro for
programs that require reentrant code. The execute form of the macro stores the parameters
into the storage area defined by the list form.

 Syntax
The execute form of the REFPAT macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede REFPAT.

REFPAT

␣ One or more blanks must follow REFPAT.

INSTALL
REMOVE

,PSTART=start start: RX-type address or register (2) - (12).

,PEND=end end: RX-type address or register (2) - (12).

 ,STOKEN=stoken stoken: RX-type address or register (2) - (12).

Default: STOKEN=0

 ,UNITSIZE=unit size unit size: RX-type address or register (2) - (12).

UNITSIZE is required on INSTALL./.,pend

 ,GAP=gap variable gap variable: RX-type address or register (2) - (12).

Default: GAP=0

 ,UNITS=unit number unit number: RX-type address or register (2) - (12).

Default: UNITS=1

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

 Parameters
The parameters are explained under the standard form of the REFPAT macro with the
following exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the REFPAT macro. list addr defines the area that the
system uses for the parameter list.

COMPLETE specifies that the system is to check for required parameters and supply
optional parameters that are not specified.

 REFPAT — Define and End a Reference Pattern 865

 REFPAT Macro

866 OS/390 V2R8.0 MVS Assembler Services Reference

 RESERVE Macro

RESERVE — Reserve a Device (Shared DASD)

 Description
The RESERVE macro reserves a device for use by a particular system; it must be issued by
each task needing to reserve a device shared with one or more systems. The RESERVE
macro protects the caller from interference by other tasks in the system and locks out other
systems. The reserve actually occurs when the first I/O is done to the device after the
RESERVE macro is issued. When the reserving program no longer needs the reserved
device, it should issue a DEQ macro to release the resource.

For information about how to obtain the UCB address for a device, see the section
“Accessing Unit Control Blocks (UCBs)” in OS/390 MVS Programming: Assembler Services
Guide for information about using the UCBSCAN macro.

 Environment
The requirements for the caller are:

Minimum authorization : Problem state with any PSW key.
Dispatchable unit mode : Task
Cross memory mode : PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode : Primary
Interrupt status : Enabled for I/O and external interrupts
Locks : No locks held
Control parameters : If the caller's AMODE is 24-bit, all parameters must reside below

16 megabytes.

 Programming Requirements
None.

 Restrictions
If a task issues two RESERVE macros for the same device without an intervening DEQ
macro, an abnormal termination results unless the second RESERVE specifies the keyword
parameter RET. (If a restart occurs after the caller successfully issued the RESERVE macro
for a resource, the system does not reserve the device again; the caller must reissue the
RESERVE macro.) If a DEQ macro is not issued for a particular resource, the system
releases the reserved resource when the task ends.

The system counts and limits the number of concurrent resource requests in an address
space. If an unconditional RESERVE (a RESERVE macro with RET=NONE) causes the
number of global resource serialization requests to exceed the limit, the caller is abnormally
terminated with a system code of X'538'. For further information about limiting concurrent
requests for resources, see in OS/390 MVS Programming: Assembler Services Guide.

Input Register Information
Before issuing the RESERVE macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

 Copyright IBM Corp. 1988, 1999 867

 RESERVE Macro

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 One of the following:

� If you specify RET=TEST, RET=USE, or RET=HAVE: If all return codes
for the resources named in the RESERVE macro are 0, register 15
contains 0. If any of the return codes are not 0, register 15 contains the
address of a storage area containing the return codes.

� Otherwise: used as a work register by the system.

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Syntax
The standard form of the RESERVE macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede RESERVE.

RESERVE

␣ One or more blanks must follow RESERVE.

(

qname addr qname addr: A-type address, or register (2) - (12).

,rname addr rname addr: A-type address, or register (2) - (12).

, Default: E
,E
,S

,
,rname length rname length: symbol, decimal digit, or register (2) - (12).

,SYSTEMS
)

 ,RET=TEST
 ,RET=USE
 ,RET=HAVE
 ,RET=NONE

,UCB=ucb addr ucb addr: A-type address, or register (2) - (12).

868 OS/390 V2R8.0 MVS Assembler Services Reference

 RESERVE Macro

 ,LOC=BELOW Default: LOC=BELOW
 ,LOC=ANY

 ,RELATED=value value: any valid macro keyword specification.

 Parameters
The parameters are explained as follows:

(
Specifies the beginning of the resource description.

qname addr
Specifies the address in virtual storage of an 8-character name. The name should not
start with SYS, so that it will not conflict with system names. Every task issuing
RESERVE against the same resource must use the same qname and rname to
represent the resource.

,rname addr
Specifies the address in virtual storage of the name used together with qname to
represent a single resource. The name can be qualified, and must be from 1 to 255
bytes long.

,
,E
,S

Specifies whether the request is for exclusive (E) or shared (S) control of the resource.
If the resource is modified while under control of the task, the request must be for
exclusive control; if the resource is not modified, the request should be for shared
control.

,
,rname length

Specifies the length of the rname. If this parameter is omitted, the system uses the
assembled length of the rname. To override the assembled length, specify this
parameter; the value you can code depends on whether or not you also specify MASID
and MTCB:

� If you specify MASID and MTCB, you can code a value between 1 and 128.

� If you do not specify MASID and MTCB, you can code a value between 1 and 255.

In either case, you can specify 0, which means that the length of the rname must be
contained in the first byte at the rname addr.

,SYSTEMS
Specifies that the resource is shared among systems.

)
Specifies the end of the resource description.

,RET=TEST
,RET=USE
,RET=HAVE
,RET=NONE

RET=TEST, RET=USE, and RET=HAVE specify a conditional request for the resource
named on the macro, as follows:

RET=TEST The availability of the resource is to be tested, but control of the
resource is not requested.

RET=USE Control of the resource is to be assigned to the active task only if the
resource is immediately available.

 RESERVE — Reserve a Device (Shared DASD) 869

 RESERVE Macro

RET=HAVE Control of the resource is requested only if the same task does not
already control or have an outstanding request for the same resource.

RET=NONE specifies an unconditional request for the resource named on the macro.

,UCB=ucb addr
Specifies the address of a fullword that contains the address of the UCB for the device
to be reserved. The UCB must be allocated to the job step before RESERVE is issued.

Note: The UCB keyword might specify a UCB address for a UCB that resides in
storage above or below 16 megabytes. If the UCB address might point to a UCB above
16 megabytes you must also specify LOC=ANY.

,LOC=BELOW
,LOC=ANY

Specifies the location of the input UCB address. ANY specifies that the input UCB
address is to be treated as a 31-bit address. BELOW specifies that the input UCB
address is to be treated as a 24-bit address. The default is LOC=BELOW.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid values.

 ABEND Codes
For unconditional requests only, the caller might encounter abend code X'138' or X'538'.
For unconditional or conditional requests, the caller might encounter one of the following
abend codes:

 � X'238'
 � X'338'
 � X'438'
 � X'738'
 � X'838'
 � X'938'

See OS/390 MVS System Codes for explanations and responses for these codes.

Return and Reason Codes
The system provides return codes only if you specify RET=TEST, RET=USE, or RET=HAVE;
for RET=NONE, return to the task indicates that control of the resource has been assigned
to the task. If the return code for the resource named in the RESERVE macro is 0, register
15 contains 0. If the return code is not 0, register 15 contains the address of a 12-byte
storage area containing the return code, as shown in Figure 53.

Address
Returned in
Register 15

0

1 2

Return
Code

2 31 1 2

Address
Returned in
Register 15

0

1 2

2 41

BYTE 2BYTE 0 BYTE 1

Figure 53. Return Code Area Used by RESERVE

The return codes for the RESERVE macro with the RET=TEST parameter are described in
Figure 54.

870 OS/390 V2R8.0 MVS Assembler Services Reference

 RESERVE Macro

The return codes for the RESERVE macro with the RET=USE parameter are described in
Figure 55.

The return codes for the RESERVE macro with the RET=HAVE parameter are described in
Figure 56.

Figure 54. Return Codes for the RESERVE Macro with the RET=TEST Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning : The resource is immediately available.

Action : None required. However, you might take some action based on your application.

4 Meaning : The resource is not immediately available.

Action : None required. However, you might take some action based on your application.

8 Meaning : A previous request for control of the same resource has been made for the same
task. The task has control of the resource.

Action : None required. However, you might take some action based on your application.

To determine whether the task has exclusive control or shared control of the resource,
check bit 3 of Byte 0 as shown in Figure 53. If bit 3 is off, the task has exclusive control; If
bit 3 is on, the task has shared control.

14 Meaning : A previous request for control of the same resource has been made for the same
task. The task does not have control of the resource.

Action : None required. However, you might take some action based on your application.

Figure 55. Return Codes for the RESERVE Macro with the RET=USE Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning : The active task now has control of the resource.

Action : None.

4 Meaning : The resource is not immediately available.

Action : None required. However, you might take some action based on your application.

8 Meaning : A previous request for control of the same resource has been made for the same
task. The task has control of the resource.

Action : None required. However, you might take some action based on your application.

To determine whether the task has exclusive control or shared control of the resource,
check bit 3 of Byte 0 as shown in Figure 53 on page 870. If bit 3 is off, the task has
exclusive control; If bit 3 is on, the task has shared control.

14 Meaning : A previous request for control of the same resource has been made for the same
task. The task does not have control of the resource.

Action : None required. However, you might take some action based on your application.

18 Meaning : Environmental error. The limit for the number of concurrent resource requests
has been reached. The task does not have control of the resource unless some previous
ENQ or RESERVE request caused the task to obtain control of the resource.

Action : Retry the request one or more times. If the problem persists, consult your system
programmer, who might be able to tune the system so that the limit is no longer exceeded.

Figure 56 (Page 1 of 2). Return Codes for the RESERVE Macro with the RET=HAVE Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning : The active task now has control of the resource.

Action : None.

8 Meaning : A previous request for control of the same resource has been made for the same
task. The task has control of the resource.

Action : None required. However, you might take some action based on your application.

To determine whether the task has exclusive control or shared control of the resource,
check bit 3 of Byte 0 as shown in Figure 53 on page 870. If bit 3 is off, the task has
exclusive control; If bit 3 is on, the task has shared control.

14 Meaning : A previous request for control of the same resource has been made for the same
task. The task does not have control of the resource.

Action : None required. However, you might take some action based on your application.

 RESERVE — Reserve a Device (Shared DASD) 871

 RESERVE Macro

Figure 56 (Page 2 of 2). Return Codes for the RESERVE Macro with the RET=HAVE Parameter

Hexadecimal
Return Code

Meaning and Action

18 Meaning : Environmental error. The limit for the number of concurrent resource requests
has been reached. The task does not have control of the resource unless some previous
ENQ or RESERVE request caused the task to obtain control of the resource.

Action : Retry the request one or more times. If the problem persists, consult your system
programmer, who might be able to tune the system so that the limit is no longer exceeded.

 Example
Unconditionally reserve exclusive control of a device. The length of the rname is allowed to
default.

RESERVE (MAJOR3,MINOR3,E,,SYSTEMS),UCB=(R3)

872 OS/390 V2R8.0 MVS Assembler Services Reference

 RESERVE Macro

 RESERVE—List Form
The list form of the RESERVE macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede RESERVE.

RESERVE

␣ One or more blanks must follow RESERVE.

(

 qname addr qname addr: A-type address.

 , rname addr: A-type address.
 ,rname addr

 ,
 ,E
 ,S

 , rname length: symbol or decimal digit.
 ,rname length

 ,
 ,SYSTEMS
)

 ,RET=TEST
 ,RET=USE
 ,RET=HAVE
 ,RET=NONE

,UCB=ucb addr ucb addr: A-type address or 0.

 ,LOC=BELOW Default: LOC=BELOW
 ,LOC=ANY

 ,RELATED=value value: A-type address.

,MF=L

 Parameters
The parameters are explained under the standard form of the RESERVE macro, with the
following exception:

,MF=L
Specifies the list form of the RESERVE macro.

 RESERVE — Reserve a Device (Shared DASD) 873

 RESERVE Macro

 RESERVE—Execute Form
The execute form of the RESERVE macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede RESERVE.

RESERVE

␣ One or more blanks must follow RESERVE.

 (Note: (and) are the beginning and end of a parameter list. The

entire list is optional. If nothing in the list is desired, the (,), and all
parameters between (and) should not be specified. If something
in the list is desired, then (,), and all parameters in the list should
be specified as indicated at the left.

 qname addr qname addr: RX-type address, or register (2) - (12).

 , rname addr: RX-type address, or register (2) - (12).
 ,rname addr

 ,
 ,E
 ,S

 , rname length: symbol, decimal digit, or register (2) - (12).
 ,rname length Note: rname length must be coded if a register is specified for

rname addr above.

 ,
 ,SYSTEMS

)

 ,RET=TEST
 ,RET=USE
 ,RET=HAVE
 ,RET=NONE

 ,UCB=ucb addr ucb addr: RX-type address, or register (2) - (12).

 ,LOC=BELOW Default: LOC=BELOW
 ,LOC=ANY

 ,RELATED=value value: any valid macro keyword specification.

,MF=(E, list addr) list addr: RX-type address, or register (1) - (12).

 Parameters
The parameters are explained under the standard form of the RESERVE macro, with the
following exception:

,MF=(E,ctrl addr)
Specifies the execute form of the RESERVE macro.

list addr specifies the area that the system uses to contain the parameters.

874 OS/390 V2R8.0 MVS Assembler Services Reference

 RETURN Macro

RETURN — Return Control

 Description
The RETURN macro restores the control to the calling program and signals normal
termination of the called program. The return of control is always made by executing a
branch instruction using the address in register 14. Because the RETURN macro uses a BR
14 to pass control, it can be used only when the return is to a program that executes in the
same addressing mode. The RETURN macro can restore a designated range of registers,
provide a return code in register 15, and flag the save area used by the called program.

If registers are to be restored, or if an indicator is to be placed into the save area, register 13
must contain the address of the save area, which must have the standard format.

 Syntax
The RETURN macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede RETURN.

RETURN

␣ One or more blanks must follow RETURN.

 (reg1) reg1 and reg2: Decimal digits, and in the order 14, 15, 0 through

12.
 (reg1,reg2)

 ,T

 ,RC=ret code ret code: Decimal digit, symbol, or register (15). The maximum

value is 4095.

 Parameters
The parameters are explained as follows:

(reg1)
(reg1,reg2)

Specifies the register or range of registers to be restored from the save area pointed to
by the address in register 13. If you omit this parameter, the contents of the registers
are not altered. Do not code this parameter when returning control from a program
interruption exit routine.

,T
Causes the control program to flag the save area used by the called program. The
low-order bit of word 4 of the save area is set to 1 after the registers have been loaded;
this designates that a called program has executed a return to its caller. Do not specify
this parameter when returning control from an exit routine.

 Copyright IBM Corp. 1988, 1999 875

 RETURN Macro

,RC=ret code
Specifies the return code to be passed to the calling program. If a symbol or decimal
digit is coded, the return code is placed right-adjusted in register 15 before return is
made; if register 15 is coded, the return code has been previously loaded into register
15 and the contents of register 15 are not altered or restored from the save area. (If
you omit this parameter, the contents of register 15 are determined by the reg1 and
reg2 parameters.)

Note: If register 15 is coded and a return code greater than 4095 (decimal) is passed,
the results could be either an invalid return code in the message or invalid RC testing.

 Example
Restore registers 14-12, flag the save area, and return with a code of 0.

RETURN (14,12),T,RC=ð

876 OS/390 V2R8.0 MVS Assembler Services Reference

 SAVE Macro

SAVE — Save Register Contents

 Description
The SAVE macro stores the contents of the specified general purpose registers in the save
area at the address contained in register 13. If you wish, you may specify an entry point
identifier. Write the SAVE macro only at the entry point of a program because the code
resulting from the macro expansion requires that register 15 contain the address of the
SAVE macro prior to its execution. Do not use the SAVE macro in a program interruption
exit routine.

 Syntax
The SAVE macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SAVE.

SAVE

␣ One or more blanks must follow SAVE.

 (reg1) reg1 and reg2: Decimal digits, and in the order 14, 15, 0 through

12.
 (reg1,reg2)

,
,T

 ,id name id name: Character string of up to 70 characters or as an *.

 Parameters
The parameters are explained as follows:

(reg1)
(reg1,reg2)

Specifies the register or range of registers to be stored in the save area at the address
contained in register 13. The registers are stored in words 4 through 18 of the save
area.

,
,T

Specifies that registers 14 and 15 are to be stored in word 4 and 5, respectively, of the
save area. This parameter permits you to save two noncontiguous sets of registers.

If you specify both T and reg2, and reg1 is any of registers 14, 15, 0, 1, or 2, all of
registers 14 through the reg2 value are saved.

,id name
Specifies an identifier to be associated with the SAVE macro. If an asterisk (*) is coded,
the identifier is the name associated with the SAVE macro, or, if the name field is blank,
the control section name is used. The identifier aids in locating a program's save area
in a dump. If the CSECT instruction name field is blank, the parameter is ignored.

 Copyright IBM Corp. 1988, 1999 877

 SAVE Macro

Whenever a symbol or an asterisk is coded, the following macro expansion occurs:

� A count byte containing the number of characters in the identifier name is assembled
four bytes following the address contained in register 15.

� The character string containing the identifier name is assembled starting at five bytes
following the address contained in register 15.

� An instruction to branch around the count and identifier fields is assembled.

 Example
Save registers 14-12, and associate the identifier with the CSECT name.

SAVE (14,12),,\

878 OS/390 V2R8.0 MVS Assembler Services Reference

 SETRP Macro

SETRP — Set Return Parameters

 Description
Use the SETRP macro within a recovery routine to indicate the various requests that the
recovery routine can make. SETRP is valid for ESTAE-type recovery routines. For more
information about recovery routines, see OS/390 MVS Programming: Assembler Services
Guide.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary, secondary, or access register (AR)

Note: Callers in secondary ASC mode cannot specify the
DUMPOPX parameter.

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None

 Programming Requirements
� If the program is in AR mode, issue the SYSSTATE ASCENV=AR macro before issuing

SETRP. SYSSTATE ASCENV=AR tells the system to generate code appropriate for AR
mode.

� Include the IHASDWA mapping macro to map the system diagnostic work area (SDWA).
(See SDWA in OS/390 MVS Data Areas, Vol 4 (RD-SRRA) for the mapping provided by
IHASDWA.)

� If you plan to specify RETREGS=YES, RUB=reg info addr, you must obtain storage for
and initialize the register update block (RUB). See the RETREGS parameter description
for more information about this area.

 Restrictions
� You can use SETRP only if the system provided an SDWA.

� Recovery routines established through the STAE macro, or the STAI parameter on the
ATTACH or ATTACHX macro, cannot update registers on retry, so the RETREGS
parameter does not apply.

Input Register Information
Before issuing the SETRP macro, the caller must ensure that the following general purpose
register (GPRs) contain the specified information:

Register Contents
1 If you do not specify the WKAREA parameter, address of the SDWA;

otherwise, the caller does not have to place any information into this register.
13 If you specify the REGS parameter, address of a standard 72-byte save area

containing the registers to be restored; otherwise, the caller does not have to
place any information into this register.

 Copyright IBM Corp. 1988, 1999 879

 SETRP Macro

Before issuing the SETRP macro, the caller must ensure that the following access registers
(ARs) contain the specified information:

Register Contents
1 If you do not specify the WKAREA parameter, ALET of the SDWA whose

address is in GPR 1; otherwise, the caller does not have to place any
information into this register.

13 If you specify the REGS parameter, ALET of the standard 72-byte save area
whose address is in GPR 13; otherwise, the caller does not have to place any
information into this register.

Output Register Information
Note: Control does not return to the caller if the caller specifies the REGS parameter.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

880 OS/390 V2R8.0 MVS Assembler Services Reference

 SETRP Macro

 Syntax
The SETRP macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SETRP.

SETRP

␣ One or more blanks must follow SETRP.

 ,WKAREA=(reg) reg: Decimal digits 1-12.

Default: WKAREA=(1)

 ,REGS=(reg1) reg1: Decimal digits 0-12, 14, 15.
 ,REGS=(reg1,reg2) reg2: Decimal digits 0-12, 14, 15.

Note: If you specify (reg1,reg2), specify the registers in the same
order as in an STM instruction; for example, to restore all registers
except register 13, specify REGS=(14,12).

 ,DUMP=IGNORE Default: DUMP=IGNORE
 ,DUMP=YES
 ,DUMP=NO

,DUMPOPT=parm list addr parm list addr: RX-type address, or register (2) - (12).
,DUMPOPX=parm list addr Note: Appropriate only with DUMP=YES.

 ,REASON=code code: Any four-byte number specified in decimal (31-bit) or

hexadecimal (32-bit).

 ,RC=0 Default: RC=0
 ,RC=4
 ,RC=16

 ,RETADDR=retry addr retry addr: RX-type address, or register (2) - (12).

Note: This parameter may be specified only if RC=4 is specified
above.

 ,REMREC=NO Default: REMREC=NO
 ,REMREC=YES

 ,RETREGS=NO reg info addr: RX-type address, or register (2) - (12).
 ,RETREGS=YES Default: RETREGS=NO
 ,RETREGS=YES,RUB=reg
 info addr

Note: This parameter may be specified only if RC=4 is specified
above.

 ,FRESDWA=NO Default: FRESDWA=NO
 ,FRESDWA=YES Note: This parameter may be specified only if RC=4 is specified

above.

 ,COMPCOD=comp code comp code: Symbol, decimal digit, or register (2) - (12).
 ,COMPCOD=(comp
 code,USER)

Default: COMPCOD=(comp code,USER)

 ,COMPCOD=(comp
 code,SYSTEM)

,RECPARM=record list addr record list addr: RX=type address, or register (2) - (12).

 SETRP — Set Return Parameters 881

 SETRP Macro

 Parameters
The parameters are explained as follows:

,WKAREA=(reg)
Specifies the address of the SDWA passed to the recovery routine.

,REGS=(reg1)
,REGS=(reg1,reg2)

Specifies the register or range of registers to be restored from the 72-byte standard
save area pointed to by the address in register 13. If you specify REGS, a branch on
register 14 instruction will also be generated to return control to the system. If you do
not specify REGS, you must code your own branch on whichever register contains the
return address.

Note: If you specify reg1,reg2, specify the registers in the same order as in an STM
instruction; for example, to restore all registers except register 13, specify
REGS=(14,12).

,DUMP=IGNORE
,DUMP=YES
,DUMP=NO

Specifies that the dump option fields will not be changed (IGNORE), will be zeroed
(NO), or will be merged with dump options specified in previous dump requests, if any
(YES). If IGNORE is specified, a previous recovery routine had requested a dump or a
dump had been requested through the ABEND macro, and the previous request will
remain intact. If NO is specified, no dump will be taken.

,DUMPOPT=parm list addr
,DUMPOPX=parm list addr

Specifies the address of a parameter list of options. To create the parameter list, use
the list form of either the SNAP or SNAPX macro, or code data constants in your
program. DUMPOPT specifies the address of a parameter list that the SNAP macro
creates. DUMPOPX specifies the address of a parameter list that the SNAPX macro
creates. A program in secondary mode cannot use the DUMPOPX parameter.

If the specified dump options include subpools for storage areas to be dumped, up to
seven subpools can be dumped. Subpool areas are accumulated and wrapped, so that
the eighth subpool area specified replaces the first.

If the dump options specified include ranges of storage areas to be dumped, only the
storage areas in the first thirty ranges will be dumped.

The TCB, DCB, ID, and STRHDR options available on SNAP or SNAPX are ignored if
they appear in the parameter list. The TCB used is the one for the task that
encountered the error. The DCB used is one created by the system, and either
SYSABEND, SYSMDUMP, or SYSUDUMP is used as a DDNAME.

,REASON=code
Specifies the reason code that the user wishes to pass to subsequent recovery routines.

,RC=0
,RC=4
,RC=16

Specifies the return code the recovery routine sends to recovery processing to indicate
what further action is required:

0 Continue with error processing, causes entry into previously specified recovery
routine, if any.

4 Retry using the retry address specified.

16 Valid only for an ESTAI/STAI recovery routine. The system should not give
control to any further ESTAI/STAI routines, and should abnormally end the
task.

882 OS/390 V2R8.0 MVS Assembler Services Reference

 SETRP Macro

,RETADDR=retry addr
Specifies the address of the retry routine to which control is to be given.

,REMREC=YES
,REMREC=NO

In an ESTAE environment, specifies that the ESTAE entry for the currently running
ESTAE routine be removed (REMREC=YES) or not removed (REMREC=NO). This
parameter may be specified only when RC=4 is specified, indicating a retry request.

The entry is removed before control returns to the retry point. If REMREC=YES is not
coded on any SETRP invocation before the system receives control, the effect is that of
specifying REMREC=NO. The REMREC parameter may be used to remove a recovery
routine that has been established with a token, although the token cannot be specified
when you code the SETRP macro.

,RETREGS=NO
,RETREGS=YES
,RETREGS=YES,RUB=reg info addr

Specifies the contents of the registers to be restored on entry to the retry routine.
RETREGS=NO indicates that you do not want the system to restore any register
contents from the SDWA.

If you specify RETREGS=YES, in a recovery routine defined through the ESTAE or
ESTAEX macro, the ESTAI parameter on the ATTACH or ATTACHX macro, or an
associated recovery routine (ARR), the system does the following:

� Initializes GPRs 0-15 from the SDWASRSV field of the SDWA
� Initializes ARs 0-15 from the SDWAARSV field of the SDWA.

RUB (register update block) specifies the address of an area that contains register
update information for the GPRs. The data you specify in this area will be moved into
the SDWASRSV field of the SDWA and will be loaded into the GPRs on entry to the
retry routine. You cannot use the RUB to specify data to be moved into the
SDWAARSV field for loading the ARs. The maximum length of the RUB is 66 bytes.
You must acquire storage for and initialize this area as follows:

� The first two bytes represent the registers to be updated, register 0 corresponding
to bit 0, register 1 corresponding to bit 1, and so on. The user indicates which of
the registers are to be stored in the SDWA by setting the corresponding bits in
these two bytes.

� The remaining 64 bytes contain the update information for the registers, in the order
0-15. If all 16 registers are being updated, this field consists of 64 bytes. If only
one register is being updated, this field consists of only 4 bytes for that one register.

For example, if only registers 4, 6, and 9 are being updated:

� Bits 4, 6, and 9 of the first two bytes are set.

� The remaining field consists of 12 bytes for registers 4, 6, and 9; the first 4 bytes
are for register 4, followed by 4 bytes for register 6, and 4 final bytes for register 9.

,FRESDWA=NO
,FRESDWA=YES

Specifies that the entire SDWA be freed (YES) or not be freed (NO) prior to entry into
the retry routine.

,COMPCOD=comp code
,COMPCOD=(comp code,USER)
,COMPCOD=(comp code,SYSTEM)

Specifies the user or system completion code that the user wishes to pass to
subsequent recovery routines.

 SETRP — Set Return Parameters 883

 SETRP Macro

,RECPARM=record list addr
Specifies the address of a user-supplied record parameter list used to update the SDWA
with recording information. The parameter list consists of three 8-byte fields:

� The first field contains the load module name.

� The second field contains the CSECT name (assembly module name).

� The third field contains the recovery routine name (assembly module name). If the
recovery routine label is not the same as the assembly module name, the label can
be used.

The three fields are left-justified, and padded with blanks.

 ABEND Codes
None.

Return and Reason Codes
None.

 Example 1
Request to continue terminating, suppress dumping, restore register 14 from the save area,
and pass control to the location it contains, contain the SDWA in the location addressed by
register 3, and change the completion code to 10.

SETRP RC=ð,DUMP=NO,REGS=(14),WKAREA=(3), X
 COMPCOD=(X'ððA',USER)

 Example 2
Retry using address X, take a dump before retry, use the contents of SDWASRSV to
initialize the registers, free the SDWA before control is passed to the retry address, and
restore registers 14-12.

SETRP RC=4,RETREGS=YES,DUMP=YES,FRESDWA=YES, X
 REGS=(14,12),RETADDR=X

884 OS/390 V2R8.0 MVS Assembler Services Reference

 SNAP and SNAPX Macros

SNAP and SNAPX — Dump Virtual Storage and Continue

 Description
You can use the SNAP macro to obtain a dump of some or all of the storage assigned to the
current job step. You can also dump some or all of the control program fields. The SNAP
macro causes the specified storage to be displayed in the addressing mode of the caller.

Descriptions of the SNAP and SNAPX macros in this book are:

� The standard form of the SNAP macro, which includes general information about the
SNAP and SNAPX macros, with some specific information about SNAP. The topic also
describes the syntax of the SNAP macro and explains the SNAP macro parameters.

� The standard form of the SNAPX macro, which presents specific information about the
SNAPX macro. The topic describes the syntax of the SNAPX macro and explains the
parameters that are valid only on the SNAPX macro.

� The list form of the SNAP and SNAPX macros.

� The execute form of the SNAP and SNAPX macros.

There are three ways to obtain a dump:

1. Spool the dump by specifying SYSOUT=x on the DD statement. The dump is printed
without a separate job but is deferred until after the job ends.

2. Select a tape or direct access device. This method requires a separate job step to print
the dump. This method might be used if the dump is to be printed more than once.

3. Select a printer on the DD statement. This method is almost never used because the
printer cannot be used by anyone else for the duration of the job step.

Both NUC and ALLVNUC are valid. Only ALLVNUC gives you the whole virtual nucleus. For
more information about the SNAP macro, see OS/390 MVS Programming: Assembler
Services Guide.

 Note

The SNAP and SNAPX macros have the same environment specifications, register
information, programming requirements, restrictions and limitations, performance
implications, and return codes described below. However, IBM recommends that
programs in access register (AR) address space control (ASC) mode use SNAPX. All
parameters on SNAP are valid on SNAPX.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary or AR

Note: If your program is in AR mode and you issue SNAP rather
than SNAPX following SYSSTATE ASCENV=AR, the system
substitutes the SNAPX macro and issues a message telling you
that it made the substitution.

Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held, and no enabled, unlocked task (EUT) FRRs

established
Control parameters: Must be in the primary address space

 Copyright IBM Corp. 1988, 1999 885

 SNAP and SNAPX Macros

Input Register Information
Before issuing the SNAP(X) macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-14 Unchanged
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after regaining control.

 Programming Requirements
Before you issue the SNAP macro, you must open the DCB that you designate on the DCB
parameter, and ensure that the DCB is not closed until the SNAP macro returns control. To
open the DCB, issue the DCB macro with the following parameters, and issue an OPEN
macro for the data set (the DCB and OPEN macros are described in MVS/DFP Macro
Instructions for Data Sets):

DSORG=PS,RECFM=VBA,MACRF=(W),BLKSIZE=nnn,LRECL=xxx,
and DDNAME=any name but SYSABEND, SYSMDUMP or SYSUDUMP

If a standard dump of 120 characters per line is requested, BLKSIZE must be either 882 or
1632, and LRECL must be 125. A high-density dump printed on a 3800 Printing Subsystem
has 204 characters per line. To obtain a high-density dump, you must code CHARS=DUMP
on the DD statement describing the dump data set. The BLKSIZE= must be either 1470 or
2724, and the LRECL= must be 209. You can also code CHARS=DUMP on the DD
statement describing a dump data set that will not be printed immediately. If you specify
CHARS=DUMP and the output device is not a 3800, print lines are truncated and print data
is lost. If you open a SNAP data set in a problem program that will be processed by the
system loader, your problem program must close the data set.

The DCB and TCB must reside in 24-bit addressable storage. All other parameters can
reside above 16 megabytes if the issuer is executing in 31-bit addressing mode.

If the program is in AR mode, issue SNAPX rather than SNAP; issue the SYSSTATE
ASCENV=AR macro before SNAPX. SYSSTATE ASCENV=AR tells the system to generate
code appropriate for AR mode.

 Restrictions
None.

886 OS/390 V2R8.0 MVS Assembler Services Reference

 SNAP and SNAPX Macros

 Performance Implications
None.

 Syntax
The standard form of the SNAP macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SNAP.

SNAP

␣ One or more blanks must follow SNAP.

DCB=dcb addr dcb addr: A-type address, or register (2) - (12).

 ,TCB=tcb addr tcb addr: A-type address, or register (2) - (12).

 ,ID=id nmbr id nmbr: Symbol, decimal digit, or register (2) - (12).

Value range: 0-255

 ,SDATA=ALL

,SDATA=(sys data code) sys data code: Any combination of the following, separated by
commas. If you specify only one code, you do not need the
parentheses.

NUC CB ERR
SQA Q IO
LSQA TRT ALLVNUC

 PCDATA
SWA DM SUM

 ,PDATA=ALL

,PDATA=(prob data code) prob data code: Any combination of the following, separated by
commas. If you specify only one code, you do not need the
parentheses.

 PSW

REGS
SA or SAH
JPA or LPA or ALLPA
SPLS
SUBTASKS

 ,STORAGE=(strt addr,end
 addr)
 ,LIST=list addr

strt addr: A-type address, or register (2) - (12).
end addr: A-type address, or register (2) - (12).
list addr: A-type address, or register (2) - (12).
Note: One or more pairs of addresses may be specified,
separated by commas. For example: STORAGE=(strt addr,end
addr,strt addr,end addr)

 ,STRHDR=(hdr addr) hdr addr: A-type address, or register (2) - (12).

,STRHDR=hdr list addr Note: hdr addr is one or more addresses separated by commas.
If you specify only one header address as an A-type address, you
do not need the parentheses. If you specify one or more registers,
then you must code double parentheses (one set enclosing each
register and one set enclosing the list of registers). If
STRHDR=(hdr addr) is specified, then STORAGE must also be
specified.
hdr list addr: A-type address, or register (2) - (12).
Note: If STRHDR=hdr list addr is specified, then LIST must also
be specified.

 SNAP and SNAPX — Dump Virtual Storage and Continue 887

 SNAP and SNAPX Macros

,SUBPLST=sbp list addr sbp list addr: A-type address, or register (2) - (12).

 Parameters
The parameters are explained as follows:

DCB=dcb addr
Specifies the address of a previously opened data control block for the data set that is
to contain the dump.

Notes:

1. DCB must reside in 24-bit addressable storage.

2. The DCB parameter is not required when you issue the list form of SNAP or
SNAPX to format a parameter list for the DUMPOPT/DUMPOPX parameter of the
ABEND, CALLRTM, or SETRP macros. If the parameter list you specify on
DUMPOPT/DUMPOPX contains a DCB value, the system overrides it. The DCB
parameter is required when you issue the list form of SNAP or SNAPX to format a
parameter list for an execute form of SNAP or SNAPX if the execute form does not
specify the DCB parameter. That is, if you specify both a list and execute form of
SNAP or SNAPX, you must specify DCB on one or the other.

,TCB=tcb addr
Specifies the address of a fullword on a fullword boundary containing the address of the
task control block for a task of the current job step. If omitted, or if the fullword contains
0, the dump is for the active task. If a register is designated, the register can contain 0
to indicate the active task, or can contain the address of a TCB.

Note: TCB must reside in 24-bit addressable storage.

,ID=id nmbr
Specifies the number that is to be printed in the identification heading with the dump. If
the number specified is not in the acceptable value range, it will not be printed properly
in the heading.

,SDATA=ALL
,SDATA=(sys data code)

Specifies the system control program information to be dumped:

ALL All of the SDATA options except ALLVNUC (The read-only portion of the
nucleus is not included in the dump unless ALLVNUC is also specified as
an option.)

NUC The PSA, SQA, LSQA, and the read/write portion of the nucleus (if the
entire nucleus is required, specify the ALLVNUC option.)

Note: The CVT will be included if this option is specified.

SQA The system queue area (subpools 226, 239, and 245).

LSQA The local system queue area and subpools 229, 230, and 249.

Note : Subpools 229, 230, and 249 will be dumped only for the current task.

SWA The scheduler work area related to the task (subpools 236 and 237).

CB The control blocks for the task.

Q The global resource serialization control blocks for the task.

TRT The GTF trace and system trace data. If system tracing is active and the
requestor is authorized, all system trace entries for all address spaces are
included in the dump. Unauthorized requestors obtain those system trace
entries, after the job-start time stamp in the ASCB, for their current address
space. If GTF tracing is active, only the GTF trace entries for the current
address space are included in the dump.

888 OS/390 V2R8.0 MVS Assembler Services Reference

 SNAP and SNAPX Macros

DM Data management control blocks for the task.

ERR Recovery/termination control blocks for the task. These control blocks
summarize information that describes abnormal terminations of the task.

IO Input/Output supervisor control blocks for the task.

ALLVNUC The entire virtual nucleus, the PSA, LSQA, and SQA. (The NUC option will
not dump the read-only section of the nucleus.) If the SNAP parameter list
is used for a SYSMDUMP, the ALLVNUC option is converted to ALLNUC
on the SVC dump parameter list.

Note: The CVT is included if this option is specified.

PCDATA Program call information for the task.

The SUM option is valid for an abending task or on a list form of the SNAP macro
pointed to by the DUMPOPT keyword of the ABEND or SETRP macro. The option
SUM causes the dump to contain a summary dump. If SUM is the only option
requested, the dump contains a dump header, control blocks, and the other areas listed
below. The header information, which is provided for all ABEND dumps, consists of the
following information:

� The dump title
� The ABEND code and program status word (PSW) at the time of the error
� If the PSW contains the address of an active load module:

– The name and PSW address of the load module in error
– The offset, into the load module, at which the error occurred

The following control blocks and areas are also included in the dump:

� The control blocks dumped for the CB option

� The error control blocks (RTM2WAs and SCBs)

� The save areas

� The registers at the time of the error, except for register 1

� The contents of the load module (if the PSW contains the address of an active load
module)

� The module pointed to by the last PRB (if it can be found)

� 1K of storage before and after the addresses pointed to by the PSW and the
registers at the time of the error

Note: This storage will only be dumped if the caller is authorized to obtain it. The
storage is printed by ascending storage addresses with duplicate addresses
removed.

� System trace entries after the job-start time stamp in the ASCB for the current
address space

Note: The GTF trace records are not included.

If other options are specified with SUM, the summary dump is dispersed throughout the
dump.

,PDATA=ALL
,PDATA=(prob data code)

Specifies the problem program information to be dumped:

ALL All of the following fields.

PSW Program status word when the SNAP or ABEND macro was issued.

REGS Contents of the floating-point registers and general-purpose registers
when the SNAP or ABEND macro was issued. Also, contents of the
vector registers, vector status register, and the vector mask register when
the SNAP or ABEND macro was issued for any task that uses the Vector
Facility.

 SNAP and SNAPX — Dump Virtual Storage and Continue 889

 SNAP and SNAPX Macros

SA Save area linkage information, program call linkage information, and a
back trace through save areas.

SAH Save area linkage information and program call linkage information.

JPA Contents of job pack area.

LPA Contents of active link pack area for the requested task.

ALLPA Contents of job pack area and active link pack area for the requested
task.

SPLS Virtual storage subpools 0-127, 131-132, 252.

SUBTASKS The designated task and the program data information for all of its
subtasks.

,STORAGE=(strt addr,end addr)
,LIST=list addr

Specifies one or more pairs of starting and ending addresses or a list of starting and
ending addresses of areas to be dumped. Each starting address is rounded down to a
fullword boundary; each ending address is rounded up to a fullword boundary. The area
is then dumped in fullword increments. Callers executing in either 24-bit or 31-bit
addressing mode must set the high-order bit of the fullword containing the last address
in this list to 1. Callers executing in 31-bit addressing mode must ensure that this bit is
cleared in all other addresses in the list because SNAP processing truncates the list at
the first address that contains a 1 in the high order bit.

,STRHDR=(hdr addr)
,STRHDR=hdr list addr

Specifies one or more header addresses or the address of a list of header addresses.
Each header address must be the address of a one byte header length field, which is
followed by the text of the header. The header has a maximum length of 100
characters.

If the STORAGE parameter was specified, the STRHDR (storage header) value must be
one or more header addresses. The number of pairs of starting and ending addresses
specified for STORAGE must be the same as the number of header addresses specified
for STRHDR. If a header is not desired for a storage area, a comma must be used to
indicate its absence.

If the LIST parameter was specified, the STRHDR value must be the address of a list of
header addresses. The list of addresses must begin on a fullword boundary, and the
high order bit of the fullword containing the last address of the list must be set to 1. The
number of pairs of starting and ending addresses supplied with the LIST parameter must
be the same as the number of addresses in the list supplied with STRHDR. If a header
is not desired for a storage area, the STRHDR list must contain a zero address to
indicate its absence.

,SUBPLST=sbp list addr
Specifies the address of a list of subpool numbers to be dumped. Each entry in the list
must be a two-byte entry and must specify a valid subpool number. The first halfword of
the list must contain the number of subpools in the list and must be on a fullword
boundary. If you specify an invalid subpool number or a subpool number for which you
do not have authorization, the number is skipped and you receive a comment in the
dump output indicating the error. If a subpool contains 4k blocks of data that are
mapped from a linear data set, the dump includes only the blocks that have changed
since the last DIV SAVE function was invoked.

Note: A maximum of seven subpool numbers is permitted on the list form of the SNAP
macro pointed to by the DUMPOPT keyword of ABEND or SETRP.

890 OS/390 V2R8.0 MVS Assembler Services Reference

 SNAP and SNAPX Macros

Return and Reason Codes
Control is returned to the instruction following the SNAP macro. When control is returned,
register 15 contains one of the following return codes:

Hexadecimal
Code

Meaning

00 Successful completion.

04 Data control block was not open, or an invalid page exception occurred during
the validity check of the DCB parameters.

08 Task control block address was not valid, an invalid page reference occurred
during the validity check of the TCB address, a subtask is a job step task,
sufficient storage was not available, or the READ for JFCB or JFCBE failed. In
all cases, the dump is canceled. (Message IEA997I is issued when the READ
for JFCB or JFCBE fails.)

Or, the ALET for SNAP parameter list or the ALETs for areas pointed to by the
parameter list are not valid.

0C Data control block type (DSORG, RECFM, MACRF, BLKSIZE, or LRECL) was
incorrect, or the DCB's BLKSIZE and/or LRECL were not compatible with the
dump format options specified on the dump-related DD statement.

 Example 1
Dump the storage ranges pointed to by register 9, and dump all PDATA and SDATA options.

SNAP DCB=(8),TCB=(5),PDATA=ALL,SDATA=ALL,LIST=(9)

 Example 2
Dump the storage ranges pointed to by register 9, and dump only the trace table and
enqueue control blocks.

SNAP DCB=(8),TCB=(5),ID=4,LIST=(9),SDATA=(TRT,Q)

 Example 3
Dump storage area 1000-2000 with no header, and dump storage area 3000-4000 with a
header of ‘USER LABEL ONE’. The comma specified in the value for STRHDR indicates
that no header is wanted for storage area 1000-2000.

SNAP DCB=(8),STORAGE=(1ððð,2ððð,3ððð,4ððð), X
 STRHDR=(,L1)
 .
 .
 .
L1 DC AL1(L'HDR1)
HDR1 DC C'USER LABEL ONE'

 SNAP and SNAPX — Dump Virtual Storage and Continue 891

 SNAP and SNAPX Macros

 Example 4
Dump storage area 1000-1999 with a header of ‘LABEL ONE’ and dump storage area
3000-3999 with a header of ‘LABEL TWO’.

 SNAP DCB=(8),LIST=X,STRHDR=L1
 .
 .
 .
X DC A(1ððð) Start address
 DC A(1999) End address
 DC A(3ððð) Start address

DC X'8ð' End of list indicator
 DC AL3(3999) End address
L1 DC A(HDR1) Address of length label for
 header one

DC X'8ð' End of list
DC AL3(HDR2) Address of length label for

 header two
HDR1 DC AL1(L'HDR1A) Length of header one
HDR1A DC C'LABEL ONE' Header one
HDR2 DC AL1(L'HDR2A) Length of header two
HDR2A DC C'LABEL TWO' Header two

 Example 5
Dump subpool 0, 1, and 2 storage related to the current TCB.

SNAP DCB=XYZ,TCB=ð,SUBPLST=SUBADDR
 .
 .
 .
SUBADDR DS OF Fullword boundary

DC X'ððð3' Number of entries in the list
 DC X'ðððð' Subpool ð
 DC X'ððð1' Subpool 1
 DC X'ððð2' Subpool 2

892 OS/390 V2R8.0 MVS Assembler Services Reference

 SNAP and SNAPX Macros

SNAPX — Dump Virtual Storage and Continue
The SNAPX macro performs the same function as SNAP: it enables you to obtain a dump of
some or all of the storage assigned to the current job step. SNAPX is intended for use by
programs running in access register (AR) mode. Programs running in primary mode can
also use SNAPX.

 Note

The SNAPX macro has the same environment specifications, register information,
programming requirements, restrictions and limitations, performance implications and
return codes as the SNAP macro. However, IBM recommends that programs in AR
ASC mode use SNAPX. All parameters on SNAP are valid on SNAPX.

 Syntax
The standard form of the SNAPX macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SNAPX.

SNAPX

␣ One or more blanks must follow SNAPX.

DCB=dcb addr dcb addr: A-type address, or register (2) - (12).

 ,TCB=tcb addr tcb addr: A-type address, or register (2) - (12).

 ,ID=id nmbr id nmbr: Symbol, decimal digit, or register (2) - (12).

Value range: 0-255

 ,SDATA=ALL

,SDATA=(sys data code) sys data code: Any combination of the following, separated by
commas. If you specify only one code, you do not need the
parentheses.

NUC CB ERR
SQA Q IO
LSQA TRT ALLVNUC
PCDATA
SWA DM SUM

 ,PDATA=ALL

,PDATA=(prob data code) prob data code: Any combination of the following, separated by
commas. If you specify only one code, you do not need the
parentheses.

 PSW

REGS
SA or SAH
JPA or LPA or ALLPA
SPLS
SUBTASKS

 ,STORAGE=(strt addr,end
 addr)
 ,LIST=list addr

strt addr: A-type address, or register (2) - (12).
end addr: A-type address, or register (2) - (12).
list addr: A-type address, or register (2) - (12).
Note: One or more pairs of addresses may be specified,
separated by commas. For example: STORAGE=(strt addr,end
addr,strt addr,end addr)

 SNAP and SNAPX — Dump Virtual Storage and Continue 893

 SNAP and SNAPX Macros

 ,STRHDR=(hdr addr) hdr addr: A-type address, or register (2) - (12).
,STRHDR=hdr list addr Note: hdr addr is one or more addresses separated by commas. If

you specify only one header address as an A-type address, you do
not need the parentheses. If you specify one or more registers,
then you must code double parentheses (one set enclosing each
register and one set enclosing the list of registers). If you specify
STRHDR=(hdr addr), you must also specify STORAGE.
hdr list addr: A-type address, or register (2) - (12).
Note: If you specify STRHDR=hdr list addr, you must also specify
LIST.

,SUBPLST=sbp list addr sbp list addr: A-type address, or register (2) - (12).

 ,DSPSTOR=list addr list addr: A-type address or reg (2) - (12).

 Parameters
Parameters for the SNAPX macro are the same as those for the SNAP macro, except for the
DSPSTOR parameter, which is valid only on SNAPX. SDATA=SUM has a different function
for callers in AR mode. These two parameters are described as follows:

,SDATA=SUM
The SUM option is valid for an abending task or on a list form of the SNAPX macro
pointed to by the DUMPOPX parameter of the ABEND or SETRP macro. For the
contents of the summary dump, see the description of the SDATA parameter in the
SNAP macro.

,DSPSTOR=list addr
Specifies the address of a list of data space storage areas to be dumped. Use this
parameter to dump data that is in a data space.

Each entry in the parameter list you create describes an area to be dumped; the entry
must contain a start address, end address, and STOKEN. The list must begin on a
fullword boundary, and the high order bit of the fullword containing the last end address
in the list must be set to 1. The system dumps storage from any data space to which
the caller has authority; it does not dump storage to which the caller does not have
authority.

You can specify the DSPSTOR parameter for SNAPX parameter lists that are identified
by the DUMPOPX parameter on the ABEND or SETRP macro.

894 OS/390 V2R8.0 MVS Assembler Services Reference

 SNAP and SNAPX Macros

SNAP and SNAPX—List Form
Use the list form of the SNAP or SNAPX macro to construct a control program parameter
list. You can specify any number of storage addresses using the STORAGE parameter.
Therefore, the number of starting and ending address pairs in the list form of SNAP or
SNAPX must be equal to the maximum number of addresses specified in any execute form
of the macro, or a DS instruction must immediately follow the list form to allow for the
maximum number of addresses.

 Syntax
The list form of the SNAP or SNAPX macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SNAP or SNAPX.

SNAP
SNAPX

␣ One or more blanks must follow SNAP or SNAPX.

DCB=dcb addr dcb addr: A-type address.

Note: The DCB parameter is not required in all cases. See the
parameter description for details.

 ,ID=id nmbr id nmbr: Symbol or decimal digit.

Value range: 0-255

 ,SDATA=ALL

,SDATA=(sys data code) sys data code: Any combination of the following, separated by
commas. If you specify only one code, you do not need
parentheses.

NUC CB ERR
SQA Q IO
LSQA TRT ALLVNUC
PCDATA
SWA DM SUM

 ,PDATA=ALL

,PDATA=(prob data code) prob data code: Any combination of the following, separated by
commas. If you specify only one code, you do not need
parentheses.

 PSW

REGS
SA or SAH
JPA or LPA or ALLPA
SPLS
SUBTASKS

 ,STORAGE=(strt addr,end
 addr)
 ,LIST=list addr

strt addr: A-type address.
end addr: A-type address.
list addr: A-type address.
Note: One or more pairs of addresses may be specified,
separated by commas. For example:
STORAGE=(strt addr,end addr,strt addr,end addr)

 SNAP and SNAPX — Dump Virtual Storage and Continue 895

 SNAP and SNAPX Macros

 ,STRHDR=(hdr addr)
,STRHDR=hdr list addr

hdr addr: A-type address.
Note: hdr addr is one or more addresses separated by commas.
If you specify only one header address, you do not need the
parentheses. If STRHDR=(hdr addr) is specified, then STORAGE
must also be specified.
hdr list addr: A-type address.
Note: If STRHDR=hdr list addr is specified, then LIST must also
be specified.

,SUBPLST=sbp list addr sbp list addr: A-type address.

 ,DSPSTOR=list addr list addr: A-type address or register (2) - (12).

,MF=L

 Parameters
The parameters are explained under the standard form of the SNAP and SNAPX macros,
with the following exception:

,MF=L
Specifies the list form of the SNAP or SNAPX macro.

896 OS/390 V2R8.0 MVS Assembler Services Reference

 SNAP and SNAPX Macros

SNAP and SNAPX—Execute Form
A remote control-program parameter list is referred to and can be modified by the execute
form of the SNAP or SNAPX macro.

If you code only the DCB, ID, MF, or TCB parameters in the execute form of the macro, the
bit settings in the parameter list corresponding to the SDATA, PDATA, LIST, and STORAGE
parameters are not changed. However, if you code the SDATA, PDATA, or LIST
parameters, the bit settings for the coded parameter from the previous request are reset to
zero, and only the areas requested in the current macro are dumped.

 Syntax
The execute form of the SNAP or SNAPX macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SNAP.

SNAP
SNAPX

␣ One or more blanks must follow SNAP.

DCB=dcb addr dcb addr: RX-type address, or register (2) - (12).

Note: The DCB parameter is not required in all cases. See the
parameter description for details.

 ,TCB=tcb addr tcb addr: RX-type address, or register (2) - (12).
 ,TCB=‘S’

 ,ID=id nmbr id nmbr: Symbol, decimal digit or register (2) - (12).

Value range: 0-255

 ,SDATA=ALL

,SDATA=(sys data code) sys data code: Any combination of the following, separated by
commas. If you specify only one code, you do not need
parentheses.

NUC CB ERR
SQA Q IO
LSQA TRT ALLVNUC
PCDATA
SWA DM SUM

 ,PDATA=ALL
,PDATA=(prob data code) prob data code: Any combination of the following, separated by

commas. If you specify only one code, you do not need
parentheses.

PSW
REGS
SA or SAH
JPA or LPA or ALLPA
SPLS
SUBTASKS

 ,STORAGE=(strt addr,end
 addr)
 ,LIST=list addr

strt addr: RX-type address, or register (2) - (12).
end addr: RX-type address, or register (2) - (12).
list addr: RX-type address, or register (2) - (12).
Note: One or more pairs of addresses may be specified,
separated by commas. For example:
STORAGE=(strt addr,end addr,strt addr,end addr)

 SNAP and SNAPX — Dump Virtual Storage and Continue 897

 SNAP and SNAPX Macros

 ,STRHDR=(hdr addr)
,STRHDR=hdr list addr

hdr addr: RX-type address, or register (2) - (12).
Note: hdr addr is one or more addresses separated by commas. If
you specify only one header address as an RX-type address, you
do not need the parentheses. If you specify one or more registers,
then you must code double parentheses (one set enclosing each
register and one set enclosing the list of registers). If
STRHDR=(hdr addr) is specified, then STORAGE must also be
specified.
hdr list addr: RX-type address, or register (2) - (12).
Note: If STRHDR=hdr list addr is specified, then LIST must also
be specified.

,SUBPLST=sbp list addr sbp list addr: RX-type address, or register (2) - (12).

 ,DSPSTOR=list addr list addr: A-type address or register (2) - (12).

,MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

 Parameters
The parameters are explained under the standard form of the SNAP and SNAPX macros,
with the following exceptions:

,TCB=‘S’
Specifies the task control block of the active task.

Note: TCB=‘S’ causes a dump of the active task if this is the first use of the list form of
the SNAP or SNAPX macro or if the TCB specified on a previous execute form of the
SNAP or SNAPX macro was the current TCB or TCB=‘S’.

,MF=(E,ctrl addr)
Specifies the execute form of the SNAP or SNAPX macro using a remote control
program parameter list.

898 OS/390 V2R8.0 MVS Assembler Services Reference

 SPIE Macro

SPIE — Specify Program Interruption Exit

 Description
Note: IBM recommends that you use the ESPIE macro rather than SPIE. Callers in 31-bit
addressing mode must use the ESPIE macro, which performs the same function as the SPIE
macro for callers in both 24-bit and 31-bit addressing mode.

The SPIE macro specifies the address of an interruption exit routine and the program
interruption types that are to cause the exit routine to get control.

Note: In MVS/370 the SPIE environment existed for the life of the task. In later versions of
MVS, the SPIE environment is deleted when the request block that created it is deleted.
That is, when a program running under a later version of MVS completes, any SPIE
environments created by the program are deleted. This might create an incompatibility with
MVS/SP Version 1 for programs that depend on the SPIE environment remaining in effect for
the life of the task rather than the request block.

Each succeeding SPIE macro completely overrides any previous SPIE macro specifications
for the task. The specified exit routine is given control in the key of the TCB when one of
the specified program interruptions occurs in any problem program of the task. When a
SPIE macro is issued from a SPIE exit routine, the program interruption element (PIE) is
reset (zeroed). Thus, a SPIE exit routine should save any required PIE data before issuing
a SPIE. If a caller issues an ESPIE macro from within a SPIE exit routine, it has no effect
on the contents of the PIE. However, if an ESPIE macro deletes the last SPIE/ESPIE
environment, the PIE is freed and the SPIE exit cannot retry.

If the current SPIE environment is cancelled during SPIE exit routine processing, the control
program will not return to the interrupted program when the SPIE program terminates.
Therefore, if the SPIE exit routine wishes to retry within the interrupted program, a SPIE
cancel should not be issued within the SPIE exit routine.

The SPIE macro can be issued by any problem program being executed in the performance
of the task. The control program automatically deletes the SPIE exit routine when the
request block (RB) that issued the SPIE macro terminates.

A PICA (program interruption control area) is created as part of the expansion of SPIE. The
PICA contains the exit routine's address and a code indicating the interruption types
specified in SPIE.

For more information on the SPIE macro, see the section on program interruption services in
OS/390 MVS Programming: Assembler Services Guide.

 Environment
The requirements for the caller are:

Minimum authorization: To issue SPIE without encountering an abnormal end, callers must
be in problem state, with a PSW key value that is equal to the TCB
assigned key.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Copyright IBM Corp. 1988, 1999 899

 SPIE Macro

 Programming Requirements
The caller must include the following mapping macros:

 � IHAPIE
 � IHAPICA

 Restrictions
None.

Input Register Information
Before issuing the SPIE macro, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter, or using it as a base
register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain the
following information:

Register Contents
0 Used as a work register by the system.
1 If a SPIE environment is already active when you issue the SPIE macro, the

SPIE service routine returns the address of the previous PICA in register 1.
You can use this PICA to restore the previously active SPIE environment.
However, if an ESPIE environment is active when you issue the SPIE macro,
the SPIE service returns the address, in register 1, of a PICA in which the first
word contains binary zeros. You cannot modify the contents of this PICA, and
it contains no useful information except to restore the previous SPIE or ESPIE
environment. If no previous SPIE/ESPIE environment is active, the service
routine returns a zero in register 1.

2-13 Unchanged.
14-15 Used as work registers by the system.

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

900 OS/390 V2R8.0 MVS Assembler Services Reference

 SPIE Macro

 Syntax
The standard form of the SPIE macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SPIE.

SPIE

␣ One or more blanks must follow SPIE.

 exit addr exit addr: A-type address, or register (2) - (12).

 ,(interrupts) interrupts: Decimal numbers 1-15 expressed as:

single values: (2,3,4,7,8,9,10)
ranges of values: ((2,4),(7,10))

 combinations: (2,3,4,(7,10))

 Parameters
The parameters are explained as follows:

exit addr
Specifies the address of the exit routine to be given control when a specific program
interruption occurs. The exit routine receives control in 24-bit addressing mode.

,(interrupts)
Indicates the type of interruption for which the exit routine is to be given control. The
interruption types are as follows:

Number Interruption Type
1 Operation
2 Privileged operation
3 Execute
4 Protection
5 Addressing
6 Specification
7 Data
8 Fixed-point overflow (maskable)
9 Fixed-point divide
10 Decimal overflow (maskable)
11 Decimal divide
12 Exponent overflow
13 Exponent underflow (maskable)
14 Significance (maskable)
15 Floating-point divide

Notes:

1. If an exit address is zero or no parameters are specified, the current SPIE and any
previously active ESPIE environments are cancelled.

2. If a program interruption type is maskable, the corresponding program mask bit in
the PSW (program status word) is set to 1 when specified and to 0 when not
specified. Interruption types that are not maskable and not specified above are
handled by the system, which forces an abend with the program check as the
completion code. If an ESTAE-type recovery routine is also active, the SDWA
indicates a system-forced abnormal termination. The registers at the time of the
error are those of the system.

 SPIE — Specify Program Interruption Exit 901

 SPIE Macro

3. If you are using vector instructions and an interruption of 8, 12, 13, 14, or 15
occurs, your recovery routine can check the exception extension code (the first byte
of the two-byte interruption code in the EPIE or PIE) to determine whether the
exception was a vector or scalar type of exception.

 ABEND Codes
The SPIE macro might return abend codes X'10E', X'30E', or X'46D'. See OS/390 MVS
System Codes for explanations and programmer responses.

Return and Reason Codes
None.

 Example
Give control to an exit routine for interruption 1, 5, 7, 8, 9, and 10. DOITSPIE is the address
of the SPIE exit routine.

SPIE DOITSPIE,(1,5,7(8,1ð))

902 OS/390 V2R8.0 MVS Assembler Services Reference

 SPIE Macro

 SPIE—List Form
Use the list form of the SPIE macro to construct a control program parameter list in the form
of a program interruption control area.

 Syntax
The list form of the SPIE macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SPIE.

SPIE

␣ One or more blanks must follow SPIE.

 exit addr exit addr: A-type address.

 ,(interrupts) interrupts: Decimal numbers 1-15 expressed as:

single values: (2,3,4,7,8,9,10)
ranges of values: ((2,4),(7,10))

 combinations: (2,3,4,(7,10))

,MF=L

 Parameters
The parameters are explained under the standard form of the SPIE macro, with the following
exception:

,MF=L
Specifies the list form of the SPIE macro.

 SPIE — Specify Program Interruption Exit 903

 SPIE Macro

 SPIE—Execute Form
A remote control program parameter list is used in, and can be modified by, the execute
form of the SPIE macro. The PICA (program interruptions control area) can be generated by
the list form of SPIE, or you can use the address of the PICA returned in register 1 following
a previous SPIE macro. If this macro is being issued to reestablish a previous SPIE
environment, code only the MF parameter.

 Syntax
The execute form of the SPIE macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SPIE.

SPIE

␣ One or more blanks must follow SPIE.

 exit addr exit addr: RX-type address, or register (2) - (12).

 ,(interrupts) interrupts: Decimal numbers 1-15, expressed as

single values: (2,3,4,7,8,9,10)
ranges of values: ((2,4),(7,10))

 combinations: (2,3,4,(7,10))

,MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

 Parameters
The parameters are explained under the standard form of the SPIE macro, with the following
exception:

,MF=(E,ctrl addr)
Specifies the execute form of the SPIE macro using a remote control program
parameter list.

Note: If SPIE is coded with a 0 as the control address, the SPIE environment is canceled.

904 OS/390 V2R8.0 MVS Assembler Services Reference

 SPLEVEL Macro

SPLEVEL — Set Macro Level

 Description
Use the SPLEVEL macro to ensure that the assembler generates the correct level for a
particular macro that your program issues. You might need to control the level of a macro
expansion if you assemble your program on one version and release of MVS, then run the
program on a different version and release of MVS, and one of the following is true:

� Your program issues MVS macros that are downward incompatible to MVS/System
Product Version 1.

� Your program issues installation- or vendor-written macros that are incompatible
between versions and releases.

See “Selecting the Macro Level” on page 7 for additional information about the downward
incompatible MVS macros. Authorized callers of SPLEVEL should consult “Selecting the
Macro Level” in the following for the lists of downward incompatible MVS macros that are
authorized:

� OS/390 MVS Programming: Authorized Assembler Services Reference, Volume 1
(ALESERV-DYNALLO)

� OS/390 MVS Programming: Authorized Assembler Services Reference, Volume 2
(ENFREQ-IXGWRITE)

� OS/390 MVS Programming: Authorized Assembler Services Reference, Volume 3
(LLACOPY-SDUMPX)

� OS/390 MVS Programming: Authorized Assembler Services Reference, Volume 4
(SETFRR-WTOR)

For installation- or vendor-written macros, see the installation or vendor documentation to
determine if incompatibilities between versions and releases exist.

You can use SPLEVEL in two ways:

� Within your program, issue SPLEVEL with the SET=n parameter prior to issuing another
macro to set the desired level for that macro. SPLEVEL SET=n sets a global symbol
(&SYSSPLV) to the value n. Certain macros (including all the downward incompatible
macros) check this global symbol during assembly to determine which expansion of the
macro to generate. Once you set the macro level, all macros in your program that
check the &SYSSPLV global symbol expand at that level until you change the level to
some other value.

See Figure 7 on page 21 for the list of macros that check the SPLEVEL global symbol.
Authorized callers of SPLEVEL should consult the Macro Summary in the chapter
entitled “Using the Macros” in the following publications for the lists of authorized macros
that check the SPLEVEL global symbol:

– OS/390 MVS Programming: Authorized Assembler Services Reference, Volume 1
(ALESERV-DYNALLO)

– OS/390 MVS Programming: Authorized Assembler Services Reference, Volume 2
(ENFREQ-IXGWRITE)

– OS/390 MVS Programming: Authorized Assembler Services Reference, Volume 3
(LLACOPY-SDUMPX)

– OS/390 MVS Programming: Authorized Assembler Services Reference, Volume 4
(SETFRR-WTOR)

See High Level Assembler Language Reference for information about global set
symbols.

 Copyright IBM Corp. 1988, 1999 905

 SPLEVEL Macro

� Within a macro you are writing, issue SPLEVEL with the TEST parameter to ensure that
the macro level is set:

1. Define the &SYSSPLV global symbol within your macro.

2. Issue SPLEVEL TEST, which checks to see if the caller set the macro level.

If the caller did not set the macro level (&SYSSPLV does not contain a value),
TEST sets the level to the default; if the caller set the macro level (&SYSSPLV
contains a value), TEST does not change the value of &SYSSPLV.

3. Define different logical paths within your macro to correspond to the macro level
that is in effect.

Existing programs that were assembled using Version 2, Version 3, Version 4, and Version 5
macros will run properly on OS/390. OS/390 and version 5 macros will run properly on
OS/390 systems without your issuing the SPLEVEL macro.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None.

 Programming Requirements
None.

 Restrictions
None.

Input Register Information
Before issuing the SPLEVEL macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) and access
registers (ARs) are all unchanged.

 Performance Implications
None.

906 OS/390 V2R8.0 MVS Assembler Services Reference

 SPLEVEL Macro

 Syntax
The SPLEVEL macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SPLEVEL.

SPLEVEL

␣ One or more blanks must follow SPLEVEL.

 SET=n n: 2, 3, 4, or 5
 SET Default: SET=5
 TEST

 Parameters
The parameters are explained as follows:

SET=n
SET
TEST

Specifies the macro level by setting the global symbol &SYSSPLV.

Specifying SET=n places a value in &SYSSPLV equal to n, where n must be 2, 3, 4, or
5. If you then issue a macro that checks the &SYSSPLV global symbol, the assembler
generates one of the following macro expansions:

� The MVS/SP Version 1 Release 3 macro expansion if n=1
� The MVS/SP Version 2 macro expansion if n=2
� The MVS/SP Version 3 macro expansion if n=3
� The MVS/ESA SP Version 4 macro expansion if n=4
� The OS/390 and MVS/ESA SP Version 5 macro expansion if n=5

If you specify SET without n, the assembler uses the default value, 5.

The TEST parameter checks the &SYSSPLV global variable, and does the following:

� If &SYSSPLV does not contain a value (you did not issue SPLEVEL SET during
this assembly), sets &SYSSPLV to the default value.

� If &SYSSPLV does contain a value (you issued SPLEVEL SET during this
assembly), does not change the value of &SYSSPLV.

 ABEND Codes
None.

Return and Reason Codes
None.

 Example 1
Select the version 1 expansion of a specific downward incompatible macro.

SPLEVEL SET=1

 SPLEVEL — Set Macro Level 907

 SPLEVEL Macro

 Example 2
Use SPLEVEL TEST within your own macro to ensure the &SYSSPLV global symbol is set.

 .
 .
 .

GBLC &SYSSPLV Define global symbol
SPLEVEL TEST If global symbol has no value,

set to the default.
AIF ('&SYSSPLV' EQ '1').V1 Use code for V1

.V5 ANOP This logical path contains instructions appropriate
for a V2, V3, V4, or V5 expansion.

 .
 .
 .
 AGO .COMMON
.V1 ANOP This logical path contains instructions appropriate

for a V1 expansion.
 .
 .
 .
 .COMMON ANOP

Note: For an example of issuing the WTOR macro in a program that you can assemble on
an OS/390 or version 5 system, and run on version 1, 2, 3, 4, 5, or OS/390 see Figure 3 on
page 10.

908 OS/390 V2R8.0 MVS Assembler Services Reference

 STAE Macro

STAE — Specify Task Abnormal Exit

Note: IBM recommends that you use the ESTAEX macro or ESTAE macro rather than
STAE.

 Description
The STAE macro enables the user to intercept a scheduled ABEND and to have control
returned to him at a specified exit routine address. The STAE macro operates in both
problem program and supervisor modes.

Note: The STAE macro is not supported for users executing in 31-bit addressing mode.
Such users will be abended.

 Syntax
The standard form of the STAE macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede STAE.

STAE

␣ One or more blanks must follow STAE.

0
exit addr

exit addr: A-type address, or register (2) - (12).

 ,CT Default: CT
 ,OV

 ,PARAM=list addr list addr: A-type address, or register (2) - (12).

 ,XCTL=NO Default: XCTL=NO
 ,XCTL=YES

 ,PURGE=QUIESCE Default: PURGE=QUIESCE
 ,PURGE=HALT
 ,PURGE=NONE

 ,ASYNCH=NO Default: ASYNCH=NO
 ,ASYNCH=YES

 ,RELATED=value value: Any valid macro keyword specification.

 Parameters
The parameters are explained as follows:

0
exit addr

Specifies the address of a STAE exit routine to be entered if the task issuing this macro
terminates abnormally. If 0 is specified, the most recent STAE request is canceled.

 Copyright IBM Corp. 1988, 1999 909

 STAE Macro

,CT
,OV

Specifies the creation of a new STAE exit (CT) or indicates that the parameters passed
in this STAE macro are to overlay the data contained in the previous STAE exit (OV).

,PARAM= list addr
Specifies the address of a user-defined parameter list containing data to be used by the
STAE exit routine when it is scheduled for execution.

,XCTL=NO
,XCTL=YES

Specifies that the STAE macro will be canceled (NO) or will not be canceled (YES) if an
XCTL macro is issued by this program.

,PURGE=QUIESCE
,PURGE=HALT
,PURGE=NONE

Specifies that all outstanding requests for I/O operations are not saved when the STAE
exit is taken (HALT), that I/O processing is allowed to continue normally when the STAE
exit is taken (NONE), or that all outstanding requests for I/O operations are saved when
the STAE exit is taken (QUIESCE). For QUIESCE, at the end of the STAE exit routine,
the user can code a retry routine to handle the outstanding I/O requests.

Note: If any IBM-supplied access method, except EXCP, is being used, the PURGE=NONE
option is recommended. If you use PURGE=NONE, all control blocks affected by
input/output processing can continue to change during STAE exit routine processing.

If PURGE=NONE is specified and the ABEND was originally scheduled because of an error
in input/output processing, an ABEND recursion develops when an input/output interruption
occurs, even if the exit routine is in progress. Thus, it appears that the exit routine failed
when, in reality, input/output processing caused the failure.

ISAM Notes: If ISAM is being used and PURGE=HALT is specified or PURGE=QUIESCE is
specified but I/O is not restored:

� Only the input/output event on which the purge is done is posted. Subsequent event
control blocks (ECBs) are not posted.

� The ISAM check routine treats purged I/O as normal I/O.

� Part of the data set may be destroyed if the data set is being updated or added to when
the failure occurred.

,ASYNCH=NO
,ASYNCH=YES

Specifies that asynchronous exit processing is allowed (YES) or is not allowed (NO)
while the STAE exit is executing.

ASYNCH=YES must be coded if:

� The STAE exit routine requests any supervisor services that require asynchronous
interruptions to complete their normal processing.

� PURGE=QUIESCE is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

� PURGE=NONE is specified and the CHECK macro is issued in the STAE exit routine for
any access method that requires asynchronous interruptions to complete normal
input/output processing.

Note: If ASYNCH=YES is specified and the ABEND was originally scheduled because of an
error in asynchronous exit handling, an ABEND recursion develops when an asynchronous
interruption occurs. Thus, it appears that the exit routine failed when, in reality,
asynchronous exit handling caused the failure.

910 OS/390 V2R8.0 MVS Assembler Services Reference

 STAE Macro

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and may be any valid coding values.

Control returns to the instruction following the STAE macro; register 15 contains one of
the following return codes:

Hexadecimal
Code

Meaning

00 Successful completion of STAE request.

04 STAE was unable to obtain storage for STAE request.

08 Attempt was made to cancel or overlay a nonexistent STAE request.

0C Exit routine or parameter list address was invalid, or STAI request was missing a
TCB address.

10 Attempt was made to cancel or overlay a STAE request of another user, or an
unexpected error was encountered while processing this request.

 Example
Request an overlay of the existing STAE recovery exit with the following options: new exit
address is ADDR, parameter list is at PLIST, halt I/O, do not take asynchronous exits,
transfer ownership to the new request block resulting from any XCTL macros.

STAE ADDR,OV,PARAM=PLIST,XCTL=YES,PURGE=HALT,ASYNCH=NO

 STAE — Specify Task Abnormal Exit 911

 STAE Macro

 STAE—List Form
The list form of the STAE macro is used to construct a remote control program parameter
list.

 Syntax
The list form of the STAE macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede STAE.

STAE

␣ One or more blanks must follow STAE.

 exit addr exit addr: A-type address.

 ,PARAM=list addr list addr: A-type address.

 ,PURGE=QUIESCE Default: PURGE=QUIESCE
 ,PURGE=HALT
 ,PURGE=NONE

 ,ASYNCH=NO Default: ASYNCH=NO
 ,ASYNCH=YES

 ,RELATED=value value: Any valid macro keyword specification.

,MF=L

 Parameters
The parameters are explained under the standard form of the STAE macro, with the
following exception:

,MF=L
Specifies the list form of the STAE macro.

912 OS/390 V2R8.0 MVS Assembler Services Reference

 STAE Macro

 STAE—Execute Form
A remote control program parameter list is used in, and can be modified by, the execute
form of the STAE macro. The control program parameter list can be generated by the list
form of the STAE macro. If you want to dynamically change the contents of the remote
STAE parameter list, you can do so by coding a new exit address and/or a new parameter
list address. If exit address or PARM= is coded, only the associated field in the remote
STAE parameter list is changed. The other field remains as it was before the current STAE
request was made.

 Syntax
The execute form of the STAE macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede STAE.

STAE

␣ One or more blanks must follow STAE.

 exit addr exit addr: RX-type address, or register (2) - (12).
 0

 ,CT
 ,OV

 ,PARAM=list addr list addr: RX-type address, or register (2) - (12).

 ,XCTL=NO
 ,XCTL=YES

 ,PURGE=QUIESCE
 ,PURGE=HALT
 ,PURGE=NONE

 ,ASYNCH=NO
 ,ASYNCH=YES

 ,RELATED=value value: Any valid macro keyword specification.

,MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

 Parameters
The parameters are explained under the standard form of the STAE macro, with the
following exception:

,MF=(E, ctrl addr)
Specifies the execute form of the STAE macro using a remote control program
parameter list.

 STAE — Specify Task Abnormal Exit 913

 STAE Macro

 Example
Provide the pointer to the recovery code in the register called EXITPTR, and the address of
the STAE exit parameter list in register 9. Register 8 points to the area where the STAE
parameter list (created with the MF=L option) was moved.

STAE (EXITPTR),PARAM=(9),MF=(E,(8))

914 OS/390 V2R8.0 MVS Assembler Services Reference

 STATUS Macro

STATUS — Start and Stop a Subtask

 Description
Use the STATUS macro to change the dispatchability status of one or all of a program's
subtasks. For example, the STATUS macro can be used to restart subtasks that were
stopped when an attention exit routine was entered.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No locks held
Control parameters: No requirements

 Programming Requirements
None.

 Restrictions
The caller cannot have an EUT FRR established.

Input Register Information
Before issuing the STATUS macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Copyright IBM Corp. 1988, 1999 915

 STATUS Macro

 Performance Implications
Using STATUS will degrade performance of the calling program's address space while
STATUS runs.

 Syntax
The STATUS macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede STATUS.

STATUS

␣ One or more blanks must follow STATUS.

START
STOP

 ,TCB=tcb addr tcb addr: RX-type address or address in register (2) - (12).

 ,RELATED=value value: Any valid macro keyword specification.

 Parameters
The parameters are explained as follows:

START
STOP

Specifies that the task identified on the TCB parameter is to be stopped (STOP) or
started (START). If you omit the TCB parameter, all subtasks of the originating task are
stopped or started.

Note: This parameter does not ensure that the subtask is stopped when control is
returned to the issuer. A subtask can have a “stop deferred” condition that would cause
that particular subtask to remain dispatchable until stops are no longer deferred. In a
multiprogramming environment, it would be possible to have a task issue the STATUS
macro with the STOP parameter and resume processing while the subtask (for which
the STOP was issued) is redispatched to another processor.

,TCB=tcb addr
Specifies the address of a fullword on a fullword boundary containing the address of the
task control block that is to have its START/STOP count adjusted. (If a register is
specified, however, the address is of the TCB itself.) If this parameter is not coded, the
count is adjusted in the task control blocks for all the subtasks of the originating task.

Note: TCB must reside in 24-bit addressable storage.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the information
specified are at the discretion of the user and may be any valid coding values.

The RELATED parameter is available on macros that provide opposite services (for
example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE) and on
macros that relate to previous occurrences of the same macros (for example, CHAP and
ESTAE).

916 OS/390 V2R8.0 MVS Assembler Services Reference

 STATUS Macro

The RELATED parameter may be used, for example, as follows:

STAT1 STATUS STOP,TCB=YOURTCB,RELATED=(STAT2,
'STOP A SUBTASK')

 .
 .
 .
STAT2 STATUS START,TCB=YOURTCB,RELATED=(STAT1,

'START A SUBTASK')

Note: Each of these macros will fit on one line when coded, so there is no need for a
continuation indicator.

 Return Codes
Return codes from execution of STATUS are as follows:

Figure 57. Return Codes for the STATUS Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning : Processing completed successfully.

Action : No action necessary.

04 Meaning : Program error. START/STOP request failed. The task you specified is not a
subtask of the calling program's task.

Action : Ensure that you specify a task on the TCB parameter that is a subtask of the
calling program.

 Example 1
Stop all subtasks.

STATUS STOP

 Example 2
Create a subtask. Stop the subtask, then restart it.

 PRINT NOGEN
STATUS CSECT
STATUS AMODE 31
STATUS RMODE ANY
\\\
\ The following code performs the following functions: \
\ 1. Creates a subtask by issuing the ATTACH macro. \
\ 2. Stops the subtask by issuing the STATUS macro with the \
\ STOP parameter. \
\ 3. Starts the stopped subtask by issuing the STATUS macro \
\ with the START parameter. \
\ \
\\\
 SPACE 3
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\ Entry linkage \
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
 SPACE 3
 STM R14,R12,12(R13)
 BALR R12,ð
 USING BEGN,R12
BEGN DS ðH
 ST R13,SAVE+4
 LA R15,SAVE
 ST R15,8(ð,R13)
 LR R13,R15
 EJECT

 STATUS — Start and Stop a Subtask 917

 STATUS Macro

\\
\ Attach a subtask and request that it be notified by an ECB when \
\ the subtask completes. \
\ \
\\
 SPACE 3
ATTCH1 ATTACH EP=SUBTASK,ECB=AMYECB
 SPACE 3

ST R1,TCBADDR SAVE SUBTASK TCB ADDRESS
 EJECT
\\
\ Stop the subtask by issuing STATUS STOP, then restart it by \
\ issuing STATUS START. \
\ \
\\
 SPACE 3
 STATUS STOP,TCB=TCBADDR
 SPACE 3
 .
\\
\ Processing of other subtasks continues. \
\\
 .
 .
 STATUS START,TCB=TCBADDR
 SPACE 3
 EJECT
\\\
\ Wait until subtask completes, then detach it. \
\\\
 SPACE 3

WAIT 1,ECB=AMYECB WAIT ON E-O-T ECB
 SPACE 3
 DETACH TCBADDR DETACH SUBTASK
 SPACE 3
 EJECT
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\ End of job \
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
 SPACE 3
FINI DS ðH
 L R13,SAVE+4
 DROP R12
 LM R14,R12,12(R13)
 XR R15,R15
 BR R14
 EJECT
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\ Define constants \
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
SAVE DC 18F'ð'
\
TCBADDR DC F'ð' ADDRESS OF SUBTASK TCB
AMYECB DC F'ð' END-OF-SUBTASK ECB
 EJECT

918 OS/390 V2R8.0 MVS Assembler Services Reference

 STATUS Macro

\\\
\ Register equates \
\\\
 SPACE 3
R1 EQU 1
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 LTORG
 END

 STATUS — Start and Stop a Subtask 919

 STATUS Macro

920 OS/390 V2R8.0 MVS Assembler Services Reference

 STCKCONV Macro

STCKCONV — Store Clock Conversion Routine

 Description
The STCKCONV macro converts an input time-of-day (TOD) clock value to time of day and

| date, and returns the converted values to the caller in the format requested. The input clock
| value can be either the basic time-of-day (TOD) format or the extended time-of-day (ETOD)
| format.

| � TOD — Unsigned 64-bit binary number
| � ETOD — Unsigned 128-bit binary number

| See OS/390 MVS Programming: Assembler Services Guide and ESA/390 Principles of
| Operation for information comparing the formats of the TOD and ETOD.

The STCKCONV time of day and date formats are compatible with the formats returned by
the TIME macro, which returns a time of day and date value or the contents of the TOD
clock. The STCKCONV time of day and date formats are also compatible with the input
formats accepted by the CONVTOD macro, which converts a time of day and date value to
TOD clock format.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 24-bit or 31-bit addressing mode
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No requirement
Control parameters: Must be in the primary address space or be in an address/data

space that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL)

 Programming Requirements
If the program is in AR mode, issue the SYSSTATE ASCENV=AR macro before
STCKCONV. SYSSTATE ASCENV=AR tells the system to generate code appropriate for
AR mode.

 Restrictions
None.

Input Register Information
Primary-mode callers must make sure that access register 1 is zero before issuing the
execute form of the STCKCONV macro. For other registers, the caller does not have to
place any information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

 Copyright IBM Corp. 1988, 1999 921

 STCKCONV Macro

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The standard form of the STCKCONV macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede STCKCONV.

STCKCONV

␣ One or more blanks must follow STCKCONV.

STCKVAL=TOD clock addr TOD clock addr: RX-type address or register (2) - (12).

| STCKEVAL=ETOD clock addr| ETOD clock addr: RX-type address or register (2) - (12).

,CONVVAL=conv addr conv addr: RX-type address or register (2) - (12).

 ,TIMETYPE=DEC Default: TIMETYPE=DEC
 ,TIMETYPE=BIN
 ,TIMETYPE=MIC

 ,DATETYPE=YYYYDDD Default: DATETYPE=YYYYDDD
 ,DATETYPE=DDMMYYYY
 ,DATETYPE=MMDDYYYY
 ,DATETYPE=YYYYMMDD

 Parameters
The parameters are explained as follows:

STCKVAL= TOD clock addr
Specifies the address of an 8-byte storage area containing the 64-bit TOD clock value to
be converted.

922 OS/390 V2R8.0 MVS Assembler Services Reference

 STCKCONV Macro

| STCKEVAL= ETOD clock addr
| Specifies the address of a 16-byte storage area containing the 128-bit ETOD clock value
| to be converted.

| Only one of STCLVAL or STCKEVAL can be specified.

,CONVVAL=conv addr
Specifies the address of a 16-byte storage area where the system returns the converted
value in the requested format. The first two words contain the time of day and the third
word contains the date. Do not use the contents of the fourth word.

,TIMETYPE=DEC
,TIMETYPE=BIN
,TIMETYPE=MIC

Specifies the format in which the converted time of day is returned, as follows:

DEC Returns the converted time of day as packed decimal digits (without a sign)
of the form HHMMSSthmiju0000, where

HH is hours, based on a 24-hour clock
MM is minutes
SS is seconds
t is tenths of a second
h is hundredths of a second
m is milliseconds
i is ten-thousandths of a second
j is hundred-thousandths of a second
u is microseconds

BIN Returns the converted time of day as an unsigned 32-bit binary number with
the low-order bit equivalent to 0.01 second. The second word of the
converted time value is zero.

MIC Returns the converted time of day in microseconds as 8 bytes of
information, where bit 51 is equivalent to one microsecond.

,DATETYPE=YYYYDDD
,DATETYPE=DDMMYYYY
,DATETYPE=MMDDYYYY
,DATETYPE=YYYYMMDD

Specifies the format in which the converted date is returned, as follows:

Parameter Form of returned date

YYYYDDD 0YYYYDDD

DDMMYYYY DDMMYYYY

MMDDYYYY MMDDYYYY

YYYYMMDD YYYYMMDD

The date is returned as 4 bytes of packed decimal digits (without a sign), where:

YYYY is the year
DDD is the day of the year
DD is the day of the month
MM is the month of the year

 ABEND Codes
None.

 STCKCONV — Store Clock Conversion Routine 923

 STCKCONV Macro

 Return Codes
When STCKCONV macro returns control to your program, GPR 15 contains a return code.

Figure 58. Return Codes for the STCKCONV Macro

Hexadecimal
Return Code

Meaning and Action

0 Meaning : Successful completion.

Action : None.

C Meaning : System error.

Action : Retry the request.

10 Meaning : Program error. The user's parameter list is not in addressable storage.

Action : Ensure that the parameter list address is valid and the storage is addressable.

 Example 1
Convert a TOD clock value to time of day in decimal digits, and date in month-day-year
format.

 STCKCONV STCKVAL=TODSTAMP,CONVVAL=OUTAREA,TIMETYPE=DEC, X
 DATETYPE=MMDDYYYY
TODSTAMP DC X'Að569832F1241ððð' TOD CLOCK VALUE
OUTAREA DS CL16 CONVERTED VALUE

 Example 2
Convert a TOD clock value to time of day in hundredths of seconds, and date in
year-month-day format.

 STCK TODCLOCK
 STCKCONV STCKVAL=TODCLOCK,CONVVAL=OUTVAL,TIMETYPE=BIN, X
 DATETYPE=YYYYMMDD
TODCLOCK DS XL8 TOD CLOCK VALUE
OUTVAL DS CL16 CONVERTED VALUE

 STCKCONV—.List Form
Use the list form of the STCKCONV macro together with the execute form of the macro for
applications that require reentrant code. The list form of the macro defines an area of
storage that the execute form of the macro uses to store the parameters.

 Syntax
The list form of the STCKCONV macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede STCKCONV.

STCKCONV

␣ One or more blanks must follow STCKCONV.

MF=L

924 OS/390 V2R8.0 MVS Assembler Services Reference

 STCKCONV Macro

 Parameter
The parameter is explained as follows:

MF=L
Specifies the list form of the STCKCONV macro. Do not specify any other keywords
with MF=L. Precede the STCKCONV list form macro invocation with a name starting in
column 1 to label the generated parameter list so you can refer to it.

 Example
Establish the correct amount of storage for the STCKCONV parameter list.

LIST1 STCKCONV MF=L

 STCKCONV — Store Clock Conversion Routine 925

 STCKCONV Macro

 STCKCONV—Execute Form
Use the execute form of the STCKCONV macro together with the list form of the macro for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

 Syntax
The execute form of the STCKCONV macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede STCKCONV.

STCKCONV

␣ One or more blanks must follow STCKCONV.

STCKVAL=TOD clock addr TOD clock addr: RX-type address or register (2) - (12).

| STCKEVAL=ETOD clock addr| ETOD clock addr RX-type address or register (2) - (12).

,CONVVAL=conv addr conv addr: RX-type address or register (2) - (12).

 ,TIMETYPE=DEC Default: TIMETYPE=DEC
 ,TIMETYPE=BIN
 ,TIMETYPE=MIC

 ,DATETYPE=YYYYDDD Default: DATETYPE=YYYYDDD
 ,DATETYPE=DDMMYYYY
 ,DATETYPE=MMDDYYYY
 ,DATETYPE=YYYYMMDD

,MF=(E,list addr) list addr: RX-type address or register (1) - (12).

 Parameters
The parameters are explained under the standard form of the STCKCONV macro with the
following exception:

,MF=(E,list addr)
Specifies the execute form of the STCKCONV macro. list addr specifies the address of
the parameter list created by the list form of the macro.

 Example
Convert a TOD clock value to time of day in microseconds and date in year-day of the year
format. Specify the address of the appropriate parameter list in LIST1.

 STCKCONV STCKVAL=TODCLOCK,CONVVAL=OUTVAL,TIMETYPE=MIC, X
 DATETYPE=YYYYDDD,MF=(E,LIST1)
TODCLOCK DC X'9FE47813ð1ABEððð' TOD CLOCK VALUE
OUTVAL DS CL16 CONVERTED VALUE

926 OS/390 V2R8.0 MVS Assembler Services Reference

 STCKSYNC Macro

STCKSYNC — Store Clock Synchronous Service

 Description
The STCKSYNC macro obtains the time-of-day (TOD) clock contents and indicates whether
the TOD clock is synchronized with an external time reference (ETR1). It is for use by
programs that are dependent upon synchronized TOD clocks in a multisystem environment.
STCKSYNC also provides an optional parameter, ETRID, that returns the network ID of the
ETR source with which the TOD clock is synchronized.

| The time-of-day clock specified can be either the basic time-of-day clock format (TOD) or the
| extended time-of-day clock format (ETOD).

| � TOD — Unsigned 64-bit binary number
| � ETOD — Unsigned 128=bit binary number

| See OS/390 MVS Programming: Assembler Services Guide or ESA/390 Principles of
| Operation for information comparing the formats of the TOD and ETOD.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: Any locks may be held, no locks required
Control parameters: Must be in the primary address space or be in an address/data

space that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL)

 Programming Requirements
If the program is in AR mode, issue the SYSSTATE ASCENV=AR macro before
STCKSYNC. SYSSTATE ASCENV=AR tells the system to generate code appropriate for
AR mode.

 Restrictions
None.

Input Register Information
For primary ASC mode callers, GPR 13 must contain the address of a 72-byte save area.
For AR mode callers, AR/GPR 13 must contain the address of a 72-byte save area.

1 External time reference (ETR) is the MVS generic name for the IBM Sysplex Timer.

 Copyright IBM Corp. 1988, 1999 927

 STCKSYNC Macro

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The STCKSYNC macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede STCKSYNC.

STCKSYNC

␣ One or more blanks must follow STCKSYNC.

TOD =TOD clock addr TOD clock addr: RX-type address

| ETOD=ETOD clock addr| ETOD clock addr: RX-type address

 ,ETRID=id addr id addr: RX-type address

 Parameters
The parameters are explained as follows:

TOD=TOD clock addr
Specifies the address of a doubleword that receives the TOD clock value.

| ETOD=ETOD clock addr
| Specifies the address of a 16-byte area, aligned on a double-word boundary, that
| receives the extended TOD clock value (ETOD).

| Only one of either TOD or ETOD can be specified.

,ETRID=id addr
Specifies the address of a byte that receives the ETR network ID of the ETR with which
the TOD clock is synchronized. No ETRID value is returned if the TOD clock is not
synchronized with an ETR.

928 OS/390 V2R8.0 MVS Assembler Services Reference

 STCKSYNC Macro

 ABEND Codes
None.

 Return Codes
Return codes from the STCKSYNC macro are returned as hexadecimal values in register 15,
as follows:

Figure 59. Return Codes for the STCKSYNC Macro

Hexadecimal
Return Code

Meaning and Action

0 Meaning : The TOD clock is synchronized with an ETR or a simulated ETR was requested
(through SYS1.PARMLIB member CLOCKxx). If ETRID was specified, the ID of the ETR is
returned at id addr.

Action : None.

4 Meaning : The TOD clock is not synchronized with an ETR.

Action : None required. However, you might take some action based upon your application.

8 Meaning : System error. The TOD clock is unusable.

Action : Reissue the request until it succeeds.

 STCKSYNC — Store Clock Synchronous Service 929

 STCKSYNC Macro

 Example 1
Obtain the TOD clock contents and an indication of whether the TOD clock is synchronized
with an ETR.

 STCKSYNC TOD=TODAREA
TODAREA DS XL8 TOD CLOCK CONTENTS

 Example 2
For a caller in AR mode, obtain the TOD clock contents, an indication of whether the TOD
clock is synchronized with an ETR, and the network ID of the ETR source with which the
TOD clock is synchronized.

 SYSSTATE ASCENV=AR
 .
 .
 .
 STCKSYNC TOD=TODAREA,ETRID=IDAREA
TODAREA DS XL8 TOD CLOCK CONTENTS
IDAREA DS XL1 ETR NET ID

930 OS/390 V2R8.0 MVS Assembler Services Reference

 STIMER Macro

STIMER — Set Interval Timer

 Description
The STIMER macro sets a timer to a specified time interval or to an interval that will expire
at a specified time of day. An optional asynchronous timer completion exit is given control
when the time interval expires; if no asynchronous timer completion routine is specified, no
indication that the time interval has expired is provided. A second STIMER macro issued
before the first time interval expires overrides the first interval and exit routine.

The time interval may be a ‘real-time interval’ (measured continuously in real time by the
clock comparator), or a ‘task-time interval’ (measured, only while the task is in execution, by
the CPU timer). See Principles of Operation for information on the clock comparator and
CPU timer. If a real-time interval is specified, the task may elect to either continue (REAL)
or suspend (WAIT) execution during the interval. If the task elects to continue execution, it
may optionally specify an exit routine to be given control on completion of the time interval.
If the task elects to suspend execution, it is restarted at the next sequential instruction,
sometime after completion of the time interval. If a task-time interval is specified, the task
must continue. It may optionally specify an exit routine to be given control on completion of
the interval.

STIMER allows you to set one time interval for one task; STIMERM allows you to set 16
separate time intervals for a task. Using the two macros together allows you to set 17
separate intervals for a task.

For information on how to select an MVS/SP version other than the current version, see
“Selecting the Macro Level” on page 7. If your program is to execute in 31-bit addressing
mode, you must use the SP Version 2 expansion of this macro or a later version.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Programming Requirements
The timer completion exit routine must be in virtual storage when it is required.

 Restrictions
The following restrictions apply to the STIMER macro:

� Only one STIMER invocation can be active at a time. Ensure that any processing your
program performs after issuing the STIMER macro does not also invoke the STIMER
macro. For concurrent requests, use the STIMERM macro.

� Do not issue the STIMER macro while a BTAM OPEN or LINE OPEN operation is in
progress. Use STIMERM instead.

� Do not issue the STIMER macro before invoking dynamic allocation. Use STIMERM
instead.

 Copyright IBM Corp. 1988, 1999 931

 STIMER Macro

� For REAL or WAIT requests:

– If you specify a time of day at which the interval will expire (GMT (Greenwich Mean
Time), LT (local time), or TOD (Time of Day) parameters), the time of day you
specify must not exceed 24:00:00:00; otherwise, your program receives a X'12F'
abend.

– If you specify a time interval on the MICVL parameter, the interval you specify,
when added to the current TOD clock contents, must not exceed the maximum
value for the clock comparator (X'FFFFFFFFFFFFFFFF'); otherwise, your program
receives a X'12F' abend.

� For TASK requests, the time interval you specify on MICVL must not exceed the
maximum positive value for the CPU timer (X'7FFFFFFFFFFFFFFF'); otherwise, your
program receives a X'12F' abend.

� You can issue STIMER REAL with a timer completion exit routine, and within that
routine, you can issue STIMER REAL and specify the same timer completion exit
routine. Under these circumstances, IBM recommends that you specify a time interval
rather than a time of day on the STIMER you issue within the timer completion exit
routine. If you specify a time of day, it is possible for the timer completion exit routine to
receive control later than the time of day you specified, resulting in an infinite loop.

� The caller can have no enabled, unlocked task (EUT) FRRs established.

� The time interval you specify on the BINTVL parameter must not exceed X'7FFFFFFF'.
If the time interval exceeds X'7FFFFFFF', your program receives a X'12F' abend.

Input Register Information
Before issuing the STIMER macro, the caller does not have to place any information into any
register unless using it register notation for a particular parameter, or using it as a base
register.

Output Register Information
When control returns to the caller, the registers contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 0 (zero)

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

932 OS/390 V2R8.0 MVS Assembler Services Reference

 STIMER Macro

 Syntax
The STIMER macro is written as follows:

Note: The ERRET parameter is obsolete and is ignored by the system. Therefore, the
syntax and parameter descriptions for STIMER no longer contain ERRET. However, the
system still accepts ERRET, and it is not necessary to delete it from existing code.

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede STIMER.

STIMER

␣ One or more blanks must follow STIMER.

REAL exit rtn addr: RX-type address, or register (0) or (2) - (12).
REAL,exit rtn addr
TASK
TASK,exit rtn addr
WAIT

,BINTVL=stor addr stor addr: RX-type address, or register (1) or (2) - (12).
,DINTVL=stor addr Note: The GMT, TOD, and LT parameters must not be
,GMT=stor addr specified with TASK above.
,MICVL=stor addr
,TUINTVL=stor addr
,TOD=stor addr
,LT=stor addr

 Parameters
The parameters are explained as follows:

REAL
REAL,exit rtn addr
TASK
TASK,exit rtn addr
WAIT

Specifies whether the timer interval is a real-time interval (REAL or WAIT) or a task-time
interval (TASK). You must specify one of these parameters.

For REAL, the interval is decreased continuously. If the TOD, GMT, or LT parameter is
coded, the interval expires at the indicated time of day.

For TASK, the interval is decreased only when the associated task is running.

For WAIT, the interval is decreased continuously. The task is to be placed in the wait
condition until the interval expires.

The exit rtn addr is the address of the timer completion exit routine to be given control
after the specified time interval expires. The routine does not get control immediately
when the interval completes, but at some time after the interval completes, depending
on the system's work load and the relative dispatching priority of the associated task.
The routine must be in virtual storage when it is required. The exit routine receives
control in the same environment that the caller had when the caller issued the STIMER
macro. The contents of the registers when the exit routine is given control are as
follows:

Register Contents
0-12 Do not contain any information for use by the routine.
13 Address of a system-provided, 72-byte save area.

 STIMER — Set Interval Timer 933

 STIMER Macro

14 Return address (to the system).
15 Address of the exit routine.

The exit routine is responsible for saving and restoring registers. The exit routine runs
as a subroutine, and must return control to the address identified in register 14.
Although timing services allows only one active time interval for a task, it does not
serialize the use of an asynchronous timer completion exit routine.

,BINTVL=stor addr
,DINTVL=stor addr
,GMT=stor addr
,MICVL=stor addr
,TOD=stor addr
,TUINTVL=stor addr
,LT=stor addr

Specifies the storage address and format for the time of day, or time interval, to be set.
You must specify one of these parameters.

For BINTVL, the address is a 4-byte area containing the time interval. The time interval
is represented as an unsigned 32-bit binary number; however, the high-order bit of the
time interval must not be set. Therefore, the time interval specified cannot exceed
X'7FFFFFFF'. The low-order bit of the time interval has a value of 0.01 second.

For DINTVL, the address is a doubleword in virtual storage containing the time interval.
The time interval is presented as zoned decimal digits of the form:

HHMMSSth, where:

HH is hours (24-hour clock)
MM is minutes
SS is seconds
t is tenths of seconds
h is hundredths of seconds

For GMT, the address is an 8-byte area containing the Greenwich mean time at which
the interval is to be completed. The time is presented as zoned decimal digits of the
form HHMMSSth, as described above under DINTVL.

For MICVL, the address is a doubleword containing the time interval. The time interval
is represented as an unsigned 64-bit binary number; bit 51 is the low-order bit of the
interval value and equivalent to 1 microsecond.

For TUINTVL, the address is a fullword containing the time interval. The time interval is
presented as an unsigned 32-bit binary number; the low-order bit has a value of one
timer unit (approximately 26.04166 microseconds).

For TOD and LT, the address is a doubleword containing the local time of day at which
the interval is to be completed. The time is presented as zoned decimal digits of the
form HHMMSSth, as described under DINTVL.

The LT and TOD parameters perform identical functions. However, the name for the LT
parameter (LT, or local time) describes the function more accurately than does the name
for the TOD parameter (TOD, or time-of-day). Therefore, for clarity purposes, IBM
recommends the use of the LT parameter instead of TOD.

Note: For the DINTVL, GMT, TOD, and LT parameters, the zoned decimal digits are
not checked for validity. Thus, the specification of incorrect digits can result in an
X'0C7' abend, or a time interval different from that desired.

934 OS/390 V2R8.0 MVS Assembler Services Reference

 STIMER Macro

Notes:

1. The time interval specified by an STIMER macro has no relation to the time interval
specified in an EXEC statement.

2. If no exit routine address is specified, there is no indication of completion except when
WAIT is specified.

3. The TTIMER and CPUTIMER macros provide a facility for determining the remaining
time interval associated with STIMER.

The priorities of other tasks in the system can also affect the accuracy of the time interval
measurement. If you code REAL or WAIT, the interval is decreased continuously and can
expire when the task is not active. After the time interval expires, assuming the task is not in
the wait condition for any other reasons, the task is placed in the ready condition and
competes for control with the other ready tasks in the system. The additional time required
before the task becomes active depends on the relative dispatching priority of the task.

 ABEND Codes
STIMER might abnormally terminate with one the following abend codes: X'12F' (with
reason code X'0', X'4', X'C', X'10', X'14', X'28'), or X'AC7' (with reason code X'2').
See OS/390 MVS System Codes for an explanation and response for these codes.

Return and Reason Codes
STIMER returns a return code of 0 in register 15.

 Examples
Example 1: Request the installation's asynchronous exit routine, located at location EXIT, to
receive control after fourteen hundredths of a second (specified by INTVLONG) have
elapsed in real time.

 STIMER REAL,EXIT,BINTVL=INTVLONG
 . . .
INTVLONG DC X'ðððððððE' TIME INTERVAL

Example 2: Request that this task's exit routine, located at location EXIT, receive control
when the local time of day specified at location LOCAL occurs.

 STIMER REAL,EXIT,LT=LOCAL
 . . .
LOCAL DS 2F

Example 3: Request that this task be put into a wait state until 60 seconds have passed.

 STIMER WAIT,DINTVL=INTV2
 . . .
 DS 2F
INTV2 DC X'FðFðFðFðF6FðFðCð'

Example 4: Request that this task's exit routine, located at location EXIT, receive control
when the task has executed 60 seconds.

 STIMER TASK,EXIT,BINTVL=INTV1
 . . .
INTV1 DS F
 DC X'ðððð6ððð'

 STIMER — Set Interval Timer 935

 STIMER Macro

936 OS/390 V2R8.0 MVS Assembler Services Reference

 STIMERM Macro

STIMERM — Set, Test, Cancel Multiple Interval Timer

 Description
The STIMERM macro:

� Sets a timer to a specified time interval (SET parameter)
� Tests the remaining time interval for a timer request (TEST parameter)
� Cancels a specific timer request (CANCEL parameter)

The SET request sets a timer to a specified time interval or to an interval that will expire at a
specified time of day. Up to sixteen STIMERM requests per task may be in effect at a time.

The time interval is a real-time interval, measured continuously. The task can continue
(WAIT=NO) or suspend execution (WAIT=YES). If the task continues execution, it can pass
control to an exit routine (EXIT parameter) when the time interval is complete. If you specify
an exit routine, the task can optionally pass a parameter to the exit routine (PARM
parameter). The task grants control to the optional asynchronous timer completion exit when
the time interval expires. If the task did not specify either an asynchronous timer completion
routine or WAIT=YES, the task receives no indication that the time interval has expired.

The TEST request tests the remaining time interval for a timer request established through
the SET parameter. The ID parameter identifies the particular timer request to be tested and
must be established by the current task.

The CANCEL request cancels a specific timer request or all of the current task's timer
requests that were established through the SET parameter. The ID parameter identifies the
timer request or requests to be cancelled. If the macro cancels a specific timer request, it
may return the remaining time interval for that request to a storage area designated by the
TU (Timer Units) or MIC (Microseconds) parameters.

On the TEST and CANCEL requests, the TU and MIC parameters specify the location where
the system returns the remaining time:

� If you specify TU, the STIMERM macro returns the amount of time remaining to the
designated 4-byte storage area as an unsigned 32-bit binary number containing the
number of timer units (approximately 26.04166 microseconds per unit) remaining in the
interval.

� If you specify MIC, the STIMERM macro returns the remaining time to the designated
8-byte storage area. Bit 51 of the area is the low-order bit of the interval value and is
equivalent to approximately one microsecond.

If the specified timer request does not exist for the current task, or if the timer request exists
but has expired, the system sets to zero the storage area designated by TU or MIC.

When you cancel a timer request that specified a timer exit, specify TU or MIC to determine
whether the cancel operation was successful:

� If STIMERM returned a value of zero to the storage area designated by TU or MIC, then
any associated timer exit has run or will run because its interval expired before the
cancel operation completed.

� If STIMERM returned a non-zero value to the storage area designated by TU or MIC,
then the timer interval was cancelled and any associated timer exit will not run.

It is your responsibility to set up your program to determine whether the timer exit has run.
For information about interval timing, see OS/390 MVS Programming: Assembler Services
Guide.

 Copyright IBM Corp. 1988, 1999 937

 STIMERM Macro

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O or external interrupts
Locks: No locks held.
Control parameters: Must be in the primary address space

 Programming Requirements
� All input and output addresses are treated as full 31-bit addresses.

� The parameter lists may be above or below 16 megabytes.

� There is no interaction between the TTIMER macro support and the STIMERM macro
support or between the STIMER macro support and the STIMERM macro support.

� If the STIMERM macro service cannot access the macro parameter list or any in-storage
parameters, the system abnormally ends the calling program whether or not it specified
an ERRET routine.

 Restrictions
No enabled, unlocked task (EUT) FRRs may be established.

For SET requests:

� If you specify a time of day at which the interval will expire (GMT, LT, or TOD
parameters), the time of day you specify must not exceed 24:00:00.00; otherwise, you
receive a X'32E' abend unless you specify ERRET.

� If you specify a time interval on the MICVL parameter, the interval you specify, when
added to the current TOD clock contents, must not exceed the maximum value for the
clock comparator (X'FFFFFFFFFFFFFFFF'); otherwise, you receive a X'32E' abend
unless you specify ERRET.

� The time interval specified by a STIMERM macro has no relation to the time interval
specified in an EXEC statement.

| � You can issue STIMERM with a timer completion exit routine and, within that routine,
you can issue STIMERM REAL and specify the same timer completion exit routine.
Under these circumstances, IBM recommends that you specify a time interval rather

| than a time of day on the STIMERM you issue within the timer completion exit routine.
If you specify a time of day, it is possible for the timer completion exit routine to receive
control later than the time of day you specified, resulting in a infinite loop.

� The time interval you specify on the BINTVL parameter must not exceed X'7FFFFFFF'.
If the time interval exceeds X'7FFFFFFF', your program receives a X'32E' abend
unless you use the ERRET parameter to specify a recovery routine.

� No enabled, unlocked task (EUT) FRRs can be established.

TEST and CANCEL requests have no restrictions.

Input Register Information
Before issuing the STIMERM macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter or using it as a
base register.

938 OS/390 V2R8.0 MVS Assembler Services Reference

 STIMERM Macro

Output Register Information
When control returns to the caller, the general purpose registers contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service and restore them after the system returns
control.

 Performance Implications

 Syntax
The standard form of the STIMERM macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede STIMERM.

STIMERM

␣ One or more blanks must follow STIMERM.

 Valid parameters (Required parameters are underlined)
SET For SET: ID, BINTVL or DINTVL or GMT or MICVL or TOD
TEST or TUINTVL or LT, ERRET, WAIT, EXIT, PARM, RELATED
CANCEL For TEST: ID, TU or MIC, ERRET, RELATED
 For CANCEL: ID, TU or MIC, ERRET, RELATED

,ID=stor addr
,ID=ALL

stor addr: RX-type address or register (2) - (12).
Note: ID=ALL is only valid on the CANCEL request.

,TU=stor addr stor addr: RX-type address or register (2) - (12).
,MIC=stor addr

,BINTVL=stor addr stor addr: RX-type address or register (2) - (12).
,DINTVL=stor addr
,GMT=stor addr
,MICVL=stor addr
,TUINTVL=stor addr
,TOD=stor addr
,LT=stor addr

,ERRET=err rtn addr err rtn addr: RX-type address or register (2) - (12).

,EXIT=exit rtn addr exit rtn addr: RX-type address or register (2) - (12).
Note: EXIT must not be specified if WAIT=YES is specified.

 STIMERM — Set, Test, Cancel Multiple Interval Timer 939

 STIMERM Macro

 ,PARM=stor addr stor addr: RX-type address or register (2) - (12).
Note: If PARM is specified, EXIT must be specified and
WAIT=YES must not be specified.

 ,WAIT=YES Default: WAIT=NO
 ,WAIT=NO

 ,RELATED=value

 Parameters
The parameters are explained as follows:

SET
TEST
CANCEL

Request to establish, return, or cancel a real-time interval. You must specify one of
these parameters.

SET indicates a request to establish a real-time interval.

TEST indicates a request to return the remaining time for a request made using the SET
parameter.

CANCEL indicates a request to cancel and optionally return the remaining time for a
timer request.

If the CANCEL parameter specifies (through ID=) a timer request that was established
with the WAIT=YES parameter, the task will still remain in the wait condition.

,ID=stor addr
,ID=ALL

Specifies the address of a 4-byte area containing the identifier assigned to a particular
timer request by the timer service routine. When you specify STIMER SET, the ID is
returned in the 4-byte area. Specify this ID on STIMER TEST or STIMER CANCEL.
ID=ALL, valid only on STIMERM CANCEL, cancels all the current task's timer requests
as established by STIMERM SET. If you specify ID=ALL, the system does not return a
remaining time interval. Do not specify MIC or TU with ID=ALL.

,TU=stor addr
,MIC=stor addr

Specifies that the remaining time in the interval be returned to the 4-byte or 8-byte area
specified in stor addr. TU or MIC is required for STIMERM TEST and is optional for
STIMERM CANCEL (providing you do not also specify ID=ALL). TU and MIC are
mutually exclusive.

For TU, the time is returned to the specified 4-byte area as an unsigned 32-bit binary
number. The low-order bit is approximately 26.04166 microseconds (one timer unit). If
the time remaining is too great to be expressed in 4 bytes, the remaining time interval is
set to the maximum possible value (X'FFFFFFFF') and the return code is set to 4.

For MIC, the time is returned to the specified 8-byte area as microseconds. The 8-byte
area stores the remaining interval, which is represented as an unsigned 64-bit binary
number; bit 51 is equivalent to one microsecond.

,BINTVL=stor addr
,DINTVL=stor addr
,GMT=stor addr
,MICVL=stor addr
,TUINTVL=stor addr
,TOD=stor addr
,LT=stor addr

Specifies the storage address and format of the time of day, or time interval, to be set.
You must specify one of these parameters.

940 OS/390 V2R8.0 MVS Assembler Services Reference

 STIMERM Macro

For BINTVL, the address is a 4-byte area containing the time interval. The time interval
is represented as an unsigned 32-bit binary number; however, the high-order bit of the
time interval must not be set. Therefore, the time interval specified cannot exceed
X'7FFFFFFF'. The low-order bit of the time interval has a value of 0.01 second.

For DINTVL, the address is an 8-byte area in virtual storage containing the time interval.
The time interval is represented as zoned decimal digits of the form:

HHMMSSth, where:

HH is hours
MM is minutes
SS is seconds
t is tenths of seconds
h is hundredths of seconds

For GMT, the address is an 8-byte area containing the Greenwich mean time at which
the interval will complete. The time is represented as zoned decimal digits of the form
HHMMSSth, as described previously under DINTVL.

For MICVL, the address is an 8-byte storage area containing the time interval. The time
interval is represented as an unsigned 64-bit binary number; bit 51 is the low-order bit of
the interval value and equivalent to one microsecond.

For TUINTVL, the address is a 4-byte area containing the time interval. The time interval
is represented as an unsigned 32-bit binary number; the low-order bit has a value of one
timer unit (approximately 26.04166 microseconds).

For TOD and LT, the address is an 8-byte storage area containing the local time of day
at which the interval is to be completed. The time of day is represented as zoned
decimal digits of the form HHMMSSth, as described previously under DINTVL.

The LT and TOD parameters perform identical functions. However, the name for the LT
parameter (LT or local time) describes the function more accurately than does the name
for the TOD parameter (TOD or time-of-day). Therefore, for clarity purposes, IBM
recommends the use of the LT parameter instead of TOD.

Notes on setting the time interval: For the DINTVL, GMT, TOD, and LT parameters,
the zoned decimal digits are not checked for validity. Thus, specifying invalid digits can
cause a X'0C7' abend or an undesired time interval.

,ERRET=err rtn addr
Specifies the address of the routine to receive control when the STIMERM function
cannot be performed. If you omit this parameter and your program encounters an error,
the system abnormally ends your program. The specified error routine will be entered in
the addressing mode and environment of the STIMERM invoker.

When the routine receives control, the register contents are:

Register Contents
0 Address of a 24-byte STIMERM parameter list.
1 Does not contain any information for use by the routine.
2-13 The contents are the same as they were when the caller issued

STIMERM.
14 Return address.
15 Return code.

If the macro parameter list or any in-storage parameters are not accessible, the system
abnormally ends your program regardless of whether or not you specified ERRET. No
error routine will receive control.

,EXIT=exit rtn addr
Specifies the address of an exit routine that will gain asynchronous control after the
requested timer interval expires. The system's workload and the relative dispatching
priority of the associated task determine exactly when, after the interval completes, the
exit routine gets control. The specified exit routine will be entered in the addressing

 STIMERM — Set, Test, Cancel Multiple Interval Timer 941

 STIMERM Macro

mode and environment of the STIMERM invoker. If you specify WAIT=YES, you must
not specify the EXIT parameter.

Exit Routine Interface

The timer exit routine, established with the EXIT parameter in the STIMERM macro,
receives control with the following register values:

R0 - Does not contain any information for use by the routine
R1 - Points to an 8-byte fetch-protected storage area below 16 megabytes and

in the protect key of the program that issued the STIMERM SET macro

Word 1 TIMER REQUEST ID

Word 2 USER PARAMETER (specified in the PARM keyword)

R1

R2-R12 - Do not contain any information for use by the routine
R13 - Address of a 72-byte save area provided by the system
R14 - Return address (to the system)
R15 - Address of the exit routine

The exit routine receives control in the addressing mode of the STIMERM issuer. If
multiple asynchronous exits are established, the exit routines may not receive control in
the same order that the intervals expire.

,PARM=stor addr
Specifies the address of a 4-byte parameter that the exit routine receives when the
requested timer interval expires. You must not specify PARM=stor addr if you specified
WAIT=YES. If you specify PARM=stor addr, you must also specify EXIT=exit rtn addr.

An exit routine will be unable to distinguish between the case where PARM= was not
specified and the case where the specified PARM value was zero.

,WAIT=YES
,WAIT=NO

Specifies whether the task should be suspended until the requested time interval
expires. WAIT=YES specifies that the task should be suspended until the requested
time interval expires. If you specify WAIT=NO without specifying EXIT, you will receive
no indication when the timer expires. WAIT=NO is the default.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the specified
information are at your discretion and may be any valid macro keyword expression.

 ABEND Codes
On STIMERM SET requests:

 � X'32E'

Abend code X'32E' might yield the following reason codes:

 – X'10C'
 – X'110'
 – X'11C'
 – X'120'
 – X'128'

 � X'AC7'

Abend code X'AC7' might yield the following reason code:

 – X'2'

On STIMERM TEST requests:

 � X'32E'

942 OS/390 V2R8.0 MVS Assembler Services Reference

 STIMERM Macro

Abend code X'32E' might yield the following reason codes:

 – X'210'
 – X'220'
 – X'224'

On STIMERM CANCEL requests:

 � X'32E'

Abend code X'32E' might yield the following reason codes:

 – X'310'
 – X'320'
 – X'324'

See OS/390 MVS System Codes for explanations and programmer responses for these
codes.

 Return Codes
When control is returned, register 15 contains one of the following hexadecimal return codes.
Note that for non-zero return codes, the ERRET routine receives control (if you specified
ERRET). If you did not specify ERRET, a non-zero return code causes the STIMERM
invoker to end abnormally.

Figure 60. Return Codes for the STIMERM Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning : The STIMERM service has completed successfully.

Action : None.

04 Meaning : For TEST and CANCEL requests, the time remaining is too great to be
expressed in 4 bytes. The maximum value (X'FFFFFFFF') is returned.

Action : None required. However, you might take some action based upon your application.

0C Meaning : Program error. For SET requests, the GMT, LT, or TOD at which the interval is
to complete exceeds 24:00:00.00.

Action : Specify a time of day value that is less than or equal to 2400 hours.

10 Meaning : Program error. Parameters passed to STIMERM are not valid.

Action : Ensure that all input parameters are valid.

1C Meaning : Program error. The request would cause the limit of concurrent STIMERM SET
requests for a task to be exceeded.

Action : Change your application logic so that fewer STIMERM requests are required.

24 Meaning : Program error. The specified STIMERM ID number (either zero or greater than
the highest ID assigned by the system) is not valid.

Action : Ensure that the input ID is a valid value.

28 Meaning : Program error. For SET requests, either you specified a time interval on the
MICVL parameter that, when added to the current TOD clock contents, exceeds the
maximum value for the clock comparator (X'FFFFFFFFFFFFFFFF') or you specified a
value greater than X'7FFFFFFF' for BINTVL.

Action : Request a smaller time interval.

 Example 1
SET a timer to a specified time interval. Specify:

� The address of a 4-byte area in which the identifier assigned by the timer service to this
request will be returned

� That control should be given to an asynchronous timer completion exit named TIME,
when the time interval expires

� The address of a 4-byte area (containing the time interval of 32 hundredths of seconds)
named INTERVAL. Include an error exit routine named ERROR.

 STIMERM — Set, Test, Cancel Multiple Interval Timer 943

 STIMERM Macro

 STIMERM SET,ID=ADDRESS,BINTVL=INTERVAL,EXIT=TIME,ERRET=ERROR
ADDRESS DS F ID RETURNED
INTERVAL DC X'ðððððð2ð' TIME INTERVAL

 Example 2
SET a timer to a time interval that specifies the address of a 4-byte area in which the
identifier assigned by timer service will be returned. Specify the address of an 8-byte area
named INTERVAL that contains the Greenwich mean time at which the interval is to be
completed (2:06 PM). Specify that the task should be suspended until the requested time
interval expires. Include an error exit routine named EXITX.

 STIMERM SET,ID=ADDRESS,GMT=INTERVAL,WAIT=YES,ERRET=EXITX
ADDRESS DS F ID RETURNED
INTERVAL DC X'F1F4FðF6FðFðFðFð' EXPIRATION TIME OF DAY

 Example 3
SET a timer to a time interval that specifies the address of a 4-byte area in which the
identifier assigned by timer service will be returned. Specify the address of an 8-byte area in
register 8 that contains the time interval (represented as zoned decimal digits). Specify, in
register 10, the address of the exit routine that will gain control asynchronously when the
requested time interval expires. Specify the address of a 4-byte parameter to be passed to
the exit routine when the requested time interval expires. Include the address of an exit
error routine in register 9.

 STIMERM SET,ID=(7),DINTVL=(8),PARM=USERDATA,ERRET=(9),EXIT=(1ð)
USERDATA DC CL4'ABCD' PARAMETER PASSED TO EXIT ROUTINE

 Example 4
Test the remaining time interval for a timer request established with the SET parameter,
specifying (in register 4) the address of a 4-byte area from which the identifier assigned by
the timer service will be obtained. Specify that the time be returned as an unsigned 32-bit
binary number in a 4-byte area called INTERVAL. Include the address of an exit error
routine called XYZ.

 STIMERM TEST,ID=(4),TU=INTERVAL,ERRET=XYZ
INTERVAL DS XL4 REMAINING TIME

 Example 5
Test the remaining time interval for a timer request established with the SET parameter,
specifying the address of a 4-byte area from which the identifier assigned by the timer
service will be obtained. Specify that the time be returned in microseconds in an 8-byte area
called INTERVAL. Include the address of an exit error routine called ERRORADD.

 STIMERM TEST,ID=ADDR,MIC=INTERVAL,ERRET=ERRORADD
ADDR DS F ID TO BE TESTED
INTERVAL DS XL8 REMAINING TIME

 Example 6
Cancel a timer request established with a SET parameter, specifying the address of a 4-byte
area named ADDRESS containing the identifier assigned by the timer service. The time
interval remaining should be returned as an unsigned 32-bit binary number in a 4-byte area
called INTERVAL. An exit error routine named ERROR is also specified.

 STIMERM CANCEL,ID=ADDRESS,TU=INTERVAL,ERRET=ERROR
ADDRESS DS F ID TO BE CANCELLED
INTERVAL DS XL4 REMAINING TIME

944 OS/390 V2R8.0 MVS Assembler Services Reference

 STIMERM Macro

 Example 7
Cancel a timer request established with a SET parameter, specifying the address of a 4-byte
area named PLACE containing the identifier assigned by the timer service. The time interval
remaining should be returned in an 8-byte area called INTERVAL. An exit error routine
named EXITA is also specified.

 STIMERM CANCEL,ID=PLACE,MIC=INTERVAL,ERRET=EXITA
PLACE DS F ID TO BE CANCELLED
INTERVAL DS XL8 REMAINING TIME

 Example 8
Cancel all the timer requests established with STIMERM SET for the current task.

STIMERM CANCEL,ID=ALL

 STIMERM — Set, Test, Cancel Multiple Interval Timer 945

 STIMERM Macro

 STIMERM—List Form
Use the list form of the STIMERM macro together with the execute form of the macro for
applications that require reentrant code. The list form of the macro defines an area of
storage, which the execute form of the macro uses to store the parameters.

 Syntax
The list form of the STIMERM macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede STIMERM.

STIMERM

␣ One or more blanks must follow STIMERM.

SET
TEST
CANCEL

,MF=L

 ,RELATED=value

 Parameters
The parameters are explained as follows:

,MF=L
Specifies the list form of the STIMERM macro. If you do not specify MF=L, the standard
form of the macro is expanded. If you do specify MF=L, the only keyword allowed is
RELATED.

 Example 1
Establish a remote STIMERM SET parameter list.

REMOTE STIMERM SET,MF=L

 Example 2
Establish a remote STIMERM TEST or CANCEL parameter list.

 STIMERM TEST,MF=L

 Example 3
Establish the appropriate storage for the execute form of the STIMERM CANCEL macro.

 STIMERM CANCEL,MF=L

946 OS/390 V2R8.0 MVS Assembler Services Reference

 STIMERM Macro

 STIMERM—Execute Form
Use the execute form of the STIMERM macro together with the list form of the macro for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

 Syntax
The execute form of the STIMERM macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede STIMERM.

STIMERM

␣ One or more blanks must follow STIMERM.

Valid parameters (Required parameters are underlined)

SET For SET: ID, BINTVL or DINTVL or GMT or MICVL or TOD
TEST or TUINTVL or LT, ERRET, WAIT, EXIT, PARM, RELATED
CANCEL For TEST: ID, TU or MIC, ERRET, RELATED
 For CANCEL: ID, TU or MIC, ERRET, RELATED

,ID=stor addr stor addr: A-type address or register (2) - (12).
,ID=ALL Note: ID=ALL is valid only on the CANCEL request.

,TU=stor addr stor addr: A-type address or register (2) - (12).
,MIC=stor addr

,BINTVL=stor addr stor addr: A-type address or register (2) - (12).
,DINTVL=stor addr
,GMT=stor addr
,MICVL=stor addr
,TOD=stor addr
,TUINTVL=stor addr
,LT=stor addr

,ERRET=err rtn addr err rtn addr: A-type address or register (2) - (12).

 ,WAIT=YES Default: WAIT=NO
 ,WAIT=NO

,EXIT=exit rtn addr exit rtn addr: A-type address or register (2) - (12).
Note: EXIT must not be specified if WAIT=YES is specified.

 ,PARM=stor addr stor addr: A-type address or register (2) - (12).

Note: If PARM is specified, EXIT must be specified and
WAIT=YES must not be specified.

,MF=(E,ctrl addr) ctrl addr: A-type address or register (0), (2)-(12) for TEST and

CANCEL, register (1)-(12) for SET.

 ,RELATED=value

 STIMERM — Set, Test, Cancel Multiple Interval Timer 947

 STIMERM Macro

 Parameters
The parameters are explained in the standard form of the STIMERM macro, with the
following exception.

,MF=(E,ctrl addr)
Specifies the execute form of the STIMERM macro using a remote problem-program
parameter list.

 Example 1
Set a timer to a time interval of 15 microseconds, specifying the address of a 4-byte area in
which the identifier assigned to this request by timer service will be returned. Specify:

� The address of an 8-byte area in INTERVAL that contains the time interval (represented
as an unsigned 64-bit binary number)

� The address of a program to receive asynchronous control after the requested timer
interval expires

� The address of a 4-byte parameter to be passed to the exit routine when the requested
time interval expires

� The address of the appropriate parameter list in REMOTE

Include the address of an error routine in register 9.

 STIMERM SET,ID=(4),MICVL=(INTERVAL),EXIT=ROUTE,PARM=DATA, X
 MF=(E,REMOTE),ERRET=(9)
DATA DC CL4'WXYZ' PARAMETER PASSED TO THE EXIT ROUTINE
INTERVAL DC X'ððððððððððððFððð' TIME INTERVAL

 Example 2
Test the remaining time interval for a timer request established with the SET parameter,
specifying the address of a 4-byte area from which the identifier assigned by timer service
will be obtained. Specify that register 3 will point to the appropriate list. Specify that the
time be returned in microseconds in an 8-byte area at the address named INTERVAL.
Include the address of an exit error routine called ERR.

 STIMERM TEST,ID=ADDR,MIC=INTERVAL,MF=(E,(3)),ERRET=ERR
INTERVAL DS XL8 REMAINING TIME

 Example 3
Cancel the timer request established with a SET parameter. Specify the address of a 4-byte
identifier (assigned by timer service) named ADDRESS and that the time interval remaining
be returned as an unsigned binary number in a 4-byte area named INTERVAL. Specify that
register 0 will point to the appropriate list. Specify an error exit routine named ERROR.

 STIMERM CANCEL,ID=ADDRESS,TU=INTERVAL,MF=(E,(ð)),ERRET=ERROR
ADDRESS DS F ID TO BE CANCELLED
INTERVAL DS XL4 REMAINING TIME

948 OS/390 V2R8.0 MVS Assembler Services Reference

 STORAGE Macro

STORAGE — Obtain and Release Storage

 Description
The STORAGE macro requests that the system obtain or release an area of virtual storage
in the primary address space. The two functions of the macro are:

� STORAGE OBTAIN, which obtains virtual storage in an address space
� STORAGE RELEASE, which releases virtual storage in an address space.

 Environment
The requirements on the caller are:

Minimum authorization: For subpools 0-127: problem state and PSW key 8-15.
For subpools 131 and 132: a PSW key mask (PKM) that allows the
calling program to switch its PSW key to match the key of the
storage to be obtained or released.

Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held.
Control parameters: No requirement.

 Programming Requirements
None.

 Restrictions
None.

 Register Information
Register usage varies depending on the type of STORAGE request. For specific
information, see the descriptions of STORAGE OBTAIN and STORAGE RELEASE.

 Performance Implications
None.

 Copyright IBM Corp. 1988, 1999 949

 STORAGE Macro

OBTAIN Option of STORAGE
The STORAGE macro with the OBTAIN parameter requests that the system allocate an area
of virtual storage to the active task. Each virtual storage area begins on a doubleword or
page boundary. The amount of storage you request must not exceed the amount available;
the amount available depends on how much storage has already been allocated, and on
your user region size. Valid subpools available for problem-state callers are 0 - 127, 131,
and 132. When a task terminates, the system frees any storage in subpools 0 - 127 that
has been allocated to the terminating task. The system does not free storage in subpools
131 and 132 until the job-step task terminates.

Note: When you obtain storage, the system clears the requested storage to zeros only if
you obtain either:

� 8192 bytes or more from a pageable, private storage subpool

� 4096 bytes or more from a pageable, private storage subpool, with BNDRY=PAGE
specified.

Input Register Information
Before issuing the STORAGE macro with the OBTAIN parameter, the caller does not have to
place any information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 For a successful request in which maximum and minimum lengths were

specified, contains the length of the storage obtained. Otherwise, used as a
work register by the system.

1 When STORAGE OBTAIN is successful, contains the address of the allocated
storage. Otherwise, used as a work register by the system.

2-13 Unchanged.
14 Used as a work register by the system.
15 For a conditional request, contains the return code. For an unconditional

request, used as a work register by the system.

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the service returns
control.

950 OS/390 V2R8.0 MVS Assembler Services Reference

 STORAGE Macro

 Syntax
The STORAGE macro with the OBTAIN parameter is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede STORAGE.

STORAGE

␣ One or more blanks must follow STORAGE.

OBTAIN

,LENGTH=length value length value: Symbol, decimal number, or register (0), (2) - (12).
,LENGTH=(max amount,min max amount: Symbol, decimal number, or register (0), (2) - (12).
 amount) min amount: Symbol, decimal number, or register (1) - (12).

 ,ADDR=stor addr stor addr: RX-type address or register (1) - (12).

Default : ADDR=(1).

 ,INADDR=stor addr stor addr: RX-type address or register (1)-(12).

Note: This parameter can only be specified with LOC=EXPLICIT.

 ,SP=subpool number subpool number: Symbol, decimal number 0-127, 131, 132,

or register (2) - (12), (15).
Default : SP=0.

 ,BNDRY=DBLWD
 ,BNDRY=PAGE Default : BNDRY=DBLWD

 ,KEY=key number key number: Decimal number 0-15 or register (2) - (12).

Note: KEY is valid only when you also specify SP. You cannot
specify both KEY and CALLRKY=YES.

 ,CALLRKY=NO Default: CALLRKY=NO
 ,CALLRKY=YES Note: You cannot specify both CALLRKY=YES and KEY.

 ,LOC=BELOW Default: LOC=RES
 ,LOC=ANY
 ,LOC=(ANY,ANY)
 ,LOC=(BELOW, ANY)
 ,LOC=RES
 ,LOC=(RES, ANY)
 ,LOC=EXPLICIT Note: You must specify the INADDR parameter with
 ,LOC=(EXPLICIT,ANY) EXPLICIT.
 ,LOC=(EXPLICIT,BELOW)

 ,RTCD=rtcd addr rtcd addr: RX-type address, register (15),

or register (2) - (12). Default : RTCD=(15).

 ,COND=YES Default: COND=NO
 ,COND=NO

 ,RELATED=value value: Any valid macro parameter specification.

 STORAGE — Obtain and Release Storage 951

 STORAGE Macro

 Parameters
The parameters are explained as follows:

OBTAIN
Requests that the system obtain virtual storage.

,LENGTH=length value
,LENGTH=(max amount,min amount)

Specifies the amount of storage the system is to obtain. length value specifies the
length, in bytes, of the requested virtual storage. max length and min length specify the
maximum and minimum amounts of storage. These numbers should be a multiple of 8;
if they are not, the system uses the next higher multiple of 8.

If you specify LENGTH=(max amount,min amount), the system returns a value in
general purpose register 0 to tell you the amount of storage it obtained.

,ADDR=stor addr
Specifies the location where the system returns the address of the storage it allocates.

,INADDR=stor addr
Specifies the desired virtual address for the storage to be obtained. When you specify
INADDR, you must specify EXPLICIT on the LOC parameter.

Notes:

1. The address specified on INADDR must be on a doubleword boundary.

2. Make sure that the virtual storage address specified on INADDR and the central
storage backing specified on the LOC=EXPLICIT parameter are a valid
combination. For example, if the address specified on INADDR is for virtual storage
above 16 megabytes, specify LOC=EXPLICIT or LOC=(EXPLICIT,ANY). Valid
combinations include:

� Virtual above, central any
� Virtual any, central any
� Virtual below, central below
� Virtual below, central any

,SP=subpool number
Specifies the subpool number for the storage. Valid subpools for programs in problem
state are 0 - 127, 131, and 132. See the discussion of subpool handling in OS/390
MVS Programming: Assembler Services Guide for information and requirements
pertaining to specific subpools. If you specify a register, the subpool number must be in
bits 24-31 of the register, with bits 0-23 set to zero. If you omit this parameter, the
system uses subpool 0.

,BNDRY=DBLWD
,BNDRY=PAGE

Specifies whether the storage is to be aligned on a doubleword boundary (DBLWD) or a
page boundary (PAGE). The default is BNDRY=DBLWD.

,KEY=key number
Indicates the storage key of the storage to be obtained. You may obtain storage in your
storage key or in key 9. If you pass the storage key in a register, it must be in bits
24-27 in that register. KEY is valid only when SP is specified, and applies to subpools
131 and 132 only. See the discussion of subpool handling in OS/390 MVS
Programming: Assembler Services Guide for information on system-assigned defaults
and authorization requirements pertaining to specific subpools.

952 OS/390 V2R8.0 MVS Assembler Services Reference

 STORAGE Macro

,CALLRKY=NO
,CALLRKY=YES

Specifies how the system assigns the key for the storage to be obtained:

CALLRKY=NO The system assigns the value according to the specified subpool:

� For subpools 131 and 132, the system assigns the value
specified on the KEY parameter (or 0, if the KEY parameter is
omitted) as the storage key

� For subpools 0-127, the system assigns the value from the
TCB key at the time of the first request to obtain storage. See
the discussion of subpool handling in OS/390 MVS
Programming: Assembler Services Guide for information on
system-assigned defaults and authorization requirements
pertaining to specific subpools.

CALLRKY=YES The system assigns the caller's current PSW key as the storage
key. When you specify CALLRKY=YES, do not also specify KEY.
Specify CALLRKY only when obtaining storage from subpools 131
and 132. For all other subpools, the system ignores the CALLRKY
parameter.

The default is CALLRKY=NO.

,LOC=BELOW
,LOC=(BELOW,ANY)
,LOC=ANY
,LOC=(ANY,ANY)
,LOC=RES
,LOC=(RES,ANY)
,LOC=EXPLICIT
,LOC=(EXPLICIT,ANY)
,LOC=(EXPLICIT,BELOW)

Specifies the location of virtual and central (also called real) storage. This parameter is
especially helpful for callers with 24-bit dependencies. In all cases when LOC is
specified, central storage is allocated anywhere until the storage is fixed. You can
specify the location of central storage (after the storage is fixed) and virtual storage
(whether or not the storage is fixed) through the following LOC parameter values:

LOC=BELOW indicates that virtual and central storage are to be located below 16
megabytes.

LOC=(BELOW,ANY) indicates that virtual storage is to be located below 16 megabytes
and central storage can be located anywhere.

LOC=ANY and LOC=(ANY,ANY) indicate that virtual and central storage can be located
anywhere.

LOC=RES indicates that the location of virtual and central storage depends on the
location of the caller. If the caller resides below 16 megabytes, virtual and central
storage are located below 16 megabytes; if the caller resides above 16 megabytes,
virtual and central storage are to be located anywhere.

LOC=(RES,ANY) indicates that the location of virtual storage depends upon the location
of the caller. If the caller resides below 16 megabytes, virtual storage is located below
16 megabytes; if the caller resides above 16 megabytes, virtual storage can be located
anywhere. In either case, central storage can be located anywhere.

Note: When you specify LOC=ANY, STORAGE tries to allocate virtual storage above
16 megabytes. If the attempt fails, STORAGE tries to allocate virtual storage below 16
megabytes. If this attempt also fails, STORAGE does not allocate any storage.

 STORAGE — Obtain and Release Storage 953

 STORAGE Macro

LOC=EXPLICIT, LOC=(EXPLICIT,ANY), or LOC=(EXPLICIT,BELOW) specify that the
requested virtual storage be located at the address specified with the INADDR
parameter, which is required with EXPLICIT. EXPLICIT is valid only for subpools 0-127,
131, and 132. You cannot specify the BNDRY or LENGTH=(max amount,min amount)
parameter with EXPLICIT.

LOC=EXPLICIT and LOC=(EXPLICIT,ANY) indicate that virtual storage is to be located
at the address specified on the INADDR parameter, and central storage can be located
above or below 16 megabytes.

LOC=(EXPLICIT,BELOW) indicates that virtual storage is to be located at the address
specified on the INADDR parameter, and central storage is to be located below 16
megabytes. The virtual storage address specified on the INADDR parameter must be
below 16 megabytes.

When you specify EXPLICIT on a request for storage from the same virtual page as
previously requested storage, you must request it in the same key, subpool, and central
storage areas as on the previous storage request. For example, if you specify
LOC=(EXPLICIT,BELOW) to request virtual storage at an explicit address with central
storage below 16 megabytes, any subsequent requests for storage from that virtual
page must also be specified as LOC=(EXPLICIT,BELOW).

,RTCD=rtcd addr
Specifies the location where the system is to store the return code. This parameter is
valid only with COND=YES. The return code is also in GPR 15.

,COND=NO
,COND=YES

COND=YES indicates that the request is conditional. Errors detected while processing a
STORAGE RELEASE request with incorrect or inconsistent parameters cause the
STORAGE service to return to the caller with a non-zero return code. For all other
errors, the system abnormally ends the active task if the STORAGE request cannot be
successfully completed. If you specify COND=YES, you may also specify the RTCD
parameter to define the location where the system is to store a return code.

COND=NO indicates that the request is unconditional. The system abnormally ends the
active task if the STORAGE RELEASE request cannot complete successfully. This
situation occurs if the parameters passed on the request are incorrect or inconsistent, or
if the system encounters internal errors. COND=NO is the default.

,RELATED=value
Specifies information used to self-document macro by “relating” functions or services to
corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and can be any valid coding values.

 ABEND Codes
STORAGE OBTAIN might issue the hexadecimal abend codes in the following list. For
detailed abend code information, see OS/390 MVS System Codes.

178 278 378 478 778

878 978 A78 B78 D78

954 OS/390 V2R8.0 MVS Assembler Services Reference

 STORAGE Macro

Return and Reason Codes
When control returns from the STORAGE OBTAIN request and you specified a conditional
request, GPR 15 (and rtcd addr, if you coded RTCD) contains one of the following
hexadecimal return codes:

Figure 61. Return Codes for STORAGE OBTAIN

Return Code Meaning and Action

0 Meaning : Successful completion.

Action : None.

4 If you did not specify EXPLICIT on the LOC parameter:

Meaning : Environmental error. Virtual storage was not obtained because insufficient
storage is available.

Action : Consult the system programmer to see if you have exceeded an
installation-determined private storage limit.

If you specified EXPLICIT on the LOC parameter:

Meaning : Program error. Virtual storage was not obtained because part of the
requested storage area is outside the bounds of the user region.

Action : Determine why your program is mistakenly requesting storage outside the user
region. If your region size is too small, consult the system programmer about increasing
the region size.

8 Meaning : System error. Virtual storage was not obtained because the system has
insufficient central storage to back the request.

Action : Report the problem to the system programmer so the cause of the problem can be
determined and corrected.

C Meaning : System error. Virtual storage was not obtained because the system cannot page
in the page table associated with the storage to be allocated.

Action : Report the problem to the system programmer so the cause of the problem can be
determined and corrected.

10 Meaning : Program error. Virtual storage was not obtained for one of the reasons listed
below. This reason code applies only to STORAGE requests with LOC=EXPLICIT
specified.

� Part of the requested area is allocated already.

� Virtual storage was already allocated in the same page as this request, but one of the
following characteristics of the storage was different:

 – The subpool
 – The key

– Central storage backing

Action : Determine why your program is attempting to obtain allocated storage or why your
program is attempting to obtain virtual storage with different attributes from the same page
of storage. Correct the coding error.

 STORAGE — Obtain and Release Storage 955

 STORAGE Macro

RELEASE Option of STORAGE
The STORAGE macro with the RELEASE parameter requests that the system release an
area of virtual storage or an entire virtual storage subpool, previously allocated through the
STORAGE or GETMAIN macro. The system abends the active task if the specified virtual
storage does not start on a doubleword boundary or, for an unconditional request, if the
specified area or subpool is not allocated to the task identified as the owning task.

Input Register Information
Before issuing the STORAGE macro with the RELEASE parameter, the caller does not have
to place any information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system.
2-13 Unchanged.
14 Used as a work register by the system.
15 For a conditional request, contains the return code. For an unconditional

request, used as a work register by the system.

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the service returns
control.

956 OS/390 V2R8.0 MVS Assembler Services Reference

 STORAGE Macro

 Syntax
The STORAGE macro with the RELEASE option is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede STORAGE.

STORAGE

␣ One or more blanks must follow STORAGE.

RELEASE

,LENGTH=length value,ADDR=stor addr
,LENGTH=length value,ADDR=stor addr,SP=subpool number
,SP=subpool number length value: Symbol, decimal number, or register (0), (2) - (12).

stor addr: RX-type address or register (1) - (12).
subpool number: Symbol, decimal number 0-127, 131, 132, or
register (2) - (12), (15).
Default : SP=0.

 ,KEY=key number key number: Decimal number 0-15 or register (2) - (1 2).

Note: KEY is valid only when SP is specified.

 ,RTCD=rtcd addr rtcd addr: RX-type address, register (15),

or register (2) - (12). Default: RTCD=(15).

 ,COND=YES Default: COND=NO
 ,COND=NO

 ,RELATED=value value: Any valid macro parameter specification.

 Parameters
The parameters are explained as follows:

RELEASE
Requests that the system release virtual storage.

,LENGTH=length value
Specifies the number of bytes of storage that the system is to release. If you specify
LENGTH, you must also specify ADDR. To free an entire subpool, use SP instead of
LENGTH and ADDR. Do not specify a length value of 0 with an address of 0. This
combination causes STORAGE RELEASE to free the subpool specified with the SP
parameter, or subpool 0 if the SP parameter is omitted.

,ADDR=stor addr
Specifies the address of the storage to be released. If you specify ADDR, you must
also specify LENGTH. To free an entire subpool, use SP instead of LENGTH and
ADDR.

,SP=subpool number
Specifies the subpool number for the storage to be released. The valid subpool
numbers are 0-127, 131, and 132. If you specify the subpool in a register, the subpool
number must be in bits 24-31 of the register, with bits 0-23 set to zero. If you omit this
parameter, the system uses subpool 0.

 STORAGE — Obtain and Release Storage 957

 STORAGE Macro

A request to release all the storage in a subpool is known as a subpool release . To
issue a subpool release, use SP to indicate the subpool and do not specify LENGTH or
ADDR. A caller in problem state can issue a subpool release for subpools 1-127, 131,
and 132. A caller in problem state cannot issue a subpool release for subpool 0. See
the description of subpool handling in OS/390 MVS Programming: Assembler Services
Guide for information and requirements pertaining to specific subpools.

,KEY=key number
Indicates the storage key of the storage to be released. The valid storage keys are your
program's storage key or key 9. If you pass the storage key in a register, it must be in
bits 24-27 in that register. KEY is valid only when SP is specified and applies only to
subpools 131 and 132. KEY allows you to release storage in the specified storage key.
See the discussion of subpool handling in OS/390 MVS Programming: Assembler
Services Guide for information on authorization requirements pertaining to specific
subpools.

,RTCD=rtcd addr
Specifies the location where the system is to store the return code. This parameter is
valid only for conditional requests. The return code is also in GPR 15.

,COND=NO
,COND=YES

Specifies whether the request is unconditional or conditional.

COND=YES specifies that the task should not abend if the system cannot release the
storage. However, the system cannot prevent some abends. The RTCD parameter
specifies the location where the system is to store a return code.

COND=NO specifies that the system is to abend the active task if it cannot release the
storage. COND=NO is the default.

,RELATED=value
Specifies information used to self-document macro by “relating” functions or services to
corresponding functions or services. The format and contents of the information
specified are at the discretion of the user, and can be any valid coding values.

 ABEND Codes
STORAGE RELEASE might issue the hexadecimal abend codes in the following list. For
detailed abend code information, see OS/390 MVS System Codes.

178 278 378 478 778

878 978 A78 B78 D78

958 OS/390 V2R8.0 MVS Assembler Services Reference

 STORAGE Macro

Return and Reason Codes
When the STORAGE macro returns control to your program and you specified a conditional
request, GPR 15 (and rtcd addr, if you coded RTCD) contains one of the following
hexadecimal return codes:

Figure 62. Return Codes for the STORAGE RELEASE

Return Code Meaning and Action

0 Meaning : Successful completion.

Action : None.

4 Meaning : Program error. Not all requested virtual storage was freed.

Action : Check your program for the following kinds of errors:

� The address of the storage area to be freed is not correct.

� The subpool you have specified does not match the subpool of the storage to be freed.

� The key you have specified does not match the key of the storage to be freed.

8 Meaning : Program error. No virtual storage was freed because part of the storage area to
be freed is fixed.

Action : Check for the following kinds of errors:

� You passed an incorrect storage area address to the STORAGE macro.

� You attempted to free storage that is fixed.

Examples of the OBTAIN and RELEASE Options

 Example 1
Request that the system obtain 1000 bytes of virtual storage from subpool 127 and return its
address in register 3. If the request fails, the system is to abnormally end the caller.

 LA 2,1ððð
 STORAGE OBTAIN,LENGTH=(2),ADDR=(3),SP=127,LOC=ANY,COND=NO
 .
\ Release 1ððð bytes from subpool 127 and abnormally end the
\ caller if the request fails. Assume that the length of the storage
\ is still in register 2 and the address of the storage is still in
\ register 3.
 .
 STORAGE RELEASE,LENGTH=(2),ADDR=(3),SP=127,COND=NO
 .

 Example 2
Request that the system obtain 4096 bytes from subpool 101 and return the address at the
location defined by the RX-type address STRGA. If the request fails, the system is to save a
return code at MY_RC.

 STORAGE OBTAIN,LENGTH=ONE_PAGE,ADDR=STRGA,SP=MY_SUBPOOL, X
 LOC=ANY,COND=YES,RTCD=MY_RC
 .
\ Release 4ð96 bytes from subpool 1ð1.
 .
 STORAGE RELEASE,LENGTH=ONE_PAGE,ADDR=STRGA,SP=MY_SUBPOOL, X
 COND=YES,RTCD=MY_RC
 .
MY_RC DS F
STRGA DS F
ONE_PAGE EQU 4ð96
MY_SUBPOOL EQU 1ð1

 STORAGE — Obtain and Release Storage 959

 STORAGE Macro

 Example 3
Request that the system obtain 4096 bytes from subpool 101. If that much is not available,
settle for a minimum of 1024 bytes. The system is to return the address of the storage at
the RX-type address STRGA. If the request fails, the system is to store a return code at
MY_RC.

 STORAGE OBTAIN,LENGTH=(ONE_PAGE,ONE_K),ADDR=STRGA, X
 SP=MY_SUBPOOL,LOC=ANY,COND=YES,RTCD=MY_RC
 ST ð,STRG_LEN
 .
\ Release the storage in subpool 1ð1. The address of the
\ storage is at the RX-type address 'STRGA'. Note that
\ LENGTH=STRG_LEN is not valid.
 .
 L 3,STRG_LEN
 STORAGE RELEASE,LENGTH=(3),ADDR=STRGA,SP=MY_SUBPOOL, X
 COND=YES,RTCD=MY_RC
 .
MY_RC DS F
STRG_LEN DS F
STRGA DS F
ONE_PAGE EQU 4ð96
ONE_K EQU 1ð24
MY_SUBPOOL EQU 1ð1

 Example 4
Code the instructions to set up an 18-word save area, such as one that a program in AR
address space control (ASC) mode would obtain to call a program in primary mode. The
program issuing the STORAGE macro is in 31-bit addressing mode, and the code is
reentrant.

PGM CSECT
PGM AMODE 31
PGM RMODE ANY

BAKR 14,ð SAVE CALLER'S ARS, GPRS AND RETURN
\ ADDRESS ON LINKAGE STACK

SAC 512 SWITCH TO AR ASC MODE
LAE 12,ð(15,ð) SET UP PROGRAM BASE REGISTER AND AR

 USING PGM,12
STORAGE OBTAIN,LENGTH=72 GET REENTRANT SAVEAREA
LAE 13,ð(1,ð) PUT SAVEAREA ADDRESS IN AR/GPR 13
MVC 4(4,13),=C'F1SA' PUT ACRONYM INTO SAVEAREA TO

\ INDICATE STATUS SAVED ON LINKAGE STACK
 .
\ BEGIN PROGRAM CODE HERE

To release this save area, issue the following instructions:

 .
LAE 1,ð(13,ð) COPY SAVEAREA ADDRESS
STORAGE RELEASE,ADDR=(1),LENGTH=72 FREE SAVEAREA

 .
SLR 15,15 SET RETURN CODE OF ZERO
PR RETURN TO CALLER, RESTORE CALLERS STATUS

960 OS/390 V2R8.0 MVS Assembler Services Reference

 SYMRBLD Macro

SYMRBLD — Building a Symptom Record

 Description
The SYMRBLD macro generates code to build a symptom record. A symptom record is a
data area that contains a description of a program failure combined with a description of the
environment where the failure occurred. The symptom record consists of six sections. These
sections are numbered 1 through 5, including an additional section that is numbered 2.1.
The purpose of each section is as follows:

� Section 1 (Environmental Data) - This section is filled in by the SYMREC macro. The
environmental data the SYMREC macro stores in this section includes the processor
model and serial numbers, data and time, name of the customer installation, and the
product ID of the control program.

� Section 2 (Control Data) - This section contains the lengths and offsets of the remaining
sections.

� Section 2.1 (Component Data) - This section identifies the application in which the error
occurred.

� Section 3 (Primary SDB symptoms) - This section contains the primary string of problem
symptoms. This data is used for duplicate problem recognition.

� Section 4 (Secondary SDB symptoms) - This section contains any additional diagnostic
values saved at the time of the error.

� Section 5 (Variable Data) - This section contains diagnostic data, such as portions of
data areas or parameter lists pertinent to the error.

Input to the SYMRBLD macro is a storage area for the symptom record, and the diagnostic
data for sections 2.1, 3, 4, and 5 of the symptom record. The SYMRBLD macro must be
invoked several times to build a complete symptom record. The following describes the
sequence:

1. Invoke SYMRBLD with the INITIAL parameter to initialize sections 1 and 2, and provide
application data for section 2.1.

2. Invoke SYMRBLD with the PRIMARY parameter to store symptoms into section 3. You
may invoke this parameter more than once for one error.

3. Optionally invoke SYMRBLD with the SECONDARY parameter to store symptoms into
section 4.

4. Optionally invoke SYMRBLD with the VARIABLE parameter to store data into section 5.

5. Invoke SYMRBLD with the COMPLETE parameter to set the lengths of sections 3, 4,
and 5 in section 2.1 and optionally code SYMRBLD to invoke the SYMREC macro for
recording to the logrec data set. If you do not code SYMRBLD to invoke the SYMREC
macro, your records will not be recorded to the logrec data set.

6. Invoke SYMRBLD with the RESET parameter to rebuild the symptom record using the
same storage area and application information that was specified using the INITIAL
parameter. The RESET parameter is useful when the primary, secondary, and variable
sections of the symptom record are to be changed but the application information in
section 2.1 remains the same.

The following description of the SYMRBLD macro is divided into six sections:

� SYMRBLD with the INITIAL parameter
� SYMRBLD with the PRIMARY parameter
� SYMRBLD with the SECONDARY parameter
� SYMRBLD with the VARIABLE parameter
� SYMRBLD with the COMPLETE parameter
� SYMRBLD with the RESET parameter

 Copyright IBM Corp. 1988, 1999 961

 SYMRBLD Macro

There is no list or execute form of the macro.

 Environment
Requirements for the caller are:

Minimum authorization: Problem state, with any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary, secondary, or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No locks held.
Control parameters: Must be in the primary address space or be in an address/data

space that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL)

 Programming Requirements
The maximum size of the symptom record is 1900 bytes. In addition to providing storage for
the symptom record, 100 bytes must be provided for a work area; therefore, the maximum
amount of storage needed is 2000 bytes.

The symptom record storage must reside in the primary address space.

 Restrictions
None.

Input Register Information
When specifying SYMRBLD COMPLETE with INVOKE=YES (the default) the caller must
ensure that register 13 points to a standard 72-byte save area.

Once you specify SR on SYMRBLD INITIAL and you plan to specify either SYMRBLD
PRIMARY, SYMRBLD SECONDARY, SYMRBLD VARIABLE, or SYMRBLD COMPLETE
without respecifying the SR parameter, you must put the address of the storage area into
register 1.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Reason code from the SYMREC macro if you code SYMRBLD COMPLETE

with INVOKE=YES; otherwise, used as a work register by the system.
1 Used as a work register by the system.
2-13 Unchanged.
14 Used as a work register by the system.
15 Return code from the SYMREC macro if you code SYMRBLD COMPLETE

with INVOKE=YES; otherwise, used as a work register by the system.

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

962 OS/390 V2R8.0 MVS Assembler Services Reference

 SYMRBLD Macro

 Performance Implications
None.

 Syntax
The standard form of the SYMRBLD macro with the INITIAL option is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SYMRBLD.

SYMRBLD

␣ One or more blanks must follow SYMRBLD.

INITIAL

,SR=storage addr storage addr: RX-type address or address in register (2)-(12).

,PRIMLEN=primary length primary length: Decimal digit, RX-type address, or address in

register (2)-(12).

 ,SECLEN=secondary length secondary length: Decimal digit, RX-type address, or address in

register (2)-(12).
Default: 0

 ,VARLEN=variable length variable length: Decimal digit, RX-type address, or address in

register (2)-(12).
Default: 0

,ARCHLEV=10 This is the architecture level of the symptom record.

 ,COMPDSC=comp desc comp desc: RX-type address or address in register (2)-(12).

 ,PROBLEM=problem id problem id: RX-type address or address in register (2)-(12).

 ,SERVLEV=service level service level: RX-type address or address in register (2)-(12).

 ,NOCONVERTS

,PROGRAM=progname progname: RX-type address or address in register (2)-(12).

,PROGLEV=proglevel proglevel: RX-type address or address in register (2)-(12).

 Parameters
The parameters for SYMRBLD INITIAL are explained as follows:

INITIAL
Sets sections 1, 2, and 2.1 of the symptom record to zero, and initializes the offsets of
sections 3, 4, and 5 in section 2.1.

,SR=storage addr
Specifies the address of the storage area, on a doubleword boundary, used for the
symptom record. The storage area must reside in the primary address space.

The maximum size of the symptom record is 1900 bytes. Sections 1, 2, and 2.1 use
212 bytes of the total 1900 bytes. Sections 3, 4, and 5 use the remaining 1688 bytes.
In addition to providing storage for the symptom record, 100 bytes must be provided for
a work area, therefore, the maximum amount of storage needed is 2000 bytes.

 SYMRBLD — Building a Symptom Record 963

 SYMRBLD Macro

Use the PRIMLEN, SECLEN, and VARLEN parameters to specify the length of sections
3, 4, and 5, respectively.

,PRIMLEN=primary length
Specifies the address of a required halfword input variable that contains the maximum
length in bytes of the primary symptom string. You can also directly specify a decimal
digit for the length (for example, PRIMLEN=900). If you use register notation, the
register contains the address of the length rather than the length itself.

The following formula calculates the length of the primary symptom string:

Lengths of all SDBKEYs + length of all data provided with
the DATA keyword + the number of times SDBKEY is specified
+ the length of all data specified with the SDBSTRING keyword
+ the number of times the SDBSTRING keyword is provided.

Note that this field cannot be zero and the maximum size of the entire symptom record
is 1900 bytes.

,SECLEN=secondary length
Specifies the address of an optional halfword input variable that contains the maximum
length in bytes of the secondary symptom string. You can also directly specify a
decimal digit for the length (for example, SECLEN=900). If you use register notation,
the register contains the address of the length rather than the length itself.

The following formula calculates the length of the secondary symptom string:

Lengths of all SDBKEYs + length of all data provided with
the DATA keyword + the number of times SDBKEY is specified
+ the length of all data specified with the SDBSTRING keyword
+ the number of times the SDBSTRING keyword is provided.

Note that the maximum size of the entire symptom record is 1900 bytes.

If a length of zero is specified, the secondary symptom string is ignored. If SECLEN is
not specified, the default is zero.

,VARLEN=variable length
Specifies the address of an optional halfword input variable that contains the maximum
length in bytes of the variable data section. You can also directly specify a decimal digit
for the length (for example, VARLEN=900). If you use register notation, the register
contains the address of the length rather than the length itself.

The following formula calculates the length of the variable data section:

The length provided must be the total length of the variable data items
+ the number of items (x) 4.

(The 4 is for the 2 byte key + 2 bytes for the length.) Note that the maximum size of the
entire symptom record is 1900 bytes.

If a length of zero is specified, section 5 is ignored. If VARLEN is not specified, the
default is zero.

,ARCHLEV=10
Specifies the architecture level of the symptom record. The only valid value is 10.

,COMPDSC=comp desc
Specifies the address of an optional 32-character input text description of the failing
module's subfunction; for example, IOS - IOSB Analysis Routine.

,PROBLEM=problem id
Specifies the address of an optional 8-character input problem identifier used to
associate the symptom record with other symptom records or with other problem
indicators.

,SERVLEV=service level
Specifies the address of an optional 8-character input service level. When a value is
provided, the code is normally at a higher level than the release level. The values of

964 OS/390 V2R8.0 MVS Assembler Services Reference

 SYMRBLD Macro

this field can be any information that is indicative of the service level; for example,
PTF#, APAR#, or user modification number.

,NOCONVERTS
Indicates no data conversion from hexadecimal to EBCDIC is needed for this symptom
record.

,PROGRAM=progname
Specifies the address of a required 8-character input variable that contains the name of
the failing program. When this parameter is specified, the PIDS/aaaaaaaa SDB
symptom is automatically put into section 3 of the symptom record. aaaaaaaa indicates
the progname.

,PROGLEV=proglevel
Specifies the address of a required 8-character input variable that contains the name of
the program major level.

 Syntax
The standard form of the SYMRBLD macro with the PRIMARY option is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SYMRBLD.

SYMRBLD

␣ One or more blanks must follow SYMRBLD.

PRIMARY

 ,SR=storage addr storage addr: RX-type address or address in register (2)-(12).

,SDBSTRING=SDB string
,SDBKEY=SDB key

SDB string: RX-type address or address in register (2)-(12).
SDB key: SDB key name, or SDB key literal in single quotes. See
the parameter description for a list of valid SDB key names and
literals.

Note: You must code either SDBSTRING or SDBKEY or both.

 ,SDBLEN=SDB length
 ,SDBLENVAR=SDB variable

SDB length: Decimal digit 1-256, or register (2)-(12).
SDB variable: RX-type address or address in register (2)-(12).

Notes:

1. If you use register notation for SDB length, the register
contains the length itself rather than the address of the length.

2. SDBLEN (or SDBLENVAR) is valid with SDBSTRING only.

 ,DATA=data data: RX-type address or address in register (2)-(12).

Note: DATA is required with SDBKEY only.

 ,LEN=data length
 ,LENVAR=data variable

data length: Decimal digit 1-13, or register (2)-(12).
data variable: RX-type address or address in register (2)-(12).

Notes:

1. If you use register notation for data length, the register
contains the length itself rather than the address of the length.

2. LEN (or LENVAR) is valid with DATA only.

 ,CONVERT=YES
 ,CONVERT=NO

Default: CONVERT=NO

Note: CONVERT is valid with DATA only.

 SYMRBLD — Building a Symptom Record 965

 SYMRBLD Macro

 ,TYPE=TEST
 ,TYPE=NOTEST

Default: TYPE=TEST

 Parameters
The parameters for SYMRBLD PRIMARY are explained as follows:

PRIMARY
Indicates that the symptom data provided is concatenated to section 3, the primary
symptom string. The primary symptom string is an EBCDIC character string of problem
symptoms. The primary symptom string is used to eliminate reporting duplicate problems
repeatedly.

You would use the primary symptom string because, in most cases, the PIDS/aaaaaaaa
symptom is in section 3 of the symptom record. When the symptom record is initialized
by invoking SYMRBLD INITIAL, the symptom is created from the data supplied with the
PROGRAM parameter and is placed as the first symptom in section 3.

The suggested minimum list of symptoms includes:

� Return or reason codes - PRCS/aaaaaaaa
� CSECT name - RIDS/aaaaaaaa
� Load module name - RIDS/aaaaaaaa#L

Note: The following restrictions apply to symptoms in the primary symptom string:

� The symptom data cannot contain imbedded blanks. The ‘#’ is used to substitute
for desired blanks.

� The total length of each symptom may not exceed 15 characters. The symptom
length includes the SDB key, a slash, and the EBCDIC data. Remember that
hexadecimal data doubles in length when converted to EBCDIC.

,SR=storage addr
Specifies the address of the storage area, on a doubleword boundary, used for the
symptom record. This is the same storage area you specified on SYMRBLD INITIAL. If
you do not specify SR with SYMRBLD PRIMARY, the default is to use the storage area
address you placed in register 1.

,SDBSTRING=SDB string
Specifies the address of an optional character input string to be added to the primary
symptom string. The data is a list of symptoms separated by a blank. A symptom is an
SDB key followed by a slash and EBCDIC data.

You must code either SDBSTRING or SDBKEY or both. When you code both on the
same macro, the data provided with the SDBSTRING parameter is put into the symptom
string first.

,SDBKEY=SDB key
Specifies an optional name from the set of SDB keys. You can provide the SDB key
name, or specify the SDB key literal in single quotes (for example, specify either
SDBKEY=SDBAB_S, or SDBKEY=‘AB/S’).

You must code either SDBSTRING or SDBKEY or both. When you code both on the
same macro, the data provided with the SDBSTRING parameter is put into the symptom
string first.

The following table contains the valid SDB key names and literals:

Figure 63 (Page 1 of 3). Valid SDB Key Names and Literals

SDB Key Name SDB Key
Literal

Description

SDBAB_S AB/S System abend or program check.

SDBAB_U AB/U User abend code.

966 OS/390 V2R8.0 MVS Assembler Services Reference

 SYMRBLD Macro

Figure 63 (Page 2 of 3). Valid SDB Key Names and Literals

SDB Key Name SDB Key
Literal

Description

SDBADRS ADRS/ Any software routine, CSECT, or program address;
displacement within a routine; or offset within a field or data
area.

SDBDEVS DEVS/ IBM device types.

SDBFLDS FLDS/ A field, data area, or label involved with the problem. If a
field name is longer than 10 characters, use two keys and
split the name of the field.

SDBLVLS LVLS/ The system release or program product/component level
where the problem occurs.

SDBMS MS/ Program- or device-issued message. If there is no identifier,
enter the message as it appears and MS/NOID to denote
this.

SDBOPCS OPCS/ Software program operation code, I/O read/write command
codes, teleprocessing operation codes and request codes.

SDBOVS OVS/ Overlaid storage.

SDBPCSS PCSS/ Any software statement, JCL, operator or user commands,
parameters, program language statements, data set names,
library names, teleprocessing logical and physical unit
names, program function keys or other operator keys,
environments, process names, procedures or other
symptoms which do not fit other key descriptions in this
table.

SDBPIDS PIDS/ Product identifier.

SDBPRCS PRCS/ Any program-generated return, reason, step, condition, or
device status code.

SDBPTFS PTFS/ Program temporary fix (PTF) or Authorized Program
Analysis Report (APAR) associated with the problem.

SDBPUBS PUBS/ Publication identifier.

SDBREGS REGS/ A register number associated with the problem, followed by
the offset from the PSW.

SDBREGS_CR REGS/CR A control register associated with the problem. This
symptom is followed with a symptom containing the value in
the register.

SDBREGS_FP REGS/FP A floating point register associated with the problem. This
symptom is followed with a symptom containing the value in
the register.

SDBREGS_GR REGS/GR A general purpose register associated with the problem.
This symptom is followed with a symptom containing the
value in the register.

SDBREGS_AR REGS/AR An access register associated with the problem. This
symptom is followed with a symptom containing the value in
the register.

SDBRIDS RIDS/ Module CSECT name.

SDBRIDSL RIDS/ Load module name.

SDBRIDSR RIDS/ Recovery routine CSECT name.

SDBSIG SIG/ System- or device-issued operator warning signal.

SDBVALU VALU/ Contents of a register. This SDB keyword must be
preceded with one of the following: REGS/CRhh,
REGS/FPhh, or REGS/GRhh.

SDBVALU_B VALU/B Binary value of a field in error. This SDB key must be
preceded by the name of the field. The most appropriate
SDB key is FLDS/.

 SYMRBLD — Building a Symptom Record 967

 SYMRBLD Macro

,SDBLEN=SDB length
Specifies an optional decimal value from 1 to 256 that is the length of the data provided.
If you use register notation, the register contains the length itself rather than the address
of the length. This parameter is mutually exclusive with the SDBLENVAR parameter,
and is valid with SDBSTRING only.

,SDBLENVAR= SDB variable
Specifies the address of an optional halfword that contains the length of the data
provided. The length of the data must be from 1 to 256 bytes. This parameter is
mutually exclusive with the SDBLEN parameter, and is valid with SDBSTRING only.

,DATA=data
Specifies the address of the area that contains the data associated with the key
specified by the SDBKEY parameter. DATA is required with SDBKEY only.

,LEN=data length
Specifies an optional decimal value from 1 to 13 that is the length of the data provided.
If you use register notation, the register contains the length itself rather than the address
of the length. This parameter is mutually exclusive with the LENVAR parameter, and is
valid with DATA only.

,LENVAR=data variable
Specifies the address of an optional halfword that contains the length of the data
provided. The length of the data must be from 1 to 13 bytes. This parameter is
mutually exclusive with the LEN parameter, and is valid with DATA only.

,CONVERT=YES
,CONVERT=NO

Indicates that 1 to 4 bytes of hexadecimal data specified by the DATA parameter should
be converted to EBCDIC. If the length of the hexadecimal data is greater than 4 bytes,
the results of the conversion are unpredictable.

If CONVERT is specified with the user abend code SDB key, SDBAB_U, the
hexadecimal data is converted to decimal EBCDIC.

The default is CONVERT=NO. CONVERT is valid with DATA only.

,TYPE=TEST
,TYPE=NOTEST

Specifies whether code is generated to test if the data fits in the symptom record before
storing the data. TYPE=NOTEST indicates that the data and key are unconditionally
moved into the symptom record.

The default is TYPE=TEST.

Figure 63 (Page 3 of 3). Valid SDB Key Names and Literals

SDB Key Name SDB Key
Literal

Description

SDBVALU_C VALU/C Character value of a field in error. This SDB key must be
preceded by the name of the field. The most appropriate
SDB key is FLDS/.

SDBVALU_H VALU/H Hexadecimal value of a field in error. This SDB key must
be preceded by the name of the field. The most appropriate
SDB key is FLDS/.

SDBWS_D WS/D System- or device-issued disabled WAIT code.

SDBWS_E WS/E System- or device-issued enabled WAIT code.

968 OS/390 V2R8.0 MVS Assembler Services Reference

 SYMRBLD Macro

 Syntax
The standard form of the SYMRBLD macro with the SECONDARY option is written as
follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SYMRBLD.

SYMRBLD

␣ One or more blanks must follow SYMRBLD.

SECONDARY

 ,SR=storage addr storage addr: RX-type address or address in register (2)-(12).

,SDBSTRING=SDB string
,SDBKEY=SDB key

SDB string: RX-type address or address in register (2)-(12).
SDB key: SDB key name, or SDB key literal in single quotes. See
the parameter description for a list of valid SDB key names and
literals.

Note: You must code either SDBSTRING or SDBKEY or both.

 ,SDBLEN=SDB length
 ,SDBLENVAR=SDB variable

SDB length: Decimal digit 1-256, or register (2)-(12).
SDB variable: RX-type address or address in register (2)-(12).

Notes:

1. If you use register notation for SDB length, the register
contains the length itself rather than the address of the length.

2. SDBLEN (or SDBLENVAR) is valid with SDBSTRING only.

 ,DATA=data data: RX-type address or address in register (2)-(12).

Note: DATA is required with SDBKEY only.

 ,LEN=data length
 ,LENVAR=data variable

data length: Decimal digit 1-13, or register (2)-(12).
data variable: RX-type address or address in register (2)-(12).

Notes:

1. If you use register notation for data length, the register
contains the length itself rather than the address of the length.

2. LEN (or LENVAR) is valid with DATA only.

 ,CONVERT=YES
 ,CONVERT=NO

Default: CONVERT=NO

Note: CONVERT is valid with DATA only.

 ,TYPE=TEST
 ,TYPE=NOTEST

Default: TYPE=TEST

 Parameters
The parameters for SYMRBLD SECONDARY are explained as follows:

SECONDARY
Indicates that the symptom data provided is concatenated to section 4, the secondary
symptom string. The secondary symptom string is an EBCDIC character string of
problem symptoms, SDB key/data pairs. The purpose of the secondary symptom string
is to save diagnostic data at the time of the error. This data may not be duplicated for
each instance of the problem.

 SYMRBLD — Building a Symptom Record 969

 SYMRBLD Macro

The suggested minimum list of symptoms includes:

� Module assembly level - LVLS/aaa
� Field name related to the error and contents - FLDS/av10 VALU/Cav8

Binary and hex data can be provided with the VALU/B and VALU/H keys.

Note: The following restrictions apply to symptoms in the secondary symptom string:

� The symptom data cannot contain imbedded blanks. The ‘#’ is used to substitute
for desired blanks.

� The total length of each symptom (key/data) may not exceed 15 characters. The
symptom length includes the SDB key, a slash, and the EBCDIC data. Remember
that hexadecimal data doubles in length when converted to EBCDIC.

,SR=storage addr
Specifies the address of the storage area, on a doubleword boundary, used for the
symptom record. This is the same storage area you specified on SYMRBLD INITIAL. If
you do not specify SR with SYMRBLD SECONDARY, the default is to use the storage
area address you placed in register 1.

,SDBSTRING=SDB string
Specifies the address of an optional character input string to be added to the secondary
symptom string. The data is a list of symptoms separated by a blank. A symptom is an
SDB key followed by a slash and EBCDIC data.

You must code either SDBSTRING or SDBKEY or both. When you code both on the
same macro, the data provided with the SDBSTRING parameter is put into the symptom
string first.

,SDBKEY=SDB key
Specifies an optional name from the set of SDB keys. You can provide the SDB key
name, or specify the SDB key literal in single quotes (for example, specify either
SDBKEY=SDBAB_S, or SDBKEY=‘AB/S’). See Figure 63 on page 966 for valid SDB
key names and literals.

You must code either SDBSTRING or SDBKEY or both. When you code both on the
same macro, the data provided with the SDBSTRING parameter is put into the symptom
string first.

,SDBLEN=SDB length
Specifies an optional decimal value from 1 to 256 that is the length of the data provided.
If you use register notation, the register contains the length itself rather than the address
of the length. This parameter is mutually exclusive with the SDBLENVAR parameter,
and is valid with SDBSTRING only.

,SDBLENVAR= SDB variable
Specifies the address of an optional halfword that contains the length of the data
provided. The length of the data must be from 1 to 256 bytes. This parameter is
mutually exclusive with the SDBLEN parameter, and is valid with SDBSTRING only.

,DATA=data
Specifies the address of the area that contains the data associated with the key
specified by the SDBKEY parameter. DATA is required with SDBKEY only.

,LEN=data length
Specifies an optional decimal value from 1 to 13 that is the length of the data provided.
If you use register notation, the register contains the length itself rather than the address
of the length. This parameter is mutually exclusive with the LENVAR parameter, and is
valid with DATA only.

970 OS/390 V2R8.0 MVS Assembler Services Reference

 SYMRBLD Macro

,LENVAR=data variable
Specifies the address of an optional halfword that contains the length of the data
provided. The length of the data must be from 1 to 13 bytes. This parameter is
mutually exclusive with the LEN parameter, and is valid with DATA only.

,CONVERT=YES
,CONVERT=NO

Indicates that 1 to 4 bytes of hexadecimal data specified by the DATA parameter should
be converted to EBCDIC. If the length of the hexadecimal data is greater than 4 bytes,
the results of the conversion are unpredictable.

If CONVERT is specified with the user abend code SDB key, SDBAB_U, the
hexadecimal data is converted to decimal EBCDIC.

The default is CONVERT=NO. CONVERT is valid with DATA only.

,TYPE=TEST
,TYPE=NOTEST

Specifies whether code is generated to test if the data fits in the symptom record before
storing the data. TYPE=NOTEST indicates that the data and key are unconditionally
moved into the symptom record.

The default is TYPE=TEST.

 Syntax
The standard form of the SYMRBLD macro with the VARIABLE option is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SYMRBLD.

SYMRBLD

␣ One or more blanks must follow SYMRBLD.

VARIABLE

 ,SR=storage addr storage addr: RX-type address or address in register (2)-(12).

,S5KEY=5key 5key: Section 5 key name, or section 5 key literal in single quotes.

See the parameter description for valid section 5 key names and
literals.

,DATA=data data: RX-type address or address in register (2)-(12).

 ,LEN=data length
 ,LENVAR=data variable

data length: Decimal digit 1-256, or register (2)-(12).
data variable: RX-type address or address in register (2)-(12).

Note: If you use register notation for data length, the register
contains the length itself rather than the address of the length.

 ,TYPE=NOTEST Default: TYPE=TEST
 ,TYPE=TEST

 SYMRBLD — Building a Symptom Record 971

 SYMRBLD Macro

 Parameters
The parameters for SYMRBLD VARIABLE are explained as follows:

VARIABLE
Indicates that the symptom data provided is concatenated to section 5, the variable data
section. The variable data section is in key/length/data format. The purpose of the
variable data section is to provide additional serviceability data for debugging.
Examples of serviceability data are a parameter list, a text description of the problem, or
a portion of a data area.

The VARIABLE parameter must be specified once for each symptom provided in
key/length/data format.

,SR=storage addr
Specifies the address of the storage area, on a doubleword boundary, used for the
symptom record. This is the same storage area you specified on SYMRBLD INITIAL. If
you do not specify SR with SYMRBLD VARIABLE, the default is to use the storage area
address you placed in register 1.

,S5KEY=5key
Specifies the key that describes the data in section 5 of the symptom record. You can
provide the section 5 key name, or specify the section 5 key literal in single quotes (for
example, specify either S5KEY=S5EBCDIC, or S5KEY=‘F000’).

The following table contains the two valid section 5 key names and literals:

,DATA=data
Specifies the address of the area that contains the data associated with the key
specified by the S5KEY parameter.

,LEN=data length
Specifies an optional decimal value from 1 to 256 that is the length of the data provided.
If you use register notation, the register contains the length itself rather than the address
of the length. This parameter is mutually exclusive with the LENVAR parameter.

,LENVAR=data variable
Specifies the address of an optional halfword that contains the length of the data
provided. The length of the data must be from 1 to 256 bytes. This parameter is
mutually exclusive with the LEN parameter.

,TYPE=TEST
,TYPE=NOTEST

Specifies whether code is generated to test if the data fits in the symptom record before
storing the data. TYPE=NOTEST indicates that the data and key are unconditionally
moved into the symptom record.

The default is TYPE=TEST.

Figure 64. Valid Section 5 Key Names and Literals

Section 5 Key
Name

Section 5 Key
Literal

Description

S5EBCDIC F000 EBCDIC printable data.

S5HEX FF00 Hexadecimal data.

972 OS/390 V2R8.0 MVS Assembler Services Reference

 SYMRBLD Macro

 Syntax
The standard form of the SYMRBLD macro with the COMPLETE option is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SYMRBLD.

SYMRBLD

␣ One or more blanks must follow SYMRBLD.

COMPLETE

 ,SR=storage addr storage addr: RX-type address or address in register (2)-(12).

 ,INVOKE=YES
 ,INVOKE=NO Default: INVOKE=YES

 ,RETCODE=return code return code: RX-type address or address in register (2)-(12).

Note: RETCODE is valid with INVOKE=YES only.

 ,RSNCODE=reason code reason code: RX-type address or address in register (2)-(12).

Note: RSNCODE is valid with INVOKE=YES only.

 Parameters
The parameters for SYMRBLD COMPLETE are explained as follows:

COMPLETE
Indicates that the symptom record is complete, and is ready to be written to the logrec
data set.

SYMRBLD COMPLETE is required before the symptom record can be successfully
written to the logrec data set.

,SR=storage addr
Specifies the address of the storage area, on a doubleword boundary, used for the
symptom record. This is the same storage area you specified on SYMRBLD INITIAL. If
you do not specify SR with SYMRBLD COMPLETE, the default is to use the storage
area address you placed in register 1.

,INVOKE=NO
,INVOKE=YES

Indicates whether to invoke the SYMREC macro that writes the symptom records out to
the logrec data set. For unauthorized programs, your installation controls which
programs can write symptom records and whether to write the symptom record to the
logrec data set, the job log, both or neither through an installation-written exit. This exit
is called ASREXIT. For more information about ASREXIT, see OS/390 MVS Installation
Exits. Records written for authorized programs always go to the logrec data set.

The default is INVOKE=YES.

,RETCODE=return code
Specifies the location where the system is to store the return code from the SYMREC
macro. (The SYMRBLD macro does not itself generate any return codes.) RETCODE
is valid with INVOKE=YES only. The return code is also in general purpose register
(GPR) 15 if you code INVOKE=YES.

 SYMRBLD — Building a Symptom Record 973

 SYMRBLD Macro

,RSNCODE=reason code
Specifies the location where the system is to store the reason code from the SYMREC
macro. (The SYMRBLD macro does not itself generate any reason codes.) RSNCODE
is valid with INVOKE=YES only. The reason code is also in GPR 0 if you code
INVOKE=YES.

 ABEND Codes
None.

Return and Reason Codes (for SYMRBLD COMPLETE,INVOKE=YES)
The SYMRBLD macro itself does not generate any return codes. However, if you specify
INVOKE=YES on SYMRBLD COMPLETE (or take the default), you can receive return codes
and reason codes from the SYMREC macro. The return code from SYMREC is in GPR 15
(and return code if you coded RETCODE); the reason code from SYMREC is in GPR 0 (and
reason code if you coded RSNCODE). See “Return and Reason Codes” on page 979 for a
list of return codes from the SYMREC macro.

 Syntax
The standard form of the SYMRBLD macro with the RESET option is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SYMRBLD.

SYMRBLD

␣ One or more blanks must follow SYMRBLD.

RESET

,SR=storage addr storage addr: RX-type address or address in register (2)-(12).

 ,PRIMLEN=primary length primary length: Decimal digit, RX-type address, or address in

register (2)-(12).

 ,SECLEN=secondary length secondary length: Decimal digit, RX-type address, or address in

register (2)-(12).

 ,VARLEN=variable length variable length: Decimal digit, RX-type address, or address in

register (2)-(12).

 Parameters
The parameters for SYMRBLD RESET are explained as follows:

RESET
Rebuilds the symptom record using the same storage area and application information
that was specified using the INITIAL parameter. This is useful when the primary,
secondary, and variable sections of the symptom record are to be changed but the
application information in section 2.1 remains the same.

,SR=storage addr
Specifies the address of the storage area, on a doubleword boundary, used for the
symptom record. This is the same storage area you specified on SYMRBLD INITIAL.
The storage area must reside in the primary address space.

974 OS/390 V2R8.0 MVS Assembler Services Reference

 SYMRBLD Macro

The maximum size of the symptom record is 1900 bytes. Sections 1, 2, and 2.1 use
212 bytes of the total 1900 bytes. Sections 3, 4, and 5 use the remaining 1688 bytes.
In addition to providing storage for the symptom record, 100 bytes must be provided for
a work area; therefore, the maximum amount of storage needed is 2000 bytes.

Use the PRIMLEN, SECLEN, and VARLEN parameters to specify the length of sections
3, 4, and 5 respectively.

,PRIMLEN=primary length
Specifies the address of an optional halfword input variable that contains the maximum
length in bytes of the primary symptom string. You can also directly specify a decimal
digit for the length (for example, PRIMLEN=900). If you use register notation, the
register contains the address of the length rather than the length itself.

The following formula calculates the length of the primary symptom string:

Lengths of all SDBKEYs + length of all data provided with
the DATA keyword + the number of times SDBKEY is specified
+ the length of all data specified with the SDBSTRING keyword
+ the number of times the SDBSTRING keyword is provided.

Note that this field cannot be zero and the maximum size of the entire symptom record
is 1900 bytes.

If you do not specify PRIMLEN, the length of the primary symptom string will not change
from the length you specified on SYMRBLD INITIAL, or on a previous SYMRBLD
RESET.

,SECLEN=secondary length
Specifies the address of an optional halfword input variable that contains the maximum
length in bytes of the secondary symptom string. You can also directly specify a
decimal digit for the length (for example, SECLEN=900). If you use register notation,
the register contains the address of the length rather than the length itself.

The following formula calculates the length of the secondary symptom string:

Lengths of all SDBKEYs + length of all data provided with
the DATA keyword + the number of times SDBKEY is specified
+ the length of all data specified with the SDBSTRING keyword
+ the number of times the SDBSTRING keyword is provided.

Note that the maximum size of the entire symptom record is 1900 bytes.

If you do not specify SECLEN, the length of the secondary symptom string will not
change from the length you specified on SYMRBLD INITIAL, or on a previous
SYMRBLD RESET.

,VARLEN=variable length
Specifies the address of an optional halfword input variable that contains the maximum
length in bytes of the variable data section. You can also directly specify a decimal digit
for the length (for example, VARLEN=900). If you use register notation, the register
contains the address of the length rather than the length itself.

The following formula calculates the length of the variable data section:

The length provided must be the total length of the variable data items
+ the number of items (x) 4.

(The 4 is for the 2 byte key + 2 bytes for the length.) Note that the maximum size of the
entire symptom record is 1900 bytes.

If you do not specify VARLEN, the length of the variable data section will not change
from the length you specified on SYMRBLD INITIAL, or on a previous SYMRBLD
RESET.

 SYMRBLD — Building a Symptom Record 975

 SYMRBLD Macro

 Example
The following is an example of invoking SYMRBLD to build a symptom record:

� SYMRBLD INITIAL initializes sections 1 and 2 of the symptom record and provides
component data for section 2.1.

� SYMRBLD PRIMARY stores the following primary symptom string data:

– Program return code: PRCS/00028878
 – CSECT name: RIDS/ABE5698J

– Load module name: RIDS/ABD5698J#L

Note: The symptom PIDS/ABE5698J is automatically placed as the first symptom
in the primary symptom string.

� SYMRBLD SECONDARY stores the following secondary symptom string data:

– Module assembly level: LVLS/C20
 – Field name: FLDS/COUNTER
 – Value: VALU/HFFFFFFFF

� SYMRBLD VARIABLE stores additional data that can be used for debugging in section
5 of the symptom record.

� SYMRBLD COMPLETE indicates that the record is complete. INVOKE=YES indicates
that the record is written to the logrec data set. by the SYMREC macro.

 SYMRBLD INITIAL,SR=SREC,
 PRIMLEN=1ðð,SECLEN=5ð,VARLEN=5ð,
 ARCHLEV=1ð,COMPDSC=MYCOMP,
 PROGRAM=PROGNAME,PROGLEV=REL6,
 PROBLEM=MYPROB,
 SERVLEV=MYSERV

 SYMRBLD PRIMARY,SDBSTRING=S1_DATA

 SYMRBLD SECONDARY,SDBSTRING=S2_DATA,SDBKEY=SDBVALU_H,
 DATA=COUNTER,CONVERT=YES

 SYMRBLD VARIABLE,S5KEY=S5HEX,DATA=MYVARDAT

 SYMRBLD COMPLETE,INVOKE=YES

SREC DS CL6ðð
MYCOMP DC CL13'COMPONENT XXX'
MYPROB DC CL14'DATABASE ERROR'
MYSERV DC CL9'VERSION 1'
PROGNAME DC CL8'ABE5698J'
REL6 DC CL3'REL6'
S1_DATA DC CL43'PRCS/ððð28878 RIDS/ABE5698J RIDS/ABD5698J#L'
S2_DATA DC CL22'LVLS/C2ð FLDS/COUNTER'
MYVARDAT DC XL2'ð1E4'
COUNTER DC X'FFFFFFFF'

976 OS/390 V2R8.0 MVS Assembler Services Reference

 SYMREC Macro

SYMREC — Process a Symptom Record

 Description
The SYMREC macro updates a symptom record with system environment information and
then logs the symptom record in the logrec data set. The symptom record is a data area in
the user's application that has been mapped by the ADSR mapping macro.

As an application detects errors during execution, it stores diagnostic information into the
symptom record and issues the SYMREC macro to log the record. The diagnostic
information consists of a description of a programming failure and a description of the
environment in which the failure occurred.

When the SYMREC macro is invoked, it checks that all the required input fields of the ADSR
symptom record are set by the caller. If the required input fields are not set, SYMREC
issues appropriate return and reason codes.

The SYMREC macro can be used for authorized and unauthorized programs. Your
installation controls which programs can write symptom records and whether to write the
symptom record to the logrec data set, the job log, both or neither through an
installation-written exit. This exit is called ASREXIT. For further information about
ASREXIT, see OS/390 MVS Installation Exits. SYMRBLD is a related macro. For more
information see OS/390 MVS Programming: Assembler Services Guide.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state, with any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts. If disabled, the

input data to SYMREC must be in fixed storage or in disabled
reference (DREF) storage.

Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in the primary address space

 Programming Requirements
The caller must include the ADSR mapping macro to map the symptom record specified on
the SR parameter. The caller must fill in this symptom record. For more information on the
ADSR mapping macro, see OS/390 MVS Data Areas, Vol 1 (ABEP-DALT).

 Restrictions
Although callers in 24-bit or 31-bit addressing mode can issue the SYMREC macro, the
addresses passed to the SYMREC service must be 31-bit addresses.

Input Register Information
Before issuing the SYMREC macro, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register Contents
13 The address of a standard 18-word save area

 Copyright IBM Corp. 1988, 1999 977

 SYMREC Macro

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Reason code
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The standard form of the SYMREC macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SYMREC.

SYMREC

␣ One or more blanks must follow SYMREC.

SR=addr addr: A-type address or register 2-12.

 Parameters
The parameters are explained as follows:

SR=addr
Specifies the address of the symptom record. The SR parameter is required.

 ABEND Codes
None.

978 OS/390 V2R8.0 MVS Assembler Services Reference

 SYMREC Macro

Return and Reason Codes
When SYMREC returns control, registers 15 and 0 contain the following hexadecimal return
codes and reason codes, respectively:

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

0000 0000 Meaning : SYMREC completed successfully and the symptom record
was recorded.

Action : None.

0004 0164 Meaning : Program error. An attempt to write section 1 information
from the completed symptom record failed. The area was not
accessible to a write request. The entire input record was recorded.

Action : Make sure that the storage containing the input symptom
record is not released before the SYMREC request completes.

0008 0158 Meaning : Program error. The total length of the input symptom record
exceeds the maximum. A partial symptom record was recorded.

Action : Correct the length of the symptom record. The maximum
length of the symptom record is 1900 bytes. Sections 1, 2, and 2.1 of
the symptom record are fixed in length. The length of sections 1, 2,
and 2.1 combined is 212 bytes. Therefore, the combined length of
sections 3, 4, and 5 must be less than or equal to 1688 bytes.

0008 015C Meaning : Program error. Optional segments of the input symptom
record were not accessible. The record includes the accessible
entries of the input symptom record. A partial symptom record was
recorded.

Action : Verify that all optional sections (sections 4 and 5) of the
symptom record are accessible.

000C 0104 Meaning : Program error. The first 2 bytes of the input symptom
record do not contain the SR operand. No symptom record was
recorded.

Action : Verify that the correct address for the input symptom record
was provided to the SYMREC service and that the first 2 bytes of the
symptom record contain 'SR'.

000C 0108 Meaning : Program error. The input symptom record does not contain
the required entries for section 2. No symptom record was recorded.

Action : Make sure the following fields have been supplied in section 2
of the symptom record: the length of section 2 and the length/offset of
section 2.1 and 3.

000C 010C Meaning : Program error. The input symptom record does not contain
the required entries for section 2.1. No symptom record was
recorded.

Action : Make sure the following fields have been supplied in section
2.1 of the symptom record: section 2.1 identifier, architecture level of
the symptom record, and the component release level or PID release
level. Also verify that the length of section 2.1 is correct in section2.

000C 0114 Meaning : Program error. The input symptom record does not contain
the required entries for section 3. No symptom record was recorded.

Action : Make sure that the primary symptom string contains at least
one symptom.

000C 0128 Meaning : Program error. This reason code is set when the input
symptom record cannot be referenced. No symptom record was
recorded.

Action : Verify that the correct address for the symptom record was
provided to the SYMREC macro and that this storage is accessible.

000C 012C Meaning : Program error. All required sections of the symptom record
could not be referenced. No symptom record was recorded.

Action : Verify that all required sections (sections 1, 2, 2.1 and 3) of
the symptom record are accessible.

000C 0134 Meaning : Program error. The input symptom record address is in
non-accessible storage. No symptom record was recorded.

Action : Verify the input parameter list provided to the SYMREC
request.

 SYMREC — Process a Symptom Record 979

 SYMREC Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

000C 0144 Meaning : Program error. No symptom record was recorded. One of
the following occurred:

� The caller is in cross memory mode and the home address space
is not accessible because it is swapped out or going through
address space termination.

Action : Make sure that the home address space is
non-swappable during the SYMREC request. An address space
can be made non-swappable using the SYSEVENT macro.

� The caller is disabled, but it did not obtain MVS-recognized (valid)
disablement. Valid disablement is obtained through a SETLOCK
OBTAIN,TYPE=CPU request, available to supervisor state and
key 0 callers only.

Action : Use the SETLOCK OBTAIN, TYPE=CPU to disable
normally.

000C 0F1C Meaning : Program error. The installation exit ASREXIT prevented the
unauthorized caller from writing the symptom record to the logrec data
set. No symptom record was recorded.

Action : None. The installation has decided that unauthorized
programs cannot write to the logrec data set.

0010 0F04 Meaning : Environmental error. There was insufficient space in the
LOGREC buffer to accommodate the symptom record. No symptom
record was recorded.

Action : The request might be successful if retried. If the problem
persists, record the return and reason code and supply it to the
appropriate system support personnel.

0010 0F08 Meaning : System error. The SYMREC service could not acquire
storage for a work area or a copy of the symptom record. No
symptom record was recorded.

Action : The request might be successful if retried. If the problem
persists, record the return and reason code and supply it to the
appropriate system support personnel.

0010 0F0C Meaning : System error. Failure occurred while the symptom record
was being moved to the LOGREC buffer. No symptom record was
recorded.

Action : Record the return and reason code and supply it to the
appropriate IBM support personnel.

0010 0F10 Meaning : System error. The SYMREC service has a logic error. No
symptom record was recorded.

Action : Record the return and reason code and supply it to the
appropriate IBM support personnel.

0010 0F14 Meaning : System error. The SYMREC service has shut itself down.
It has exceeded the maximum allowable logic errors for the service
routine. No symptom record was recorded.

Action : Record the return and reason code and supply it to the
appropriate IBM support personnel.

0010 0F18 Meaning : System error. The SYMREC service has shut itself down.
It has exceeded the maximum allowable incomplete SYMREC
requests for processing. No symptom record was recorded.

Action : Record the return and reason code and supply it to the
appropriate IBM support personnel.

0014 — Meaning : System error. SYMREC is not operable.

Action : Record the return and reason code and supply it to the
appropriate IBM support personnel.

980 OS/390 V2R8.0 MVS Assembler Services Reference

 SYMREC Macro

 SYMREC—List Form
Use the list form of the SYMREC macro together with the execute form of the macro for
applications that require reentrant code. The list form of the macro defines an area of
storage, which the execute form of the macro uses to store the parameters.

 Syntax
The list form of the SYMREC macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SYMREC.

SYMREC

␣ One or more blanks must follow SYMREC.

SR=addr addr: A-type address (31 bit).

,MF=(L)

 Parameters
The parameters are explained under the standard form of the SYMREC macro with the
following exception:

,MF=L
Specifies the list form of the SYMREC macro.

 SYMREC — Process a Symptom Record 981

 SYMREC Macro

 SYMREC—Execute Form
Use the execute form of the SYMREC macro together with the list form of the macro for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

 Syntax
The execute form of the SYMREC macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SYMREC.

SYMREC

␣ One or more blanks must follow SYMREC.

SR=addr addr: A-type address (31 bit) or register 2-12.

addr: A-type address (31 bit) or register 2-12.
addr: A-type address (31 bit) or register 2-12.

,MF=(E,list addr) list addr: RX-type address or register 2-12.

 Parameters
The parameters are explained under the standard form of the SYMREC macro with the
following exception:

,MF=(E,list addr)
Specifies the execute form of the SYMREC macro. This form uses a remote parameter
list.

982 OS/390 V2R8.0 MVS Assembler Services Reference

 SYNCH and SYNCHX Macros

SYNCH and SYNCHX — Take a Synchronous Exit to a Processing Program

 Description
The SYNCH macro allows a program to take a synchronous exit to a processing program.
After the processing program has finished, the program that issued the SYNCH macro
regains control. The SYNCH macro is intended for use by primary mode programs only. If
your program is in access register (AR) mode, use SYNCHX, which provides the same
function as SYNCH.

Descriptions of the SYNCH and SYNCHX macro in this book are:

� The standard form of the SYNCH macro, which includes general information about the
SYNCH and SYNCHX macros with specific information about the SYNCH macro. The
syntax of the SYNCH macro and its parameters are explained.

� The standard form of the SYNCHX macro, which presents information specific to the
SYNCHX macro. The topic explains the syntax of the SYNCHX macro and the
parameters that are valid only on SYNCHX.

� The list form of the SYNCH and SYNCHX macros.

� The execute form of the SYNCH and SYNCHX macros.

 Note

The SYNCH and SYNCHX macros have the same environment specifications, register
information, programming requirements, restrictions and limitations, performance
implications, and return and reason codes described below, except where noted in the
explanation for SYNCHX.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt Status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Programming Requirements
None.

 Restrictions
None.

Input Register Information
Before issuing the SYNCH(X) macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

 Copyright IBM Corp. 1988, 1999 983

 SYNCH and SYNCHX Macros

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Values the processing program placed there before it returned to the caller
2-13 If RESTORE=YES, unchanged; if RESTORE=NO, values the processing

program placed there before it returned to the caller
14 Used as a work register by the system
15 Value the processing program placed there before it returned to the caller

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The standard form of the SYNCH macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SYNCH.

SYNCH

␣ One or more blanks must follow SYNCH.

entry point addr entry point addr: RX-type address, or register (2) - (12) or (15).

 ,RESTORE=NO Default: RESTORE=NO
 ,RESTORE=YES

 ,AMODE=24 Default: AMODE=CALLER.
 ,AMODE=31 Note: AMODE=DEFINED can be specified only
 ,AMODE=DEFINED if the entry point address is provided in
 ,AMODE=CALLER a register.

 Parameters
The parameters are explained as follows:

entry point addr
Specifies the address of the entry point of the processing program to receive control.

,RESTORE=NO
,RESTORE=YES

Specifies whether registers 2-13 are to be restored when control returns to the caller.

,AMODE=24
,AMODE=31
,AMODE=DEFINED
,AMODE=CALLER

Specifies the addressing mode in which the requested program is to receive control.

If AMODE=24 is specified, the requested program will receive control in 24-bit
addressing mode.

984 OS/390 V2R8.0 MVS Assembler Services Reference

 SYNCH and SYNCHX Macros

If AMODE=31 is specified, the requested program will receive control in 31-bit
addressing mode.

If AMODE=DEFINED is specified, the user must provide the entry point using a register
and not an RX-type address. The requested program will receive control in the
addressing mode indicated by the high order bit of the entry point address. If the bit is
set to 0, the requested program will receive control in 24-bit addressing mode; if the bit
is set to 1, the requested program will receive control in 31-bit addressing mode.

If AMODE=CALLER is specified, the requested program will receive control in the
addressing mode of the caller.

Return and Reason Codes
None.

 Example 1
Take a synchronous exit to PROGRAMA. Do not restore registers 2-13 when control
returns.

LOAD EP=PROGRAMA,DCB=LIB1 Load desired program
LR R8,Rð Obtain the entry point
SYNCH (R8),RESTORE=NO

 Example 2
Take a synchronous exit to a program labeled SUBRTN and restore registers 2-13 when
control returns.

SYNCH SUBRTN,RESTORE=YES

 Example 3
Take a synchronous exit to the program located at the address given in register 8 and
restore registers 2-13 when control returns. Indicate that this program is to execute in 24-bit
addressing mode.

SYNCH (8),RESTORE=YES,AMODE=24

 Example 4
Take a synchronous exit to the program located at the address given in register 8 and
restore registers 2-13 when control returns. Indicate that this program is to receive control in
the addressing mode defined by the high-order bit of its entry point address.

SYNCH (8),RESTORE=YES,AMODE=DEFINED

 Example 5
Take a synchronous exit to the program located at the address given in register 8 and
restore registers 2-13 when control returns. Indicate that this program is to receive control in
the addressing mode as the caller.

SYNCH (8),RESTORE=YES,AMODE=CALLER

 SYNCH and SYNCHX — Take a Synchronous Exit to a Processing Program 985

 SYNCH and SYNCHX Macros

SYNCHX - Take a Synchronous Exit to a Processing Program
The SYNCHX macro provides the same function as the SYNCH macro. All parameters on
the SYNCH macro are valid for the SYNCHX macro.

SYNCHX is intended for use by programs running in AR mode.

 Note

The SYNCHX macro has the same environment specifications, register information,
programming requirements, restrictions and limitations, performance implications, and
return and reason codes as the SYNCH macro, except where noted below.

 Environment
The SYNCHX macro can be used by callers in AR or primary ASC mode.

 Programming Requirements
If your program is in AR mode, (1) issue the SYSSTATE ASCENV=AR macro before you
issue SYNCHX, and (2) initialize AR 1 to zero.

 Register Information
When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-13 Unchanged
14-15 Used as work registers by the system

 Syntax
The SYNCHX macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SYNCHX.

SYNCHX

␣ One or more blanks must follow SYNCHX.

entry point addr entry point addr: RX-type address,

or register (2) - (12) or (15).

 ,RESTORE=NO Default: RESTORE=NO
 ,RESTORE=YES

 ,AMODE=24 Default: AMODE=CALLER
 ,AMODE=31 Note: AMODE=DEFINED can only be specified if the
 ,AMODE=DEFINED entry point is provided in a register.
 ,AMODE=CALLER

986 OS/390 V2R8.0 MVS Assembler Services Reference

 SYNCH and SYNCHX Macros

 Parameters
The parameters are described under the syntax of the standard form of the SYNCH macro.

SYNCH and SYNCHX—List Form
The list form of the SYNCH or SYNCHX macro is used to construct a control parameter list.

 Syntax
The list form of the SYNCH or SYNCHX macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SYNCH or SYNCHX.

SYNCH
SYNCHX

␣ One or more blanks must follow SYNCH or SYNCHX.

 ,RESTORE=NO Default: RESTORE=NO
 ,RESTORE=YES

 ,AMODE=24 Default: AMODE=CALLER
 ,AMODE=31
 ,AMODE=DEFINED
 ,AMODE=CALLER

,MF=L

 Parameters
The parameters are explained under the standard form of the SYNCH macro, with the
following exception:

,MF=L
Specifies the list form of the SYNCH or SYNCHX macro.

 Example
Use the list form of the SYNCH macro to specify that registers 2-13 are to be restored when
control returns from executing the SYNCH macro and that the addressing mode of the
program is to be defined by the high-order bit of the entry point address. Assume that the
execute form of the macro specifies the program address.

SYNCH ,RESTORE=YES,AMODE=DEFINED,MF=L

 SYNCH and SYNCHX — Take a Synchronous Exit to a Processing Program 987

 SYNCH and SYNCHX Macros

SYNCH and SYNCHX—Execute Form
The execute form of the SYNCH or SYNCHX macro uses a remote control-program
parameter list that can be generated by the list form of SYNCH or SYNCHX.

 Syntax
The execute form of the SYNCH or SYNCHX macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SYNCH or SYNCHX.

SYNCH
SYNCHX

␣ One or more blanks must follow SYNCH or SYNCHX.

entry point addr entry point addr: RX-type address, or register (2) - (12) or (15).

 ,RESTORE=NO
 ,RESTORE=YES

 ,AMODE=24
 ,AMODE=31 Note: AMODE=DEFINED can be specified only if the
 ,AMODE=DEFINED entry point address is provided in a register.
 ,AMODE=CALLER

,MF=(E,ctrl addr) ctrl addr: RX-type address or register (1), (2) - (12).

 Parameters
The parameters are explained under the standard form of the SYNCH macro, with the
following exception:

,MF=(E,ctrl addr)
Specifies the execute form of the SYNCH or SYNCHX macro.

 Example
Use the execute form of the SYNCH macro to take a synchronous exit to the program
located at the address given in register 8 and restore registers 2-13 when control returns.
Indicate that the program is to receive control in the same addressing mode as the caller
and that the parameter list is located at SYNCHL2.

SYNCH (8),RESTORE=YES,AMODE=CALLER,MF=(E,SYNCHL2)

988 OS/390 V2R8.0 MVS Assembler Services Reference

 SYSSTATE Macro

SYSSTATE — Set Address Space Control (ASC) Mode

 Description
Use the SYSSTATE macro to indicate whether your program is in primary or access register
(AR) address space control (ASC) mode. SYSSTATE sets a global symbol (&SYSASCE) to
a value of P for primary ASC mode, or a value of AR for AR ASC mode. Certain macros
need to know whether their callers are in primary or AR ASC mode, and they check
&SYSASCE; depending on the value, these macros either generate the appropriate code for
the ASC mode indicated, or tell the caller that the requested mode is not supported.

See Figure 7 on page 21 for a list of macros that check SYSSTATE. Authorized callers of
SYSSTATE should consult the Macro Summary in the chapter entitled “Using the Macros” in
the following for the lists of authorized macros that check the SYSSTATE global symbol:

� OS/390 MVS Programming: Authorized Assembler Services Reference, Volume 1
(ALESERV-DYNALLO)

� OS/390 MVS Programming: Authorized Assembler Services Reference, Volume 2
(ENFREQ-IXGWRITE)

� OS/390 MVS Programming: Authorized Assembler Services Reference, Volume 3
(LLACOPY-SDUMPX)

� OS/390 MVS Programming: Authorized Assembler Services Reference, Volume 4
(SETFRR-WTOR)

See High Level Assembler Language Reference for information about global set symbols.

Because the processor must resolve addresses differently for AR mode programs, IBM
recommends that:

� All programs issue the SYSSTATE macro before issuing any other macros. Programs
in primary mode must issue SYSSTATE ASCENV=P. Programs in AR mode must issue
SYSSTATE ASCENV=AR.

� If your program switches from one ASC mode to another, your program should issue
SYSSTATE immediately after the mode switch to indicate the new ASC mode.

Another way to use the SYSSTATE macro is within a macro you write yourself. You can
issue SYSSTATE with the TEST parameter to ensure that the &SYSASCE global symbol
has been set:

1. Define the &SYSASCE global symbol within your macro.

2. Issue SYSSTATE TEST, which checks to see if the caller set &SYSASCE.

If the caller did not set &SYSASCE with SYSSTATE ASCENV, TEST sets the value to
the default; if the caller set &SYSASCE, TEST does not change the value of
&SYSASCE.

3. Define different logical paths within your macro to correspond to the ASC mode that is in
effect.

 Copyright IBM Corp. 1988, 1999 989

 SYSSTATE Macro

 Environment
The requirements for the caller are:

Minimum authorization: Problem state, with any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or AR
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None.

 Programming Requirements
None.

 Restrictions
None.

Input Register Information
Before issuing the SYSSTATE macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain the
following information:

Register Contents
0-15 Unchanged

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

 Performance Implications
None.

990 OS/390 V2R8.0 MVS Assembler Services Reference

 SYSSTATE Macro

 Syntax
The SYSSTATE macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede SYSSTATE.

SYSSTATE

␣ One or more blanks must follow SYSSTATE.

ASCENV=P
ASCENV=AR
TEST

Default : ASCENV=P

 Parameters
The parameters are explained as follows:

ASCENV=P
ASCENV=AR
TEST

Indicates your program's ASC mode by setting the global symbol &SYSASCE.

If your program is in primary mode, specify ASCENV=P. If your program is in AR mode,
specify ASCENV=AR.

The TEST parameter checks the &SYSASCE global variable, and does the following:

� If &SYSASCE does not contain a value (you did not issue SYSSTATE ASCENV
during this assembly), sets &SYSASCE to the default to generate code appropriate
for primary mode.

� If &SYSASCE does contain a value (you issued SYSSTATE ASCENV during this
assembly), does not change the value of &SYSASCE.

 ABEND Codes
None.

Return and Reason Codes
None.

 Example 1
Change to AR mode and set the global symbol.

SAC 512
SYSSTATE ASCENV=AR

 Example 2
Use SYSSTATE TEST within your own macro to check the global symbol and set it to the
default if it is not already set.

 SYSSTATE — Set Address Space Control (ASC) Mode 991

 SYSSTATE Macro

 .
 .
 .

GBLC &SYSASCE Define global symbol
SYSSTATE TEST If global symbol has no value,

set to the default.
AIF ('&SYSASCE' EQ 'P').PR Use code for primary ASC mode

.AR ANOP This logical path contains instructions appropriate
for AR ASC mode.

 .
 .
 .
 AGO .COMMON
.PR ANOP This logical path contains instructions appropriate

for primary ASC mode.
 .
 .
 .
 .COMMON ANOP

992 OS/390 V2R8.0 MVS Assembler Services Reference

 TCBTOKEN Macro

TCBTOKEN — Request or Translate the TTOKEN

 Description
The TTOKEN is the 16-byte identifier of a task. Unlike a TCB address, each TTOKEN is
unique within the IPL; the system does not reassign this same identifier to any other TCB.

The TCBTOKEN macro provides three mutually exclusive services depending on how you
specify the TYPE parameter:

� TYPE=CURRENT gives you the TTOKEN for the current task.
� TYPE=PARENT gives you the TTOKEN for the task that attached the current task.
� TYPE=JOBSTEP gives you the TTOKEN for the current task's job step task.

OS/390 MVS Programming: Extended Addressability Guide describes TTOKENs.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: Any
AMODE: 31-bit
ASC mode: Primary or AR
Interrupt Status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Can reside in the primary address space or in an address/data

space that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL)

 Programming Requirements
None.

 Restrictions
None.

Input Register Information
Before issuing the TCBTOKEN macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Used as a work register by the system
1 Address of the TCBTOKEN parameter list
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0 Used as a work register by the system
1 ALET used to address the TCBTOKEN parameter list
2-13 Unchanged

 Copyright IBM Corp. 1988, 1999 993

 TCBTOKEN Macro

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The standard form of the TCBTOKEN macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede TCBTOKEN.

TCBTOKEN

␣ One or more blanks must follow TCBTOKEN.

TYPE=CURRENT
TYPE=PARENT
TYPE=JOBSTEP

,TTOKEN=ttoken addr ttoken addr: RX-type address.

 ,RELATED=value value: Any valid macro parameter specification.

 Parameters
The parameters are explained as follows:

TYPE=CURRENT
TYPE=PARENT
TYPE=JOBSTEP

Specifies the type of TCB information requested, as follows:

CURRENT The system returns the TTOKEN of the currently active task. The
TTOKEN is returned at the address specified by the TTOKEN parameter.

PARENT The system returns the TTOKEN of the task that attached the currently
active task. The TTOKEN is returned at the address specified by the
TTOKEN parameter.

JOBSTEP The system returns the TTOKEN of the job step task for the primary
address space. The TTOKEN is returned at the address specified by the
TTOKEN parameter.

,TTOKEN=ttoken addr
Specifies the address at which the 16-byte TTOKEN associated with the specified TCB
is returned.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the information
specified are at the discretion of the user and may be any valid coding values.

994 OS/390 V2R8.0 MVS Assembler Services Reference

 TCBTOKEN Macro

 ABEND Codes
None.

 Return Codes
When TCBTOKEN returns control, register 15 contains one of the following return codes:

Figure 65. Return Codes for the TCBTOKEN Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning : TCBTOKEN services completed successfully.

Action : None.

10 Meaning : The TCB could not be referenced.

Action : Ensure that the input TCB address is valid.

14 Meaning : The TCB did not pass the acronym check.

Action : Ensure that the input TCB address is valid.

18 Meaning : The TCB has terminated.

Action : None required.

20 Meaning : An unexpected error occurred.

Action : Reissue TCBTOKEN.

24 Meaning : The contents of access register 1, used to address the parameter list, were not
valid.

Action : Change your program to run in primary mode or set access register 1 to zero.

28 Meaning : The parameter list is not valid.

Action : Ensure that the parameter list address is valid and addressable in the calling
program's key.

30 Meaning : The task is scheduled for termination, but has not yet terminated.

Action : None required.

34 Meaning : The caller is not running in task mode.

Action : Change your program to run in task mode.

 Example
Obtain the TTOKEN for the currently active task and store it in CURRENT_TTOKEN.

TCBTOKEN TYPE=CURRENT,TTOKEN=CURRENT_TTOKEN

 TCBTOKEN—List Form
The list form of the TCBTOKEN macro builds a nonexecutable parameter list that the
execute form of the TCBTOKEN macro can refer to.

 Syntax
The list form of the TCBTOKEN macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede TCBTOKEN.

TCBTOKEN

␣ One or more blanks must follow TCBTOKEN.

 ,RELATED=value value: Any valid macro parameter specification.

,MF=L

 TCBTOKEN — Request or Translate the TTOKEN 995

 TCBTOKEN Macro

 Parameters
The parameters are explained below:

,MF=L
Specifies the list form of the TCBTOKEN macro.

 TCBTOKEN—Execute Form
The execute form of the TCBTOKEN macro modifies and executes the parameter list that
the list form of TCBTOKEN generated.

 Syntax
The execute form of the TCBTOKEN macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede TCBTOKEN.

TCBTOKEN

␣ One or more blanks must follow TCBTOKEN.

TYPE=CURRENT
TYPE=PARENT
TYPE=JOBSTEP

,TTOKEN=ttoken addr ttoken addr: RX-type address.

 ,RELATED=value value: Any valid macro parameter specification.

,MF=(E,cntl addr) cntl addr: RX-type address or register (1) - (12).

 Parameters
The parameters are the same as those for the standard form of the TCBTOKEN macro with
the following addition:

,MF=(E,cntl addr)
Specifies the execute form of the TCBTOKEN macro. This form uses a remote
parameter list. The cntl addr specifies the address of the remote parameter list that the
list form of the macro generates.

996 OS/390 V2R8.0 MVS Assembler Services Reference

 TESTART Macro

TESTART — Tests the Validity of ALETs

 Description
TESTART tests for conditions that lead to an access register translation (ART) program
interruption. Use it to test:

� The validity of an access list entry token (ALET)

� The validity of the extended authorization index (EAX) authority of the program that
passed the ALET

� The value of an ALET

� If a specified ALET points to an entry for a SCOPE=COMMON data space.

By testing for these conditions, your program can avoid using an ALET that would cause an
ART program interruption.

For information about ALETs, EAXs, and EAX-authorization, see OS/390 MVS Programming:
Extended Addressability Guide.

 Environment
Requirements for the caller are:

Minimum authorization: Problem state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: Any
ASC mode: Primary or AR
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks held: No locks held
Control parameters: Not applicable

 Programming Requirements
None.

 Restrictions
None.

Input Register Information
The input to the macro is the ALET and the caller's EAX.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

 Copyright IBM Corp. 1988, 1999 997

 TESTART Macro

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

 Performance Implications
None.

 Syntax
The TESTART macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede TESTART.

TESTART

␣ One or more blanks must follow TESTART.

ALET=(access-reg) access-reg: Access register (0) - (15).

,EAX=(eax) eax: Register (0) - (14).

 ,CADS=YES Default: CADS=NO
 ,CADS=NO

 Parameters
The parameters are explained as follows:

ALET= (access-reg)
Specifies an access register 0 through 15 that contains the ALET to be tested.

,EAX=(eax)
Specifies a general purpose register 0 through 14 that contains the EAX to be used in
the test, in bit positions 0-15. (The system ignores bits 16 - 31.)

,CADS=YES
,CADS=NO

Specifies if TESTART is to check the caller's PASN-AL to see if the specified ALET
points to an entry for a SCOPE=COMMON data space. If CADS=YES is specified,
TESTART returns one of the following return codes:

� X'04' if the ALET does not represent a SCOPE=COMMON data space
� X'18' if the ALET is for a SCOPE=COMMON data space.

If CADS=NO is specified, TESTART does not indicate whether or not the specified
ALET is for a SCOPE=COMMON data space.

 ABEND Codes
None.

998 OS/390 V2R8.0 MVS Assembler Services Reference

 TESTART Macro

 Return Codes
When TESTART macro returns control to your program, GPR 15 contains a return code.

Figure 66. Return Codes for the TESTART Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning : The specified ALET is 0.

Action : None.

04 Meaning : The specified ALET represents a valid entry on the DU-AL. If CADS=YES was
specified on the call, the ALET does not point to an entry for a SCOPE=COMMON data
space.

Action : None required. However, you might take some action based upon your application.

08 Meaning : The specified ALET represents a valid entry on the PASN-AL.

Action : None required. However, you might take some action based upon your application.

0C Meaning : The specified ALET is 1.

Action : None required. However, you might take some action based upon your application.

10 Meaning : The specified ALET and/or EAX will cause an ART program interruption.

Action : None required. However, you might take some action based upon your application.

14 Meaning : A system error occurred in the TESTART service routine.

Action : Retry the request.

18 Meaning : The program specified CADS=YES on the call to TESTART. The specified ALET
points to an entry for a SCOPE=COMMON data space.

Action : None required. However, you might take some action based upon your application.

 Example 1
Request that TESTART verify the following two conditions:

� The ALET in AR1 passed by the caller is zero or is a valid ALET on the caller's
dispatchable unit access list. The caller's registers were saved in the linkage stack prior
to this example.

� The caller is EAX-authorized to data being passed as a parameter that can be accessed
by the called program that runs with an authorized EAX.

R1 EQU 1 General register 1
AR1 EQU 1 Access register 1
R15 EQU 15 General register 15
\

SLR R15,R15 Set a zero code for the ESTA
EREG AR1,AR1 Extract GPR/AR 1 from the linkage stack
ESTA Rð,R15 Place the caller's EAX in R1 bits ð-15
TESTART ALET=(AR1),EAX=(R1) Test the ALET/EAX
CL R15,=X'ððððððð4' Test the TESTART return code
BH ERROR Branch to error routine when the return

\ code is greater than 4

 TESTART — Tests the Validity of ALETs 999

 TESTART Macro

 Example 2
Request that TESTART verify the following two conditions:

� The ALET passed by the caller (on the linkage stack) points to an entry for a
SCOPE=COMMON data space

� The caller is EAX-authorized to data being passed as a parameter that can be accessed
by the called program that runs with an authorized EAX.

R1 EQU 1 General register 1
AR1 EQU 1 Access register 1
R15 EQU 15 General register 15

 \
SLR R15,R15 Set a zero code for the ESTA
EREG AR1,AR1 Extract GPR/AR 1 from the linkage stack
ESTA Rð,R15 Place the caller's EAX in R1 bits ð-15
TESTART ALET=(AR1),EAX=(R1),CADS=YES Test the ALET/EAX
CL R15,=X'ðððððð18' Test the TESTART return code
BE CADS_ALET Branch to CADS ALET routine processing

1000 OS/390 V2R8.0 MVS Assembler Services Reference

 TIME Macro

TIME — Obtain Time and Date

 Description
The TIME macro returns either the local time of day and date, the Greenwich mean time of

| day and date, or the contents of the time-of-day (TOD) clock. The time-of-day clock
| referenced can be either in the basic time-of-day format (TOD) or the extended time-of-day
| format (ETOD).

| � TOD — Unsigned 64-bit binary number
| � ETOD — Unsigned 128-bit binary number

You can use the STCKCONV and CONVTOD macros to convert between TOD-clock format
and various time of day and date formats. The STCKCONV macro converts a TOD-clock
value to a time of day and date value and the CONVTOD macro converts a time of day and

| date value to a TOD clock value. See OS/390 MVS Programming: Assembler Services
| Guide and ESA/390 Principles of Operation for information comparing the formats of the
| TOD and ETOD.

In a system using an external time reference (ETR2), the TOD clocks are set automatically at
system initialization. However, in a system without an ETR, the time of day and date are
only as accurate as the information entered by the operator. System response time also
influences the accuracy of the values returned by the TIME macro.

There are two different linkage methods that can be specified. The TIME macro with
LINKAGE=SYSTEM can be used by a program in primary or AR mode, in cross memory
mode, and in either an enabled or disabled state. The LINKAGE=SYSTEM parameter also
permits a choice of formats for the date value returned, as well as list and execute forms of
the macro. With LINKAGE=SVC, the caller cannot be in cross memory mode or AR mode,
must be in an enabled state, and has no choice of the format for the returned date value.

IBM recommends the use of the LINKAGE=SYSTEM parameter on the TIME macro. The
LINKAGE=SVC parameter is provided solely for compatibility with existing programs.

The following description of the TIME macro is divided into two sections, LINKAGE=SYSTEM
and LINKAGE=SVC. There are list and execute forms of the macro for LINKAGE=SYSTEM,
but not for LINKAGE=SVC.

 LINKAGE=SYSTEM

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 24- or 31-bit addressing mode
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control Parameters: Must be in the primary address space or be in an address/data

space that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL)

2 External time reference (ETR) is the MVS generic name for the IBM Sysplex Timer.

 Copyright IBM Corp. 1988, 1999 1001

 TIME Macro

 Programming Requirements
If the program is in AR mode, issue the SYSSTATE ASCENV=AR macro before TIME.
SYSSTATE ASCENV=AR tells the system to generate code appropriate for AR mode.

 Restrictions
None.

Input Register Information
Before issuing the TIME macro, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter or using it as a base
register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The standard form of the TIME macro with LINKAGE=SYSTEM is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede TIME.

TIME

␣ One or more blanks must follow TIME.

DEC,stor addr Default: DEC
BIN,stor addr stor addr: RX-type address or register (0) or (2) - (12).
MIC,stor addr
STCK,stor addr

| STCKE,stor addr

 ,ZONE=LT Default: ZONE=LT
 ,ZONE=GMT| Note: This parameter has no meaning if STCK or STCKE is

| specified.

1002 OS/390 V2R8.0 MVS Assembler Services Reference

 TIME Macro

 ,LINKAGE=SYSTEM Note: LINKAGE=SVC is the default.

 ,DATETYPE=YYYYDDD Default: DATETYPE=YYYYDDD
 ,DATETYPE=MMDDYYYY
 ,DATETYPE=DDMMYYYY
 ,DATETYPE=YYYYMMDD

 Parameters
The parameters are explained as follows:

DEC,stor addr
BIN,stor addr
MIC,stor addr
STCK,stor addr

| STCKE,stor addr
Specifies the format in which the time of day and date, or TOD clock contents, are
returned. stor addr specifies the address of a 16-byte storage area in which TIME will
return the values. The first two words of this area contain the time of day, or TOD clock
contents, in the requested format. The third word contains the date in the requested
format. Set the fourth word to zero before issuing TIME.

DEC returns the time of day as 8 bytes of packed decimal digits (without a sign) of the
form

HHMMSSthmiju0000, where:

HH is hours, based on a 24-hour clock
MM is minutes
SS is seconds
t is tenths of seconds
h is hundredths of seconds
m is milliseconds
i is ten-thousandths of seconds
j is hundred-thousandths of seconds
u is microseconds

BIN returns the time of day as an unsigned 32-bit binary number with the low-order bit
equivalent to 0.01 second. The second word of the time value returned is zero.

MIC returns the time of day in microseconds. The value is returned as 8 bytes of
information where bit 51 is equivalent to one microsecond.

| STCK returns the contents of the basic TOD clock as an unsigned 64-bit binary number
where bit 51 is equivalent to one microsecond.

| STCKE returns the contents of the extended TOD clock (ETOD) as an unsigned 128-bit
| binary number where bit 59 is equivalent to one microsecond.

Note: The resolution of the time-of-day clock is model dependent. See Principles of
Operation for an explanation of the rate advancement.

,ZONE=LT
,ZONE=GMT

LT specifies that the local time and date are to be returned. GMT specifies that an
externally-sourced time and date such as Grenwich Mean Time (GMT) or Universal
Time Coordinated (UTC) are to be returned. Refer to the section on time in ESA/390
Principles of Operation , SA22-7201 for a discussion of the differences between GMT
and UTC.

| ZONE is not meaningful if STCK or STCKE is specified.

,LINKAGE=SYSTEM
Specifies that non-SVC linkage is used to invoke the TIME service routine.

 TIME — Obtain Time and Date 1003

 TIME Macro

,DATETYPE=YYYYDDD
,DATETYPE=MMDDYYYY
,DATETYPE=DDMMYYYY
,DATETYPE=YYYYMMDD

Specifies the format in which the converted date is returned. For each parameter, the
format of the returned date is as follows:

DATETYPE Form of Returned Date

YYYYDDD 0YYYYDDD

MMDDYYYY MMDDYYYY

DDMMYYYY DDMMYYYY

YYYYMMDD YYYYMMDD

The date is returned as packed decimal digits without a sign, where:

YYYY is the year
DDD is the day of the year
MM is the month of the year
DD is the day of the month

For example, with DATETYPE=YYYYDDD, January 21, 2000 would be returned as a
converted TOD value of 02000021.

 ABEND Codes
None.

 Return Codes
When TIME macro returns control to your program, GPR 15 contains a return code and GPR
0 contains a reason code.

Figure 67. Return Codes for the TIME Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning : Successful completion.

Action : None.

04 Meaning : Programming error. TOD clocks are not initialized.

Action : Retry the request later in the IPL.

08 Meaning : Environmental error. The TOD clock is not usable.

Action : Retry the request.

0C Meaning : System error.

Action : Retry the request.

10 Meaning : Programming error. The user's parameter list is not in addressable storage.

Action : Ensure that the parameter list is in the caller's Primary address space. If in AR
mode, the PASN access list must not be used for addressing the parameter list.

 Example 1
Request the local time of day and date (in year/day of the year format) to be returned in
decimal digits in a 16-byte area called TIMEDATE.

 TIME DEC,TIMEDATE,ZONE=LT,LINKAGE=SYSTEM
TIMEDATE DS CL16 TIME AND DATE RETURNED

1004 OS/390 V2R8.0 MVS Assembler Services Reference

 TIME Macro

 Example 2
Request the GMT time of day and date to be returned in a 16-byte area called OUTVAL.
The GMT time of day should be returned as microseconds and the date should be returned
in a day/month/year format.

 TIME MIC,OUTVAL,ZONE=GMT,LINKAGE=SYSTEM,DATETYPE=DDMMYYYY
OUTVAL DS CL16 TIME AND DATE RETURNED

 TIME — Obtain Time and Date 1005

 TIME Macro

 LINKAGE=SYSTEM—List Form
Use the list form of the TIME macro (LINKAGE=SYSTEM) together with the execute form of
the macro for applications that require reentrant code. The list form of the macro defines an
area of storage that the execute form of the macro uses to store the parameters.

 Syntax
The list form of the TIME macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede TIME.

TIME

␣ One or more blanks must follow TIME.

 LINKAGE=SYSTEM Note: LINKAGE=SYSTEM must be specified in order to obtain the

list form of the TIME macro.

,MF=L

 Parameters
The parameters are explained under the standard form of the TIME macro with
LINKAGE=SYSTEM, with the following exception:

,MF=L
Specifies the list form of the TIME macro.

 Example
Establish the correct amount of storage for the TIME parameter list.

LIST1 TIME LINKAGE=SYSTEM,MF=L

1006 OS/390 V2R8.0 MVS Assembler Services Reference

 TIME Macro

 LINKAGE=SYSTEM—Execute Form
Use the execute form of the TIME macro (LINKAGE=SYSTEM) together with the list form of
the macro for applications that require reentrant code. The execute form of the macro stores
the parameters into the storage area defined by the list form.

 Syntax
The execute form of the TIME macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede TIME.

TIME

␣ One or more blanks must follow TIME.

DEC,stor addr Default: DEC
BIN,stor addr stor addr: RX-type address or register (0) or (2) - (12).
MIC,stor addr
STCK,stor addr

| STCKE,stor addr

 ,ZONE=LT Default: ZONE=LT
 ,ZONE=GMT Note: This parameter has no meaning if STCK is specified.

 ,LINKAGE=SYSTEM Note: LINKAGE=SYSTEM must be specified in order to obtain the

execute form of the TIME macro.

 ,DATETYPE=YYYYDDD Default: DATETYPE=YYYYDDD
 ,DATETYPE=MMDDYYYY Note: This parameter has no meaning if STCK is specified.
 ,DATETYPE=DDMMYYYY
 ,DATETYPE=YYYYMMDD

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).

 Parameters
The parameters are explained under the standard form of the TIME macro with
LINKAGE=SYSTEM, with the following exception:

,MF=(E,list addr)
Specifies the execute form of the TIME macro. list addr specifies the address of the
parameter list created by the list form of the macro.

 Example
Request the local time of day and date to be returned in a 16-byte area called OUTAREA.
The local time of day should be returned as decimal digits and the local date should be
returned in year/month/day format. Specify the address of the appropriate parameter list in
LIST1.

 TIME DEC,OUTAREA,LINKAGE=SYSTEM,MF=(E,LIST1),DATETYPE=YYYYMMDD
OUTAREA DS CL16 TIME AND DATE RETURNED

 TIME — Obtain Time and Date 1007

 TIME Macro

 LINKAGE=SVC

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit addressing mode
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control Parameters: Must be in the primary address space

 Programming Requirements
None.

 Restrictions
The caller cannot have any enabled, unlocked task (EUT) FRRs established.

Input Register Information
Before issuing the TIME macro, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter or using it as a base
register.

Output Register Information
When control returns to the caller, the registers contain:

Register Contents
0 The time of day if you specified DEC, BIN, or TU. If you did not specify any of

these parameters, register 0 is used as a work register by the system.
1 Contains the date, if you specified DEC, BIN, TU, or MIC. If you did not

specify any of these parameters, register 1 is used as a work register by the
system.

2-13 Unchanged.
14 Used as a work register by the system.
15 Return code.

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

1008 OS/390 V2R8.0 MVS Assembler Services Reference

 TIME Macro

 Syntax
The standard form of the TIME macro with LINKAGE=SVC is written as follows:

Note: The ERRET parameter is obsolete and will be ignored by the system. Therefore, the
syntax and parameter descriptions for TIME no longer contain ERRET. However, the
system will still accept ERRET and it is not necessary to delete it from existing code.

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede TIME.

TIME

␣ One or more blanks must follow TIME.

DEC Default: DEC
BIN stor addr: RX-type address or register (0) or (2) - (12).
TU
MIC,stor addr
STCK,stor addr

 ,ZONE=LT Default: ZONE=LT
 ,ZONE=GMT Note: This parameter has no meaning if STCK is specified.

 ,LINKAGE=SVC Default: LINKAGE=SVC

 Parameters
The parameters are explained as follows:

DEC
BIN
TU
MIC,stor addr
STCK,stor addr

Specifies the form in which the time of day and date, or TOD clock contents, is returned.

DEC returns the time of day in register 0 as packed decimal digits, without a sign, of the
form

HHMMSSth, where:

HH is hours (24-hour clock)
MM is minutes
SS is seconds
t is tenths of seconds
h is hundredths of seconds

BIN returns the time of day in register 0 as an unsigned 32-bit binary number. The
low-order bit is equivalent to 0.01 second.

TU returns the time of day in register 0 as an unsigned 32-bit binary number. The
low-order bit is approximately 26.04166 microseconds (one timer unit).

MIC returns the time of day in microseconds. The stor addr is the address of an 8-byte
area in storage with bit 51 equivalent to one microsecond.

 TIME — Obtain Time and Date 1009

 TIME Macro

STCK returns the contents of the TOD clock as an unsigned 64-bit binary number where
bit 51 is equivalent to one microsecond. The stor addr is the address of an 8-byte area
in storage.

Note: The resolution of the time-of-day clock is model dependent. See Principles of
Operation for an explanation of the rate advancement.

The date is returned in register 1 as packed decimal digits of the form

0CYYDDDF, where:

C is a digit representing the century. In the years 1900 through 1999,
the macro will return a value of C=0. In the years 2000 through
2099, the macro will return a value of C=1.

YY is the last two digits of the year.
DDD is the day of the year.
F is a 4-bit sign character that allows the data to be unpacked and

printed.

,ZONE=LT
,ZONE=GMT

Specifies that the local time and date (LT) or the Greenwich mean time and date (GMT)
are to be returned.

,LINKAGE=SVC
Specifies that the linkage used to invoke the TIME service routine is through an SVC
instruction.

 ABEND Codes
 10B

See OS/390 MVS System Codes for an explanation and programmer responses for this
code.

Return and Reason Codes
The only return code from the TIME macro is a zero in register 15 indicating successful
completion.

 Example 1
Request the system to store the time-of-day clock in the address pointed to by register 2.

TIME STCK,(2)

 Example 2
Request that the current local time and date be returned as packed decimal digits in
registers 0 and 1.

TIME DEC,ZONE=LT,LINKAGE=SVC

 Example 3
Request that the current time of day in microsecond format be returned in the location
OUTAREA. Note that the default is taken for LINKAGE.

 TIME MIC,OUTAREA
 .
 .
OUTAREA DS 2F

1010 OS/390 V2R8.0 MVS Assembler Services Reference

 TIMEUSED Macro

TIMEUSED — Obtain Accumulated CPU or Vector Time

 Description
The TIMEUSED macro returns an 8-byte hexadecimal number in a doubleword storage area
that you specify. The number is the total CPU or vector time used by the current TCB up
until you issue the macro. The format of the number is time-of-day (TOD) clock or
microseconds time format.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 31-bit addressing mode
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space or be in an address

space/data space that is addressable through a public entry on the
caller's dispatchable unit access list (DU-AL)

 Programming Requirements
None.

 Restrictions
None.

Input Register Information
Before issuing the TIMEUSED macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Copyright IBM Corp. 1988, 1999 1011

 TIMEUSED Macro

 Performance Implications
None.

 Syntax
The TIMEUSED macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede TIMEUSED.

TIMEUSED

␣ One or more blanks must follow TIMEUSED.

STORADR=addr addr: RX-type address or register (2)-(12).

,LINKAGE=SYSTEM

 ,RELATED=value value: Any valid macro parameter specification

 ,CPU=TOD Default: CPU=TOD
 ,CPU=MIC
 ,VECTOR=TOD
 ,VECTOR=MIC

 Parameters
The parameters are explained as follows:

STORADR=addr
Specifies the 31-bit address of a doubleword area where the accumulated CPU or
vector time is returned. The time interval is represented as an unsigned 64-bit binary
number. If you specify CPU=TOD or VECTOR=TOD, bit 51 is the low-order bit of the
interval value and equivalent to 1 microsecond. If you specify CPU=MIC or
VECTOR=MIC, bit 63 is the low-order bit of the interval value and equivalent to 1
microsecond.

,LINKAGE=SYSTEM
Indicates that the linkage is by nonbranch entry.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the information
specified are at the discretion of the user and may be any valid coding values.

,CPU=TOD
,CPU=MIC
,VECTOR=TOD
,VECTOR=MIC

Specifies that TIMEUSED should return the total CPU or vector time in either TOD clock
format (CPU=TOD or VECTOR=TOD) or in microseconds (CPU=MIC or VECTOR=MIC).

1012 OS/390 V2R8.0 MVS Assembler Services Reference

 TIMEUSED Macro

 ABEND Codes
The caller might encounter system completion code X'012'. See OS/390 MVS System
Codes for an explanation and programmer response for this code.

 Return Codes
Register 15 contains one of the following hexadecimal return codes from TIMEUSED:

Figure 68. Return and Reason Codes for the TIMEUSED Macro

Hexadecimal
Return Code

Meaning and Action

0 Meaning : The service completed successfully.

Action : None.

8 Meaning : Unexpected error.

Action : Reissue the TIMEUSED macro.

 Example 1
Request the total CPU time in TOD clock format to be stored at the address in register 2.

TIMEUSED STORADR=(2),LINKAGE=SYSTEM,CPU=TOD

 Example 2
Request the total vector time in microseconds to be stored at the address in register 2.

TIMEUSED STORADR=(2),LINKAGE=SYSTEM,VECTOR=MIC

 TIMEUSED — Obtain Accumulated CPU or Vector Time 1013

 TIMEUSED Macro

1014 OS/390 V2R8.0 MVS Assembler Services Reference

 TRANMSG Macro

TRANMSG — Translate Messages

 Description
The TRANMSG macro returns a translated message or messages in a requested language.
TRANMSG translates any of the following forms of messages:

 � Self-defined text
� A message text block (MTB)
� A message parameter block (MPB)
� A combination of the above

TRANMSG uses a message input/output block (MIO) as input. You can either create the
MIO, or let TRANMSG create it for you. You must create the MIO if you are translating
multi-line messages with continuation lines. If you create the MIO for multi-line messages, it
must contain the following:

� Code of the desired language

� Addresses of the messages to be translated

� Address of an output buffer in the calling program's address space into which
TRANMSG is to return the translated messages.

You must also set the MIOCONT flag on in the MIO for multi-line messages with
continuation lines.

Otherwise, use parameters on TRANMSG to provide that information, so TRANMSG can
build the MIO correctly.

Upon return, each translated message is in the output buffer in the form of an MTB, and the
MIO contains the addresses of the MTBs. If the translated message has more than one line,
the MTB will indicate multiple lines by showing more than one message entry area within the
MTB associated with the translated message.

See OS/390 MVS Programming: Assembler Services Guide for more information on using
TRANMSG.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt Status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Not applicable

 Programming Requirements
Before invoking TRANMSG, you must obtain storage for:

 � The MIO
� The output buffer where TRANMSG will return the translated messages.

The size of the storage you will need for the MIO and output buffer depends on the number
and size of messages you are translating. Refer to OS/390 MVS Data Areas, Vol 3
(IVT-RCWK) for a mapping of the MIO. Storage must be in the address space in which the
calling program issued TRANMSG.

 Copyright IBM Corp. 1988, 1999 1015

 TRANMSG Macro

You must include the following mapping macros:

 � CNLMMIO
 � CNLMMCA

 Restrictions
If TRANMSG builds the MIO for your application:

� Message translation starts at the first message in the message entry list (list addr in the
INBUF parameter).

� The first message must contain a message identifier.

� You must supply all parameters on TRANMSG.

If you provide a formatted MIO, the only required parameter is MIO.

Input Register Information
Before issuing the TRANMSG macro, the caller must ensure that register 13 contains the
address of an 18-word save area, which can be provided through the use of standard
linkage conventions.

Output Register Information
When the TRANMSG macro returns control, the output registers contain the following values:

Register Contents
0 The contents of the high-order halfword are not part of the intended

programming interface. The low-order halfword contains a reason code.
1 Used as a work register by system
2-13 Unchanged
14 Used as a work register by system
15 Return code

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
Translating multiple messages on one invocation of TRANMSG is more efficient than
invoking TRANMSG multiple times with one message for each invocation.

 Syntax
If you build the MIO, code the TRANMSG macro as follows:

If you want the TRANMSG macro to build the MIO, code TRANMSG as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede TRANMSG.

TRANMSG

␣ One or more blanks must follow TRANMSG.

MIO=msg block addr msg block addr: RX-type address or register (2) - (12).

1016 OS/390 V2R8.0 MVS Assembler Services Reference

 TRANMSG Macro

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede TRANMSG.

TRANMSG

␣ One or more blanks must follow TRANMSG.

MIO=msg block addr msg block addr: RX-type address or register (2) - (12).

,MIOL=length of block addr length of block addr: RX-type address or register (2) - (12).

,INBUF=(list addr, num of list addr: RX-type address or register (2) - (12).
 entries addr) num of entries: RX-type address or register (2) - (12).

,OUTBUF=output buffer addr output buffer addr: RX-type address or register (2) - (12).

,OUTBUFL=output buffer output buffer length addr: RX-type address or register (2) - (12).
 length addr

,LANGCODE=lang code addr lang code addr: RX-type address or register (2) - (12).

 Parameters
The parameters are explained as follows:

MIO=msg block addr
Specifies the address, or a register, containing the address of an area containing the
MIO or the address where TRANMSG is to build or find the MIO. If you have built the
MIO, code only this parameter. Specify all other parameters only if TRANMSG is to
build the MIO.

,MIOL=length of block addr
Specifies the address of a fullword or a register containing the length in bytes of the
MIO. The length value is right-justified and padded with blanks. This parameter is
required if TRANMSG is to build the MIO.

,INBUF=(list addr, num of entries addr)
Specifies the address of a register pointing to the list of addresses of the self-defined
text, MPB, or MTB that TRANMSG is to use as input, and the number of entries in the
list, respectively. This parameter is required if TRANMSG is to build the MIO.

,OUTBUF=output buffer addr
Specifies the address of a register containing the address of the output buffer into which
TRANMSG is to return translated messages in the form of MTBs. This parameter is
required if TRANMSG is to build the MIO.

,OUTBUFL=output buffer length addr
Specifies the address of a fullword or a register containing the length in bytes of the
output buffer. This parameter is required if TRANMSG is to build the MIO.

,LANGCODE= lang code addr
Specifies the address of, or a register pointing to, the 3-byte character field containing
the code of the language into which you want the messages translated. OS/390 MVS
Programming: Assembler Services Guide contains a list of language codes. This
parameter is required if TRANMSG is to build the MIO.

 TRANMSG — Translate Messages 1017

 TRANMSG Macro

Return and Reason Codes
While TRANMSG provides return and reason codes in registers 15 and 0, respectively, you
can determine exactly which message failed by looking at the reason code returned for each
message in the MIOREAS field of the MIO variable data area. See OS/390 MVS Data
Areas, Vol 3 (IVT-RCWK) for a mapping of the MIO.

When TRANMSG completes, register 15 contains one of the following hexadecimal return
codes:

When TRANMSG completes, the low-order halfword of register 0 contains one of the
following hexadecimal reason codes:

Hexadecimal
Return Code

Meaning

00 Processing completed successfully.

04 Processing complete. The output is complete, but TRANMSG might not have
translated everything (for example, one variable in your message might not have
translated).

08 Processing complete. The output is usable, but incomplete (for example, you
might not have received all lines of a multiline message).

0C Processing ended prematurely. The output is unusable. Possible causes are:

� You have attempted to translate too many messages at one time.
� The MIO is not valid
� The output buffer is too small for any messages.

10 Processing did not complete. The output is unpredictable.

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

00 00 Successful processing.

04 07 This reason code is for internal diagnostic purposes only.
Record it and supply it to the appropriate IBM support
personnel.

04 08 This reason code is for internal diagnostic purposes only.
Record it and supply it to the appropriate IBM support
personnel.

04 0B This reason code is for internal diagnostic purposes only.
Record it and supply it to the appropriate IBM support
personnel.

04 0C The passed storage address is not valid.

04 0D This reason code is for internal diagnostic purposes only.
Record it and supply it to the appropriate IBM support
personnel.

04 1A TRANMSG returned a token value as text.

04 1B The translated message is not a valid mixed DBCS string.

04 1C A substitution token that is in the MPB is not in the message
skeleton.

04 1D A substitution token that is in the message skeleton is not in
the MPB.

04 1F The internal day code is not valid.

04 21 The required date format is not available. TRANMSG used
the default.

04 22 A date formatting failure occurred.

04 23 The required time format is not available. TRANMSG used
the default.

1018 OS/390 V2R8.0 MVS Assembler Services Reference

 TRANMSG Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

04 24 This reason code is for internal diagnostic purposes only.
Record it and supply it to the appropriate IBM support
personnel.

04 25 This reason code is for internal diagnostic purposes only.
Record it and supply it to the appropriate IBM support
personnel.

04 32 Input for the date format is not numeric. TRANMSG returned
the date without formatting it.

08 01 The language you requested is not available. TRANMSG
returned a U.S. English message.

08 03 The buffer space is insufficient for the output parameter
blocks. The output was truncated.

08 14 The message identifier is longer than the text of the message
continuation.

08 18 The input message length is not valid.

08 19 The input message does not match a message in the
run-time message file.

08 1E TRANMSG did not find a match in the target language
run-time message file.

08 20 This reason code is for internal diagnostic purposes only.
Record it and supply it to the appropriate IBM support
personnel.

08 2B This reason code is for internal diagnostic purposes only.
Record it and supply it to the appropriate IBM support
personnel.

08 33 TRANMSG could not match the message ID in the message
skeleton to those contained in the run-time message file.

08 34 TRANMSG attempted to match message text against an
English message skeleton with translated line numbers. Input
to TRANMSG must be an MPB when you use English
message skeletons with translated line numbers.

0C 02 TRANMSG did not copy the input parameter block from the
caller's address space.

0C 04 TRANMSG was unable to copy the MIO from the caller's
address space.

0C 05 The MIO acronym is not valid.

0C 06 TRANMSG was unable to copy the MIO and output
parameter blocks to the caller's address space.

0C 0A TRANMSG could not obtain storage.

0C 10 The length of the MIO is less than the minimum length for a
valid MIO.

0C 11 The length of the MTB is less than the minimum length for a
valid MTB.

0C 12 The length of the MPB is less than the minimum length for a
valid MPB.

0C 13 The MTB record count is not valid. The message record
count must be one (1).

0C 15 The input message has a length less than three. A valid
input message must have at least one character each for the
message identifier and the message text, separated by a
blank character.

0C 17 The MVS message service is unavailable.

 TRANMSG — Translate Messages 1019

 TRANMSG Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

0C 26 The translation request terminated. The MMS user exit has
set the processing indicator to a nonzero value.

0C 27 The entry installation exit has failed.

0C 28 The exit installation exit has failed.

0C 29 The continuation ID in a multi-line message has zero length.

0C 2A The MIO invocation type is not valid.

0C 31 The MIOXLATE field in the MIO is not valid.

0C 39 The MIO is too small.

0C 3A The number in the list of entries is not a valid value.

10 09 This reason code is for internal diagnostic purposes only.
Record it and supply it to the appropriate IBM support
personnel.

If you translate multiple lines of message text
The return code and reason code you receive will reflect the most severe condition. Multiple
lines of message text can be either multi-line messages or multiple messages. You will
need to check the MIOREASN field contained within the variable message entry areas of the
MIO to determine processing status of each line. The MIOREASN field provides reasons for
the errors.

If you received return codes 0 or 4, check field MIOTRUNC in the MIO to see if TRANMSG
processed all message input.

It is possible that the output buffer was not large enough to hold all the translated messages.
A return code of 0 or 4 might indicate this situation. Check the MIOTRUNC field of the MIO.
If MIOTRUNC is 0, TRANMSG processed all messages. If MIOTRUNC is nonzero, it
contains the number of the first message that did not fit into the input buffer.

If TRANMSG processing ended prematurely
You can increase the output buffer size, then reissue TRANMSG, or you can redrive
message translation (that is, restart message translation at the point where it ended.) You
can redrive message translation by using the same MIO and input and output data areas.
Save the output of the failing message translation before redriving because TRANMSG
reuses these fields on subsequent calls to translate the remaining messages. To redrive
message translation, do the following:

1. First, determine where processing stopped. The nonzero number in the MIOTRUNC
field is the number of the output message TRANMSG truncated because it did not fit
into the output buffer. For example, if you issue TRANMSG to return five translated
messages, and the output buffer can hold only three messages, TRANMSG will not
return the fourth and fifth message in the output buffer. When TRANMSG completes,
the MIOTRUNC field would contain a value of 4.

2. Set the MIOXLATE field of the MIO to the value of the MIOTRUNC field; in this case, 4.

3. If the first message to be translated is a continuation message (contains no message
ID), also set the MIOMID field to the message value, and the MIOMIDL field to the
message ID length of the associated continuation message.

4. Issue TRANMSG again to translate the remaining messages, starting, in this case, with
the fourth message.

Repeat this process until MIOTRUNC is 0, indicating that all input messages have been
processed.

If you don't want to redrive using the same MIO, allocate a new, larger output buffer, change
the MIO output buffer pointer, the length fields MIOBFPTR and MIOBFSIZ, and the
MIOXLATE field. Issue TRANMSG again until MIOTRUNC is 0.

1020 OS/390 V2R8.0 MVS Assembler Services Reference

 TRANMSG Macro

 Example 1
Translate U.S. English text to Japanese using self-defined text as input. TRANMSG will
build the MIO.

TRANSSDT CSECT
TRANSSDT AMODE 31
TRANSSDT RMODE ANY
 STM 14,12,12(13)
 BALR 12,ð
 USING \,12
 ST 13,SAVE+4
 LA 15,SAVE
 ST 15,8(13)
 LR 13,15

\\\
\ GETMAIN STORAGE AREA FOR THE MIO \
\\\
\ \
 GETMAIN RU,LV=STORLEN,SP=SP23ð

LR R4,R1 SAVE STORAGE ADDRESS
 USING MIO,R4

L R2,MLENGTH OBTAIN LENGTH OF MIO AREA
AR R2,R1 CALCULATE ADDRESS OF OUTPUT BUFFER

\ \
\\\
\ ISSUE TRANSLATE FOR MESSAGE \
\\\
\ \
 TRANMSG MIO=MIO,MIOL=MLENGTH,INBUF=(SDTA,ONE), C
 OUTBUF=(R2),OUTBUFL=OUTAREAL,LANGCODE=LC
\\\
\ FREE STORAGE AREA FOR THE MIO \
\\\
\ \
 FREEMAIN RU,LV=STORLEN,SP=SP23ð,A=(4)
\ \
\\\
 L 13,SAVE+4
 LM 14,12,12(13)
 BR 14
 DROP
\\\
MLENGTH DC A(MLEN)
OUTAREAL DC A(STORLEN-MLEN)
SDT DC H'37'

DC CL37'XXXXð1 ENGLISH MESSAGE WITH ID XXXXð1'
SDTA DC A(SDT)
LC DC CL3'JPN'
SP23ð EQU 23ð
ONE DC F'1'
SAVE DC 18F'ð'
R1 EQU 1
R2 EQU 2
R4 EQU 4
MLEN EQU (MIOVDAT-MIO)+MIOMSGL
STORLEN EQU 512
\\\
 DSECT
 CNLMMCA
 CNLMMIO
 END TRANSSDT

 TRANMSG — Translate Messages 1021

 TRANMSG Macro

 Example 2
Translate U.S. English text to Japanese. Build your own MIO.

TRANS2A CSECT
TRANS2A AMODE 31
TRANS2A RMODE ANY
 STM 14,12,12(13)
 BALR 12,ð
 USING \,12
 ST 13,SAVE+4
 LA 15,SAVE
 ST 15,8(13)
 LR 13,15
\ \
\\\
\ GETMAIN STORAGE AREA \
\\\
\ \
 GETMAIN RU,LV=STORLEN,SP=SP23ð
 LR R4,R1

XC ð(MIOVDAT-MIO,R4),ð(R4) CLEAR MIO HEADER SECTION
MVC MIOACRN-MIO(L'MIOACRN,R4),=C'MIO ' SET ACRONYM
MVI MIOVRSN-MIO(R4),$MIO_VERSION SET VERSION NUMBER
MVC MIOSIZE-MIO(4,R4),MLENGTH SAVE MIO SIZE
MVC MIOLANG-MIO(L'MIOLANG,R4),=C'JPN' SET LANGUAGE NAME
L R3,MLENGTH CALCULATE OUTAREA ADD
AR R3,R4 GET MIO ADDRESS
ST R3,MIOBFPTR-MIO(,R4) SET OUTAREA ADDRESS
MVC MIOBFSIZ-MIO(L'MIOBFSIZ,R4),OUTAREAL SET OUTAREA LENGTH

 LA R3,1
ST R3,MIOXLATE-MIO(,R4) SET TO FIRST MSG
MVI MIOMID-MIO(R4),C' ' INIT MSGID TO SPACES

 MVC MIOMID-MIO+1(L'MIOMID-1,R4),MIOMID-MIO(R4)
LA R3,MIOMSGL GET LENGTH OF MIO
ST R3,MIOVDATL-MIO(,R4) SAVE VARIABLE AREA LENGTH

 LA R3,1
ST R3,MIOMSGNO-MIO(,R4) SET NUMBER OF MSGS C

 TO TRANSLATE
LA R3,MIOVDAT-MIO GET OFFSET TO VAR. AREA
ST R3,MIOOFFST-MIO(,R4) SAVE OFFSET TO 1ST MSG
AR R3,R4 POINT TO MIO VARIABLE AREA
XC ð(MIOMSGL,R3),ð(R3) CLEAR MSG ENTRY AREA
LA R2,SDT OBTAIN INPUT AREA ADDRESS
ST R2,MIOINPTP-MIOMSG(,R3) SAVE INPUT AREA ADDRESS

 MVI MIOINFL-MIOMSG(R3),MIOXLATF INDICATE TRANSLATE
\ \
\\\
\ ISSUE TRANSLATE FOR MESSAGE \
\\\
\ \
 TRANMSG MIO=(R4)
\ \
\\\
\ FREE STORAGE AREA \
\\\
\ \
 FREEMAIN RU,LV=STORLEN,SP=SP23ð,A=(4)
\ \
\\\
 L 13,SAVE+4
 LM 14,12,12(13)
 BR 14
 DROP
\\\
 DS ðF
MLENGTH DC A(MLEN)
OUTAREAL DC A(STORLEN-MLEN)
SDT DC H'37'

DC CL37'XXXXð1 ENGLISH MESSAGE WITH ID XXXXð1'
INAREA DC A(SDT)
LC DC CL3'JPN'
SP23ð EQU 23ð

1022 OS/390 V2R8.0 MVS Assembler Services Reference

 TRANMSG Macro

ONE DC F'1'
SAVE DC 18F'ð'
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
MLEN EQU (MIOVDAT-MIO)+MIOMSGL
STORLEN EQU 512
\\\
 DSECT
 CNLMMCA
 CNLMMIO
 END TRANS2A

 Example 3
Translate three single-line U.S. English messages to Japanese using self-defined text as
input.

TRANMULT CSECT
TRANMULT AMODE 31
TRANMULT RMODE ANY
 STM 14,12,12(13)
 BALR 12,ð
 USING \,12
 ST 13,SAVE+4
 LA 15,SAVE
 ST 15,8(13)
 LR 13,15
\ \
\\\
\ GETMAIN STORAGE AREA \
\\\
\ \
 GETMAIN RU,LV=STORLEN,SP=SP23ð

LR R4,R1 SAVE STORAGE ADDRESS
 USING MIO,R4

L R2,MLENGTH OBTAIN LENGTH OF MIO AREA
AR R2,R1 CALCULATE ADDRESS OF OUTPUT BUFFER

\ \
\\\
\ ISSUE TRANSLATE FOR MESSAGE \
\\\
\ \
 TRANMSG MIO=MIO,MIOL=MLENGTH,INBUF=(SDT1A,THREE), C
 OUTBUF=(R2),OUTBUFL=OUTAREAL,LANGCODE=LC

 TRANMSG — Translate Messages 1023

 TRANMSG Macro

\\\
\ FREE STORAGE AREA \
\\\
\ \
 FREEMAIN RU,LV=STORLEN,SP=SP23ð,A=(4)
\ \
\\\
 L 13,SAVE+4
 LM 14,12,12(13)
 BR 14
 DROP
\\\
MLENGTH DC A(MLEN)
OUTAREAL DC A(STORLEN-MLEN)
SDT1 DC H'33'

DC CL33'XXXXðA THIS IS MESSAGE NUMBER ONE'
SDT2 DC H'33'

DC CL33'XXXXðB THIS IS MESSAGE NUMBER TWO'
SDT3 DC H'35'

DC CL35'XXXXðC THIS IS MESSAGE NUMBER THREE'
SDT1A DC A(SDT1)
SDT2A DC A(SDT2)
SDT3A DC A(SDT3)
LC DC CL3'JPN'
SP23ð EQU 23ð
THREE DC F'3'
SAVE DC 18F'ð'
R1 EQU 1
R2 EQU 2
R4 EQU 4
MLEN EQU (MIOVDAT-MIO)+(3\MIOMSGL)
STORLEN EQU 512
\\\
 DSECT
 CNLMMCA
 CNLMMIO
 END TRANMULT

 Example 4
Translate U.S. English text to Japanese using an MTB as input. Create the input MTB.

TRANMTBA CSECT
TRANMTBA AMODE 31
TRANMTBA RMODE ANY
 STM 14,12,12(13)
 BALR 12,ð
 USING \,12
 ST 13,SAVE+4
 LA 15,SAVE
 ST 15,8(13)
 LR 13,15
\ \

1024 OS/390 V2R8.0 MVS Assembler Services Reference

 TRANMSG Macro

\\\
\ GETMAIN STORAGE AREA \
\\\
\ \
 GETMAIN RU,LV=STORLEN,SP=SP23ð

LR R4,R1 SAVE STORAGE ADDRESS
 USING MIO,R4

L R2,MLENGTH OBTAIN LENGTH OF MIO AREA
AR R2,R4 CALCULATE ADDRESS OF MTB

 USING MTB,R2
 MVC MTBACRN,=C'MTB ' SET ACRONYM

MVI MTBVRSN,$MTB_VERSION SET VERSION NUMBER
MVC MTBLNGCD,LC SET LANGUAGE CODE
LA R3,MTBLEN CALCULATE SIZE OF MTB
ST R3,MTBSIZE SAVE MTB SIZE
LA R3,MTBVDAT-MTB OBTAIN LENGTH OF MTB HEADER
ST R3,MTBOFFST SAVE OFFSET TO MTB VARIABLE AREA
MVC MTBCOUNT,ONE SAVE RECORD COUNT
MVC MTBVDATL,SDTLEN SAVE MTB VARIABLE AREA SIZE
AR R3,R2 POINT TO MTB VARIABLE AREA

 USING MTBMSG,R3
MVC MTBMSG(39),SDT SET MESSAGE LENGTH
ST R2,LIST SAVE MTB ADDRESS LIST
LA R3,39(,R3) SAVE ADDRESS OF OUTPUT BUFFER

\\\
\ ISSUE TRANSLATE FOR MESSAGE \
\\\
\ \
 TRANMSG MIO=MIO,MIOL=MLENGTH,INBUF=(LIST,ONE), C
 OUTBUF=(R3),OUTBUFL=OUTAREAL,LANGCODE=LC
\\\
\ FREE STORAGE AREA \
\\\
\ \
 FREEMAIN RU,LV=STORLEN,SP=SP23ð,A=(4)
\ \
\\\
 L 13,SAVE+4
 LM 14,12,12(13)
 BR 14
\\\
MLENGTH DC A(MLEN)
OUTAREAL DC A(STORLEN-(MLEN+MTBLEN))
SDT DC H'37'

DC CL37'XXXXð1 ENGLISH MESSAGE WITH ID XXXXð1'
LC DC CL3'JPN'
SP23ð EQU 23ð
ONE DC F'1'
ZERO DC F'ð'
SDTLEN DC F'39'
SAVE DC 18F'ð'
LIST DC F'ð'
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
STORLEN EQU 512
MLEN EQU (MIOVDAT-MIO)+MIOMSGL
MTBLEN EQU (MTBVDAT-MTB)+39
\\\
 DSECT
 CNLMMCA
 CNLMMIO
 CNLMMTB
 END TRANMTBA

 TRANMSG — Translate Messages 1025

 TRANMSG Macro

 Example 5
Translate a U.S. English multiline message into Japanese. Create the MIO.

TRANSMLA CSECT
TRANSMLA AMODE 31
TRANSMLA RMODE ANY
 STM 14,12,12(13)
 BALR 12,ð
 USING \,12
 ST 13,SAVE+4
 LA 15,SAVE
 ST 15,8(13)
 LR 13,15
\ \

\\\
\ GETMAIN STORAGE AREA \
\\\
\ \
 GETMAIN RU,LV=STORLEN,SP=SP23ð
 LR R4,R1

XC ð(MIOVDAT-MIO,R4),ð(R4) CLEAR MIO HEADER SECTION
MVC MIOACRN-MIO(L'MIOACRN,R4),=C'MIO ' SET ACRONYM
MVI MIOVRSN-MIO(R4),$MIO_VERSION SET VERSION NUMBER
MVC MIOSIZE-MIO(4,R4),MLENGTH SAVE MIO SIZE
MVC MIOLANG-MIO(L'MIOLANG,R4),=C'JPN' SET LANGUAGE NAME
L R3,MLENGTH CALCULATE OUTAREA ADD
AR R3,R4 GET MIO ADDRESS
ST R3,MIOBFPTR-MIO(,R4) SET OUTAREA ADDRESS
MVC MIOBFSIZ-MIO(L'MIOBFSIZ,R4),OUTAREAL SET OUTAREA LENGTH

 LA R3,1
ST R3,MIOXLATE-MIO(,R4) SET TO FIRST MSG
MVI MIOMID-MIO(R4),C' ' INIT MSGID TO SPACE
MVC MIOMID-MIO+1(L'MIOMID,R4),MIOMID-MIO(R4) CLEAR MSGID
LA R3,MSGLEN GET LENGTH OF MIO
ST R3,MIOVDATL-MIO(,R4) SAVE VARIABLE AREA LENGTH

 LA R3,3
ST R3,MIOMSGNO-MIO(,R4) SET NUMBER OF MSGS C

 TO TRANSLATE
LA R3,MIOVDAT-MIO GET OFFSET TO VAR. AREA
ST R3,MIOOFFST-MIO(,R4) SAVE OFFSET TO 1ST MSG
AR R3,R4 POINT TO MIO VARIABLE AREA
LA R15,MIOVDAT-MIO GET LENGTH OF MIO HEADER
AR R15,R4 GET ADDRESS OF MIO MSG ENTRY
LA R3,SDT1A GET MSG AREA LENGTH
XC ð(MIOMSGL,R15),ð(R15) CLEAR MSG ENTRY AREA
MVC MIOINPTP-MIOMSG(4,R15),ð(R3) GET ADDRESS OF SDT

 MVI MIOINFL-MIOMSG(R15),MIOXLATF INDICATE TRANSLATE
LA R3,4(,R3) POINT TO NEXT MESSAGE ADDR.
LA R15,MIOMSGL(,R15) POINT TO NEXT MESSAGE ENTRY
L ð,TWO SET NUMBER OF MESSAGES

LOOP DS ðH
XC ð(MIOMSGL,R15),ð(R15) CLEAR MSG ENTRY AREA
MVC MIOINPTP-MIOMSG(4,R15),ð(R3) GET ADDRESS OF SDT

 OI MIOINFL-MIOMSG(R15),MIOXLATF INDICATE TRANSLATE
 OI MIOINFL-MIOMSG(R15),MIOCONT INDICATE CONTINUATION

LA R3,4(,R3) POINT TO NEXT MESSAGE ADDR.
LA R15,MIOMSGL(,R15) POINT TO NEXT MESSAGE ENTRY
BCT ð,LOOP LOOP UNTIL ALL MSGS PROCESSED

\ \

1026 OS/390 V2R8.0 MVS Assembler Services Reference

 TRANMSG Macro

\\\
\ ISSUE TRANSLATE FOR MESSAGE \
\\\
\ \
 TRANMSG MIO=(R4)
\ \
\\\
\ FREE STORAGE AREA \
\\\
\ \
 FREEMAIN RU,LV=STORLEN,SP=SP23ð,A=(4)
\ \
\\\
 L 13,SAVE+4
 LM 14,12,12(13)
 BR 14
\\\
MLENGTH DC A(MLEN)
OUTAREAL DC A(STORLEN-MLEN)
TWO DC F'2'
SDT1 DC H'33'

DC CL33'MSGID1 ENGLISH MESSAGE - LINE ONE'
SDT2 DC H'28'

DC CL28'ENGLISH MESSAGE - LINE TWO '
SDT3 DC H'3ð'

DC CL3ð'ENGLISH MESSAGE - LINE THREE '
SDT1A DC A(SDT1)
SDT2A DC A(SDT2)
SDT3A DC A(SDT3)
LC DC CL3'JPN'
SAVE DC 18F'ð'
SP23ð EQU 23ð
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R15 EQU 15
MSGLEN EQU 3\MIOMSGL
MLEN EQU (MIOVDAT-MIO)+MSGLEN
STORLEN EQU 512
\\\
 DSECT
 CNLMMCA
 CNLMMIO
 END TRANSMLA

 TRANMSG — Translate Messages 1027

 TRANMSG Macro

1028 OS/390 V2R8.0 MVS Assembler Services Reference

 TTIMER Macro

TTIMER — Test Interval Timer

 Description
The TTIMER macro tests the timer interval established by an STIMER macro. It also
optionally cancels the remaining time interval.

If MIC is specified, the remaining time is returned to the doubleword area specified in the
address. Bit 51 of the area is the low-order bit of the interval value and equivalent to one
microsecond. If a time interval has not been set or has already expired, the area is set to
zero.

Note: The resolution of the timer is model dependent. See Principles of Operation for
additional details concerning timing facilities.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Programming Requirements
None.

 Restrictions
Time intervals established via the STIMERM SET macro cannot be tested or cancelled with
the TTIMER macro.

Input Register Information
Before issuing the TTIMER macro, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter or using it as a base
register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Used as a work register by the system if you do not specify TU. If you specify

TU, register 0 contains the amount of time remaining in a timer interval.
1 Used as a work register by the system.
2-13 Unchanged.
14 Used as a work register by the system.
15 Return code.

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service and restore them after the system returns
control.

 Copyright IBM Corp. 1988, 1999 1029

 TTIMER Macro

 Performance Implications
None.

 Syntax
The TTIMER macro is written as follows:

The ERRET parameter is obsolete and is ignored by the system. Therefore, the syntax and
parameter descriptions for TTIMER no longer contain ERRET. However, the system still
accepts ERRET and it is not necessary to delete it from existing code.

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede TTIMER.

TTIMER

␣ One or more blanks must follow TTIMER.

 CANCEL

 ,TU Default: TU
 ,MIC,stor addr stor addr: RX-type address, or register (0) or (2) - (12).

 Parameters
The parameters are explained as follows:

CANCEL
Specifies that the remaining time interval and any exit routine are to be canceled. If the
time interval has already expired, the CANCEL option has no effect and a value of zero
time remaining is returned. In this case, a specified exit will still receive control. If a
nonzero time remaining is returned when the CANCEL option is specified, any exit
routine is canceled. If CANCEL is not designated, the unexpired portion of the time
interval remains in effect.

If WAIT was coded in the STIMER macro that established the interval, the task is not
taken out of the wait condition and CANCEL is ignored.

,TU
,MIC,stor addr

Specifies that the remaining time in the interval be returned.

For TU, the time is returned in register 0 as an unsigned 32-bit binary number. The
low-order bit is approximately 26.04166 microseconds (one timer unit). If the time
remaining is too great to be expressed in four bytes, the remaining time interval is set to
the maximum possible value (X'FFFFFFFF') and the return code is set to 4.

For MIC, the time is returned in microseconds. The stor addr is the doubleword area on
a doubleword boundary where the remaining interval is to be stored.

1030 OS/390 V2R8.0 MVS Assembler Services Reference

 TTIMER Macro

 ABEND Codes
 12E

See OS/390 MVS System Codes for an explanation and programmer responses for this
code.

 Return Codes
When TTIMER macro returns control to your program, GPR 15 contains a return code.

Figure 69. Return Codes for the TTIMER Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning : Successful completion.

Action : None.

04 Meaning : You specified the TU parameter, but the time remaining is greater than
X'FFFFFFFF'.

Action : None required. However, you might take some action based upon your application.

 Example 1
Cancel the task's current time interval. The time remaining, if any, should be returned in
timer units in register 0.

TTIMER CANCEL,TU

 Example 2
Return the time remaining, in microseconds, to the storage location addressed by the label
OUTAREA. Do not cancel the interval.

 TTIMER ,MIC,OUTAREA
 .
 .
 DS ðD
OUTAREA DC 2F

 TTIMER — Test Interval Timer 1031

 TTIMER Macro

1032 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBDEVN Macro

UCBDEVN — Return EBCDIC Device Number for a UCB

 Description
Use the UCBDEVN macro to obtain the printable EBCDIC format for the device number of a
given unit control block (UCB). When issuing UCBDEVN, an unauthorized caller must pass
a copy of the UCB unless one of the following is true:

� The caller received the UCB address from an authorized program that can guarantee
that the UCB is pinned or cannot be deleted by a dynamic configuration change.

� The caller is running in an environment where dynamic configuration changes cannot
occur.

� The caller can otherwise guarantee that the UCB will not be deleted.

The caller can obtain a copy of the UCB by using the UCBSCAN macro. See OS/390 MVS
Programming: Assembler Services Guide for information about accessing UCBs.

Before issuing UCBDEVN, authorized callers must pin the UCB unless one of the following is
true:

� The caller is running in an environment where dynamic configuration changes cannot
occur

� The caller can otherwise guarantee that the UCB will not be deleted.

If you are coding an authorized program that must pin the UCB, see OS/390 MVS
Programming: Authorized Assembler Services Guide for information about accessing UCBs.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No locks held
Control parameters: No requirement

 Programming Requirements
If you do not specify the UCBPTR parameter, you must include the IEFUCBOB mapping
macro and establish addressability to the UCB common segment through a USING
statement.

 Restrictions
The caller of UCBDEVN cannot pass a copy of a UCB for a nonbase exposure of a
multiple-exposure device. Multiple-exposure devices were supported prior to MVS/ESA SP
5.2.

| When issuing UCBDEVN, the caller cannot pass a copy of an alias UCB of a parallel access
| volume.

UCBDEVN accepts above 16 megabyte UCBs, below 16 megabyte UCBs, and captured
UCBs as input. To specify an above 16 megabyte UCB, the caller must run in AMODE 31.
If the caller runs in AMODE 31 and passes a 24-bit UCB pointer, the pointer must have a
clean high order byte.

 Copyright IBM Corp. 1988, 1999 1033

 UCBDEVN Macro

Input Register Information
Before issuing the UCBDEVN macro, the caller must ensure that GPR 13 contains the
address of an 18-word save area.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The UCBDEVN macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede UCBDEVN.

UCBDEVN

␣ One or more blanks must follow UCBDEVN.

DEVN=devnumber devnumber: RS-type address.

 ,UCBPTR=ucbptr ucbptr: RX-type address.

Note: If you omit this parameter, the system assumes that you
have established addressability to the UCB common segment.

| ,NONBASE=NO| Default: NO
| ,NONBASE=YES

 Parameters
The parameters are explained as follows:

DEVN=devnumber
Specifies the name of the fullword area in which the system returns the EBCDIC device
number.

,UCBPTR=ucbptr
Specifies a fullword containing the address of the UCB common segment, which
contains the device number you need. If you omit this parameter, you must do the
following:

� Include the IEFUCBOB mapping macro in your program to map the UCB.

� Establish addressability to the UCB common segment through a USING statement.

� Place the address of the UCB common segment in the register specified in the
USING statement.

1034 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBDEVN Macro

If the UCB common segment is for a multiple exposure device (supported on systems
prior to MVS/ESA SP 5.2), the system returns printable EBCDIC for the base exposure
device number.

| ,NONBASE=NO
| ,NONBASE=YES
| Specifies which device number the caller should receive for a specified alias UCB of a
| parallel access volume. NO specifies the base device number, and YES specifies the
| alias device number.

| Note: If a copy of a PAV-ALIAS UCB is passed as input, the alias device number is
| returned regardless of the setting of this keyword.

Return and Reason Codes
UCBDEVN does not return any return codes.

 Example
Use the UCBDEVN macro to obtain the printable EBCDIC form of the device number for the
UCB whose address is in UCBVAL. The system is to return the value in the fullword named
WORD1.

UCBDEVN DEVN=WORD1,UCBPTR=UCBVAL

 UCBDEVN — Return EBCDIC Device Number for a UCB 1035

 UCBDEVN Macro

1036 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBINFO Macro

UCBINFO — Return Information from a UCB

 Description
Use the UCBINFO macro to obtain information from a unit control block (UCB) for a
specified device. The UCBINFO macro provides the following options:

DEVCOUNT Returns a count of the UCBs for a device class.

DEVINFO Returns information about a device, specifically, why the device is offline.
| For the base UCB of a parallel access volume, DEVINFO returns the number
| of alias UCBs that are defined and the number that are usable.

PATHINFO Returns information about the device path and type of channel path
associated with the device.

PATHMAP Returns information about the device path.

PRFXDATA Obtains a copy of the UCB prefix extension segment.

| PAVINFO Returns information about the alias UCBs for a parallel access volume.

The options of the UCBINFO macro have the same environmental specifications,
programming requirements, restrictions, register information, and performance implications
described below, except where noted in the explanations of each option.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any
Control parameters: Control parameters must be in the primary address space or, for

AR-mode callers, must be in an address/data space that is
addressable through a public entry on the caller's dispatchable unit
access list (DU-AL).

 Programming Requirements
Before issuing the UCBINFO macro, you can issue the UCBSCAN macro to obtain the
device number, which you must provide as input to UCBINFO. See OS/390 MVS
Programming: Assembler Services Guide for information about accessing UCBs.

The caller must include the appropriate mapping macro for the UCBINFO option being used:

Option Mapping Macro
DEVCOUNT None
DEVINFO IOSDDEVI mapping macro
PATHINFO IOSDPATH mapping macro
PATHMAP IOSDMAP mapping macro
PRFXDATA IOSDUPI mapping macro

| PAVINFO IOSDPAVA mapping macro

See OS/390 MVS Data Areas, Vol 2 (DCCB-ITTCTE).

 Copyright IBM Corp. 1988, 1999 1037

 UCBINFO Macro

 Restrictions
None.

Input Register Information
Before issuing the UCBINFO macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 A reason code; otherwise, used as a work register by the system
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 A return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

 Performance Implications
None.

1038 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBINFO Macro

 UCBINFO DEVCOUNT
Use the UCBINFO DEVCOUNT macro to obtain a count of the UCBs for a device class.

 Syntax
The standard form of the DEVCOUNT option of the UCBINFO macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede UCBINFO.

UCBINFO

␣ One or more blanks must follow UCBINFO.

DEVCOUNT

,COUNT=count addr count addr: RS-type address or register (2) - (12).

| GROUP=DEVCLASS|
|

 ,DEVCLASS=ALL Default: ALL
 ,DEVCLASS=CHAR
 ,DEVCLASS=COMM
 ,DEVCLASS=CTC
 ,DEVCLASS=DASD
 ,DEVCLASS=DISP
 ,DEVCLASS=TAPE
 ,DEVCLASS=UREC

| GROUP=OTHER|
|
| ,DEVGROUP=PAVBASE| Default: PAVBASE
| ,DEVGROUP=PAVALIAS

 ,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 2

 ,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

 ,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

 Parameters
The parameters are explained as follows:

DEVCOUNT
Specifies that the system is to return a count of the UCBs.

,COUNT=count addr
Specifies the address of the fullword field that is to receive the count.

| ,GROUP=DEVCLASS
| GROUP specifies the grouping upon which the UCB count is based.

| DEVCLASS indicates that the UCB count is based on device classes.

 UCBINFO — Return Information from a UCB 1039

 UCBINFO Macro

| ,DEVCLASS=ALL |CHAR|COMM|CTC|DASD|DISP|TAPE|UREC
| Specifies the device class for which the corresponding UCBs are to be counted:

| ALL Counts UCBs for all device classes
| CHAR Counts UCBs for character reader device class
| COMM Counts UCBs for communications device class
| CTC Counts UCBs for channel to channel device class
| DASD Counts UCBs for direct access device class
| DISP Counts UCBs for display device class
| TAPE Counts UCBs for tape device class
| UREC Counts UCBs for unit record device class

| ,GROUP=OTHER
| GROUP specifies the grouping upon which the UCB count is based.

| OTHER indicates that the UCB count is not based on device classes.

| ,DEVGROUP=PAVBASE|PAVALIAS
| Specifies the device group for which the corresponding UCBs are to be counted.

| PAVBASE Counts UCBs for Parallel Access Volume (PAV) base UCBs.
| PAVALIAS Counts UCBs for Paralled Access Volume (PAV) alias UCBs.

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character storage area that contains the MVS I/O
configuration token. The caller can obtain this token by issuing the IOCINFO macro. If
the I/O configuration token that is current when UCBINFO is invoked does not match the
token whose address is supplied here, the system issues a return code to the caller.

If you set the input IOCTOKEN (specified by ioctoken addr) to binary zeros, UCBINFO
sets IOCTOKEN to the current I/O configuration token.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list the
system generates. PLISTVER is an optional input parameter on all forms of the macro,
including the list form. When using PLISTVER, specify it on all macro forms used for a
request and with the same value on all of the macro forms. The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form; in this way, MAX ensures that the parameter list does
not overwrite nearby storage.

� 2, if you use the currently available parameters.

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 2

,RETCODE=retcode addr
Specifies the address of a fullword field into which the system copies the return code
from GPR 15.

1040 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBINFO Macro

,RSNCODE=rsncode addr
Specifies the address of a fullword field into which the system copies the reason code
from GPR 0.

Return and Reason Codes
When the UCBINFO DEVCOUNT macro returns control to your program, GPR 15 (or
retcode addr, if you coded RETCODE) contains a return code, and GPR 0 (or rsncode addr,
if you coded RSNCODE) contains a reason code.

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None Meaning: The DEVCOUNT function completed successfully.

Action: None.

08 01 Meaning: Program error. A caller in AR mode specified an ALET
that was not valid.

Action: Correct the ALET and reissue the macro.

08 02 Meaning: Program error. The system could not access the caller's
parameter list.

Action: Check to see if your program inadvertently overlaid the
parameter list generated by the macro.

08 03 Meaning: Program error. The UCB address provided by the caller
does not represent a valid UCB.

Action: Correct the UCB address and reissue the macro.

08 05 Meaning: Program error. An error occurred when the system
referenced the caller-supplied area specified in the IOCTOKEN
parameter. This reason code is valid only for callers using the
IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter.

0C None Meaning: Environmental error. The I/O configuration token
supplied through the IOCTOKEN parameter is not current. This
return code is valid only for callers using the IOCTOKEN parameter.

Action: Obtain the current I/O configuration token by issuing an
IOCINFO macro or by setting the input IOCTOKEN parameter in the
UCBINFO macro to zero.

20 None Meaning: System error. An unexpected error occurred.

Action: Supply the return code to the appropriate IBM support
personnel.

 Example
To invoke UCBINFO to return a count of all DASD devices, code:

 UCBINFO DEVCOUNT,COUNT=CTAREA,DEVCLASS=DASD, X
 RETCODE=INFORTCD,RSNCODE=RSNCD
 .
 .
 .

 DS ðD
CTAREA DS F
INFORTCD DS F
RSNCD DS F

 UCBINFO — Return Information from a UCB 1041

 UCBINFO Macro

UCBINFO DEVCOUNT—List Form
Use the list form of the DEVCOUNT option of the UCBINFO macro together with the execute
form for applications that require reentrant code. The list form of the macro defines an area
of storage that the execute form uses to contain the parameters.

This macro is an alternative list form macro, and requires a different technique for using the
list form as compared to the conventional list form macros. See “Alternative List Form
Macros” on page 13 for further information.

The list form of the DEVCOUNT option of the UCBINFO macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede UCBINFO.

UCBINFO

␣ One or more blanks must follow UCBINFO.

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 2

MF=(L,list addr) list addr: RX-type address
MF=(L,list addr, attr) attr: 1- to 60-character input string
MF=(L,list addr,0D) Default: 0D

 Parameters
The parameters are explained under the standard form of UCBINFO DEVCOUNT with the
following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBINFO DEVCOUNT macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
0D, which forces the parameter list to a doubleword boundary.

1042 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBINFO Macro

UCBINFO DEVCOUNT—Execute Form
Use the execute form of the DEVCOUNT option of the UCBINFO macro together with the list
form of the macro for applications that require reentrant code. The execute form of the
macro stores the parameters into the storage area defined by the list form.

The execute form of the DEVCOUNT option of the UCBINFO macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede UCBINFO.

UCBINFO

␣ One or more blanks must follow UCBINFO.

DEVCOUNT

,COUNT=count addr count addr: RS-type address or register (2) - (12).

 ,DEVCLASS=ALL Default: ALL
 ,DEVCLASS=CHAR
 ,DEVCLASS=COMM
 ,DEVCLASS=CTC
 ,DEVCLASS=DASD
 ,DEVCLASS=DISP
 ,DEVCLASS=TAPE
 ,DEVCLASS=UREC

 ,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 2

 ,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

 ,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).
,MF=(E,list addr,COMPLETE) Default: COMPLETE

 Parameters
The parameters are explained under the standard form of UCBINFO DEVCOUNT with the
following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBINFO DEVCOUNT macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the macro is to check for required
parameters and supply defaults for omitted optional parameters.

 UCBINFO — Return Information from a UCB 1043

 UCBINFO Macro

 UCBINFO DEVINFO
Use the UCBINFO DEVINFO macro to obtain information about a device, specifically,
reasons why the device is offline.

 Syntax
The standard form of the DEVINFO option of the UCBINFO macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede UCBINFO.

UCBINFO

␣ One or more blanks must follow UCBINFO.

DEVINFO

,DEVIAREA=deviarea addr deviarea addr: RX-type address or register (2) - (12).

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

 ,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 2

 ,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

 ,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

 Parameters
The parameters are explained as follows:

DEVINFO
Specifies that the system is to return information about the specified UCB.

,DEVIAREA=deviarea addr
Specifies the address of a required 256-byte output field into which the system is to
return information about the specified UCB. This field is mapped by the mapping macro
IOSDDEVI.

,DEVN=devn addr
Specifies the address of a halfword that contains, in binary form, the device number of
the device. The DEVN and UCBPTR parameters are mutually exclusive.

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character storage area that contains the MVS I/O
configuration token. The caller can obtain this token by issuing the IOCINFO macro. If
the I/O configuration token that is current when UCBINFO is invoked does not match the
token whose address is supplied here, the system issues a return code to the caller.

If you set the input IOCTOKEN (specified by ioctoken addr) to binary zeros, UCBINFO
sets IOCTOKEN to the current I/O configuration token.

1044 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBINFO Macro

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list the
system generates. PLISTVER is an optional input parameter on all forms of the macro,
including the list form. When using PLISTVER, specify it on all macro forms used for a
request and with the same value on all of the macro forms. The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form; in this way, MAX ensures that the parameter list does
not overwrite nearby storage.

� 2, if you use the currently available parameters.

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 2

,RETCODE=retcode addr
Specifies the address of a fullword field into which the system copies the return code
from GPR 15.

,RSNCODE=rsncode addr
Specifies the address of a fullword field into which the system copies the reason code
from GPR 0.

Return and Reason Codes
When the UCBINFO DEVINFO macro returns control to your program, GPR 15 (or retcode
addr, if you coded RETCODE) contains a return code, and GPR 0 (or rsncode addr, if you
coded RSNCODE) contains a reason code.

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None Meaning: The DEVINFO function completed successfully.

Action: None.

04 None Meaning: Program error. No UCB exists for the device number
specified in the DEVN parameter.

Action: Correct the device number and reissue the macro.

08 01 Meaning: Program error. A caller in AR mode specified an ALET
that was not valid.

Action: Correct the ALET and reissue the macro.

08 02 Meaning: Program error. An error occurred when the system tried
to access the caller's parameter list.

Action: Ensure that you have met the environmental requirements
for the macro, and reissue the macro.

08 03 Meaning: Program error. An unauthorized caller specified the
UCBPTR parameter. The UCBPTR parameter can be specified by
authorized callers only.

Action: Specify the DEVN parameter instead of the UCBPTR
parameter to indicate the device for which the system is to obtain
information.

 UCBINFO — Return Information from a UCB 1045

 UCBINFO Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 05 Meaning: Program error. An error occurred when the system
referenced the caller-supplied area specified in the IOCTOKEN
parameter. This reason code is valid only for callers using the
IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter.

08 09 Meaning: Program error. An error occurred when the system
attempted to reference the area specified by the DEVIAREA
parameter.

Action: Correct the address specified on the DEVIAREA parameter
and reissue the macro.

0C None Meaning: Environmental error. The I/O configuration token
supplied through the IOCTOKEN parameter is not current. This
return code is valid only for callers using the IOCTOKEN parameter.

Action: Obtain the current I/O configuration token by issuing an
IOCINFO macro or by setting the input IOCTOKEN parameter in the
UCBINFO macro to zero.

20 None Meaning: System error. An unexpected error occurred.

Action: Supply the return code to the appropriate IBM support
personnel.

| 28| None| Meaning: Program error. The device number provided by the
| caller is an alias device number of a parallel access volume. For
| information about a parallel access volume, the caller must specify
| the base device number.

| Action: Correct the DEVN parameter and reissue the macro.

 Example
To invoke UCBINFO to return device information, code:

 UCBINFO DEVINFO,DEVIAREA=INFOAREA,DEVN=DEVNUM, X
 RETCODE=INFORTCD
 .
 .
 .

 DS ðD
INFOAREA DS CL256
INFORTCD DS F
DEVNUM DS H

1046 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBINFO Macro

UCBINFO DEVINFO—List Form
Use the list form of the DEVINFO option of the UCBINFO macro together with the execute
form for applications that require reentrant code. The list form of the macro defines an area
of storage that the execute form uses to contain the parameters.

This macro is an alternative list form macro, and requires a different technique for using the
list form as compared to the conventional list form macros. See “Alternative List Form
Macros” on page 13 for further information.

The list form of the DEVINFO option of the UCBINFO macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede UCBINFO.

UCBINFO

␣ One or more blanks must follow UCBINFO.

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 2

MF=(L,list addr) list addr: RX-type address
MF=(L,list addr, attr) attr: 1- to 60-character input string
MF=(L,list addr,0D) Default: 0D

 Parameters
The parameters are explained under the standard form of UCBINFO DEVINFO with the
following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBINFO DEVINFO macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
0D, which forces the parameter list to a doubleword boundary.

 UCBINFO — Return Information from a UCB 1047

 UCBINFO Macro

UCBINFO DEVINFO—Execute Form
Use the execute form of the DEVINFO option of the UCBINFO macro together with the list
form of the macro for applications that require reentrant code. The execute form of the
macro stores the parameters into the storage area defined by the list form.

The execute form of the DEVINFO option of the UCBINFO macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede UCBINFO.

UCBINFO

␣ One or more blanks must follow UCBINFO.

DEVINFO

,DEVIAREA=deviarea addr deviarea addr: RX-type address or register (2) - (12).

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

 ,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 2

 ,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

 ,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).
,MF=(E,list addr,COMPLETE) Default: COMPLETE

 Parameters
The parameters are explained under the standard form of UCBINFO DEVINFO with the
following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBINFO DEVINFO macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the macro is to check for required
parameters and supply defaults for omitted optional parameters.

1048 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBINFO Macro

 UCBINFO PATHINFO
Use the UCBINFO PATHINFO macro to obtain information about the device path and type of
channel path associated with the device.

 Syntax
The standard form of the PATHINFO option of the UCBINFO macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede UCBINFO.

UCBINFO

␣ One or more blanks must follow UCBINFO.

PATHINFO

,PATHAREA=patharea addr patharea addr: RX-type address or register (2) - (12).

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

 ,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 2

 ,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

 ,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

 Parameters
The parameters are explained as follows:

PATHINFO
Specifies that the system is to return information about the device path and type of
channel path for the specified UCB.

,PATHAREA= patharea addr
Specifies the address of the required 256-byte output field into which the system is to
return information about the device path and type of channel path for the specified UCB.
This field is mapped by the mapping macro IOSDPATH.

,DEVN=devn addr
Specifies the address of a halfword that contains, in binary form, the device number of
the device.

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character storage area that contains the MVS I/O
configuration token. The caller can obtain this token by issuing the IOCINFO macro. If
the I/O configuration token that is current when UCBINFO is invoked does not match the
token whose address is supplied here, the system issues a return code to the caller.

If you set the input IOCTOKEN (specified by ioctoken addr) to binary zeros, UCBINFO
sets IOCTOKEN to the current I/O configuration token.

 UCBINFO — Return Information from a UCB 1049

 UCBINFO Macro

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list the
system generates. PLISTVER is an optional input parameter on all forms of the macro,
including the list form. When using PLISTVER, specify it on all macro forms used for a
request and with the same value on all of the macro forms. The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form; in this way, MAX ensures that the parameter list does
not overwrite nearby storage.

� 2, if you use the currently available parameters.

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 2

,RETCODE=retcode addr
Specifies the address of a fullword field into which the system copies the return code
from GPR 15.

,RSNCODE=rsncode addr
Specifies the address of a fullword field into which the system copies the reason code
from GPR 0.

Return and Reason Codes
When the UCBINFO PATHINFO macro returns control to your program, GPR 15 (or retcode
addr, if you coded RETCODE) contains a return code, and GPR 0 (or rsncode addr, if you
coded RSNCODE) contains a reason code.

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None Meaning: The PATHINFO function completed successfully.

Action: None.

04 None Meaning: Program error. No UCB exists for the device number
specified in the DEVN parameter.

Action: Correct the device number and reissue the macro.

08 01 Meaning: Program error. A caller in AR mode specified an ALET
that was not valid.

Action: Correct the ALET and reissue the macro.

08 02 Meaning: Program error. An error occurred when the system tried
to access the caller's parameter list.

Action: Ensure that you have met the environmental requirements
for the macro, and reissue the macro.

08 03 Meaning: Program error. An unauthorized caller specified the
UCBPTR parameter. The UCBPTR parameter can be specified by
authorized callers only.

Action: Specify the DEVN parameter instead of the UCBPTR
parameter to indicate the device for which the system is to obtain
path information.

1050 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBINFO Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 05 Meaning: Program error. An error occurred when the system
referenced the caller-supplied area specified in the IOCTOKEN
parameter. This reason code is valid only for callers using the
IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter.

08 08 Meaning: Program error. An error occurred when the system
attempted to reference the area specified by the PATHAREA
parameter.

Action: Correct the address specified on the PATHAREA
parameter and reissue the macro.

0C None Meaning: Environmental error. The I/O configuration token
supplied through the IOCTOKEN parameter is not current. This
return code is valid only for callers using the IOCTOKEN parameter.

Action: Obtain the current I/O configuration token by issuing an
IOCINFO macro or by setting the input IOCTOKEN parameter in the
UCBINFO macro to zero.

18 04 Meaning: System error. The subchannel is in permanent error and
cannot be accessed.

Action: Supply the return and reason codes to the appropriate IBM
support personnel.

18 08 Meaning: Environmental error. The UCB is not connected to a
subchannel.

Action: Verify that there is a device at the device number
associated with the subchannel, and reissue the macro.

20 None Meaning: System error. An unexpected error occurred.

Action: Supply the return code to the appropriate IBM support
personnel.

 Example
To invoke UCBINFO to return device path and type of channel path information, code:

 UCBINFO PATHINFO,PATHAREA=INFOAREA,DEVN=DEVNUM, X
 RETCODE=INFORTCD
 .
 .
 .

 DS ðD
INFOAREA DS CL256
INFORTCD DS F
DEVNUM DS H

 UCBINFO — Return Information from a UCB 1051

 UCBINFO Macro

UCBINFO PATHINFO—List Form
Use the list form of the PATHINFO option of the UCBINFO macro together with the execute
form for applications that require reentrant code. The list form of the macro defines an area
of storage that the execute form uses to contain the parameters.

This macro is an alternative list form macro, and requires a different technique for using the
list form as compared to the conventional list form macros. See “Alternative List Form
Macros” on page 13 for further information.

The list form of the PATHINFO option of the UCBINFO macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede UCBINFO.

UCBINFO

␣ One or more blanks must follow UCBINFO.

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 2

MF=(L,list addr) list addr: RX-type address
MF=(L,list addr, attr) attr: 1- to 60-character input string
MF=(L,list addr,0D) Default: 0D

 Parameters
The parameters are explained under the standard form of UCBINFO PATHINFO with the
following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBINFO PATHINFO macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
0D, which forces the parameter list to a doubleword boundary.

1052 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBINFO Macro

UCBINFO PATHINFO—Execute Form
Use the execute form of the PATHINFO option of the UCBINFO macro together with the list
form of the macro for applications that require reentrant code. The execute form of the
macro stores the parameters into the storage area defined by the list form.

The execute form of the PATHINFO option of the UCBINFO macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede UCBINFO.

UCBINFO

␣ One or more blanks must follow UCBINFO.

PATHINFO

,PATHAREA=patharea addr patharea addr: RX-type address or register (2) - (12).

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

 ,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 2

 ,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

 ,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).
,MF=(E,list addr,COMPLETE) Default: COMPLETE

 Parameters
The parameters are explained under the standard form of UCBINFO PATHINFO with the
following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBINFO PATHINFO macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the macro is to check for required
parameters and supply defaults for omitted optional parameters.

 UCBINFO — Return Information from a UCB 1053

 UCBINFO Macro

 UCBINFO PATHMAP
Use the UCBINFO PATHMAP macro to obtain information about the device path.

 Syntax
The standard form of the PATHMAP option of the UCBINFO macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede UCBINFO.

UCBINFO

␣ One or more blanks must follow UCBINFO.

PATHMAP

,MAPAREA=maparea addr maparea addr: RX-type address or register (2) - (12).

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

 ,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 2

 ,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

 ,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

 Parameters
The parameters are explained as follows:

PATHMAP
Specifies that the system is to return information about the device path for the specified
UCB.

,MAPAREA= maparea addr
Specifies a required 40-byte field into which the system is to return information about the
device path for the specified UCB. This field is mapped by the mapping macro
IOSDMAP.

,DEVN=devn addr
Specifies the address of a halfword that contains, in binary form, the device number of
the device.

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character storage area that contains the MVS I/O
configuration token. The caller can obtain this token by issuing the IOCINFO macro. If
the I/O configuration token that is current when UCBINFO is invoked does not match the
token whose address is supplied here, the system issues a return code to the caller.

If you set the input IOCTOKEN (specified by ioctoken addr) to binary zeros, UCBINFO
sets IOCTOKEN to the current I/O configuration token.

1054 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBINFO Macro

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list the
system generates. PLISTVER is an optional input parameter on all forms of the macro,
including the list form. When using PLISTVER, specify it on all macro forms used for a
request and with the same value on all of the macro forms. The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form; in this way, MAX ensures that the parameter list does
not overwrite nearby storage.

� 2, if you use the currently available parameters.

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 2

,RETCODE=retcode addr
Specifies the address of a fullword field into which the system copies the return code
from GPR 15.

,RSNCODE=rsncode addr
Specifies the address of a fullword field into which the system copies the reason code
from GPR 0.

Return and Reason Codes
When the UCBINFO PATHMAP macro returns control to your program, GPR 15 (or retcode
addr, if you coded RETCODE) contains a return code, and GPR 0 (or rsncode addr, if you
coded RSNCODE) contains a reason code.

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None Meaning: The PATHMAP function completed successfully.

Action: None.

04 None Meaning: Program error. No UCB exists for the device number
specified in the DEVN parameter.

Action: Correct the device number and reissue the macro.

08 01 Meaning: Program error. A caller in AR mode specified an ALET
that was not valid.

Action: Correct the ALET and reissue the macro.

08 02 Meaning: Program error. An error occurred when the system tried
to access the caller's parameter list.

Action: Ensure that you have met the environmental requirements
for the macro, and reissue the macro.

08 03 Meaning: Program error. An unauthorized caller specified the UCB
common address in the MAPAREA field. Unauthorized callers
cannot specify the UCB in MAPAREA.

Action: Use the DEVN parameter instead of the MAPAREA field to
indicate the device for which the system is to obtain path
information.

 UCBINFO — Return Information from a UCB 1055

 UCBINFO Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 05 Meaning: Program error. An error occurred when the system
referenced the caller-supplied area specified in the IOCTOKEN
parameter. This reason code is valid only for callers using the
IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter.

08 06 Meaning: Program error. An error occurred when the system
attempted to reference the area specified by the MAPAREA
parameter.

Action: Correct the address specified for MAPAREA and reissue
the macro.

0C None Meaning: Environmental error. The I/O configuration token
supplied through the IOCTOKEN parameter is not current. This
return code is valid only for callers using the IOCTOKEN parameter.

Action: Obtain the current I/O configuration token by issuing an
IOCINFO macro or by setting the input IOCTOKEN parameter in the
UCBINFO macro to zero.

10 04 Meaning: System error. The subchannel is in permanent error and
cannot be accessed.

Action: Supply the return and reason code to the appropriate IBM
support personnel.

20 None Meaning: System error. An unexpected error occurred.

Action: Supply the return code to the appropriate IBM support
personnel.

 Example
To invoke UCBINFO to return device path information, code:

 UCBINFO PATHMAP,MAPAREA=INFOAREA,DEVN=DEVNUM, X
 RETCODE=INFORTCD
 .
 .
 .

 DS ðD
INFOAREA DS CL256
INFORTCD DS F
DEVNUM DS H

1056 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBINFO Macro

UCBINFO PATHMAP—List Form
Use the list form of the PATHMAP option of the UCBINFO macro together with the execute
form for applications that require reentrant code. The list form of the macro defines an area
of storage that the execute form uses to contain the parameters.

This macro is an alternative list form macro, and requires a different technique for using the
list form as compared to the conventional list form macros. See “Alternative List Form
Macros” on page 13 for further information.

The list form of the PATHMAP option of the UCBINFO macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede UCBINFO.

UCBINFO

␣ One or more blanks must follow UCBINFO.

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 2

MF=(L,list addr) list addr: RX-type address
MF=(L,list addr, attr) attr: 1- to 60-character input string
MF=(L,list addr,0D) Default: 0D

 Parameters
The parameters are explained under the standard form of UCBINFO PATHMAP with the
following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBINFO PATHMAP macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
0D, which forces the parameter list to a doubleword boundary.

 UCBINFO — Return Information from a UCB 1057

 UCBINFO Macro

UCBINFO PATHMAP—Execute Form
Use the execute form of the PATHMAP option of the UCBINFO macro together with the list
form of the macro for applications that require reentrant code. The execute form of the
macro stores the parameters into the storage area defined by the list form.

The execute form of the PATHMAP option of the UCBINFO macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede UCBINFO.

UCBINFO

␣ One or more blanks must follow UCBINFO.

PATHMAP

,MAPAREA=maparea addr maparea addr: RX-type address or register (2) - (12).

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

 ,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 2

 ,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

 ,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).
,MF=(E,list addr,COMPLETE) Default: COMPLETE

 Parameters
The parameters are explained under the standard form of the UCBINFO PATHMAP macro
with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBINFO PATHMAP macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the macro is to check for required
parameters and supply defaults for omitted optional parameters.

1058 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBINFO Macro

 UCBINFO PRFXDATA

Product-sensitive programming interface

Use the UCBINFO PRFXDATA macro to obtain a copy of the UCB prefix extension segment.

 Syntax
The standard form of the PRFXDATA option of the UCBINFO macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede UCBINFO.

UCBINFO

␣ One or more blanks must follow UCBINFO.

PRFXDATA

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

,UCBPAREA=ucbparea addr ucbparea addr: RX-type address or register (2) - (12).

 ,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 2

 ,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

 ,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

 Parameters
The parameters are explained as follows:

PRFXDATA
Specifies that the system is to obtain information from the UCB prefix extension
segment.

,DEVN=devn addr
Specifies the address of a halfword that contains, in binary form, the device number of
the device.

,UCBPAREA= ucbparea addr
Specifies the address of a 48-character storage area into which the system copies the
UCB prefix extension segment. The IOSDUPI mapping macro maps the area.

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character storage area that contains the MVS I/O
configuration token. The caller can obtain this token by issuing the IOCINFO macro. If
the I/O configuration token that is current when UCBINFO is invoked does not match the
token whose address is supplied here, the system issues a return code to the caller.

If you set the input IOCTOKEN (specified by ioctoken addr) to binary zeros, UCBINFO
sets IOCTOKEN to the current I/O configuration token.

 UCBINFO — Return Information from a UCB 1059

 UCBINFO Macro

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list the
system generates. PLISTVER is an optional input parameter on all forms of the macro,
including the list form. When using PLISTVER, specify it on all macro forms used for a
request and with the same value on all of the macro forms. The values are:

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form; in this way, MAX ensures that the parameter list does
not overwrite nearby storage.

� 2, if you use the currently available parameters.

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 2

,RETCODE=retcode addr
Specifies the address of a fullword field into which the system copies the return code
from GPR 15.

,RSNCODE=rsncode addr
Specifies the address of a fullword field into which the system copies the reason code
from GPR 0.

Return and Reason Codes
When the UCBINFO PRFXDATA macro returns control to your program, GPR 15 (or retcode
addr, if you coded RETCODE) contains a return code, and GPR 0 (or rsncode addr, if you
coded RSNCODE) contains a reason code.

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None Meaning: The PRFXDATA function completed successfully.

Action: None.

04 None Meaning: Program error. No UCB exists for the device number
specified in the DEVN parameter.

Action: Correct the device number and reissue the macro.

08 01 Meaning: Program error. A caller in AR mode specified an ALET
that was not valid.

Action: Correct the ALET and reissue the macro.

08 02 Meaning: Program error. An error occurred when the system tried
to access the caller's parameter list.

Action: Ensure that you have met the environmental requirements
for the macro, and reissue the macro.

08 03 Meaning: Program error. An unauthorized caller specified the
UCBPTR parameter. The UCBPTR parameter can be specified by
authorized callers only.

Action: Specify the DEVN parameter instead of the UCBPTR
parameter to indicate the device for which the system is to obtain
information.

1060 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBINFO Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 05 Meaning: Program error. An error occurred when the system
referenced the caller-supplied area specified in the IOCTOKEN
parameter. This reason code is valid only for callers using the
IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter.

0C None Meaning: Environmental error. The I/O configuration token
supplied through the IOCTOKEN parameter is not current. This
return code is valid only for callers using the IOCTOKEN parameter.

Action: Obtain the current I/O configuration token by issuing an
IOCINFO macro or by setting the input IOCTOKEN parameter in the
UCBINFO macro to zero.

20 None Meaning: System error. An unexpected error occurred.

Action: Supply the return code to the appropriate IBM support
personnel.

 Example
To invoke UCBINFO to obtain a copy of the UCB prefix extension segment, code:

 UCBINFO PRFXDATA,DEVN=DEVNUM,UCBPAREA=UAREA, X
 RETCODE=INFORTCD
 .
 .
 .

 DS ðD
DEVNUM DS H
UAREA DS CL48
INFORTCD DS F

 UCBINFO — Return Information from a UCB 1061

 UCBINFO Macro

UCBINFO PRFXDATA—List Form
Use the list form of the PRFXDATA option of the UCBINFO macro together with the execute
form for applications that require reentrant code. The list form of the macro defines an area
of storage that the execute form uses to contain the parameters.

This macro is an alternative list form macro, and requires a different technique for using the
list form as compared to the conventional list form macros. See “Alternative List Form
Macros” on page 13 for further information.

The list form of the PRFXDATA option of the UCBINFO macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede UCBINFO.

UCBINFO

␣ One or more blanks must follow UCBINFO.

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 2

MF=(L,list addr) list addr: RX-type address
MF=(L,list addr, attr) attr: 1- to 60-character input string
MF=(L,list addr,0D) Default: 0D

 Parameters
The parameters are explained under the standard form of UCBINFO PRFXDATA with the
following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBINFO PRFXDATA macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
0D, which forces the parameter list to a doubleword boundary.

1062 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBINFO Macro

UCBINFO PRFXDATA—Execute Form
Use the execute form of the PRFXDATA option of the UCBINFO macro together with the list
form of the macro for applications that require reentrant code. The execute form of the
macro stores the parameters into the storage area defined by the list form.

The execute form of the PRFXDATA option of the UCBINFO macro is written as follows:

 name name: symbol. Begin name in column 1.

␣ One or more blanks must precede UCBINFO.

UCBINFO

␣ One or more blanks must follow UCBINFO.

PRFXDATA

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).
,UCBPTR=ucbptr addr ucbptr addr: RS-type address or register (2) - (12).

Note: Specify either DEVN or UCBPTR, but not both.

,UCBPAREA=ucbparea addr ucbparea addr: RX-type address or register (2) - (12).

 ,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 2

 ,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

 ,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).
,MF=(E,list addr,COMPLETE) Default: COMPLETE

 Parameters
The parameters are explained under the standard form of UCBINFO PRFXDATA with the
following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBINFO PRFXDATA macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the macro is to check for required
parameters and supply defaults for omitted optional parameters.

End of Product-sensitive programming interface

 UCBINFO — Return Information from a UCB 1063

 UCBINFO Macro

| UCBINFO PAVINFO
| Use the UCBINFO PAVINFO macro to obtain information about the alias UCBs associated
| with a base for a parallel access volume.

| Syntax
| The standard form of the PAVINFO option of the UCBINFO macro is written as follows:

|
| name| name: symbol. Begin name in column 1.
|
| ␣| One or more blanks must precede UCBINFO.
|
| UCBINFO
|
| ␣| One or more blanks must follow UCBINFO.
|

|
| PAVINFO|
|
| PAVINFOSUM=NO| Default : NO
| PAVINFOSUM=YES|
|
| ,PAVAREA=pavarea addr| pavarea addr: RX-type address or register (2) - (12).
|
| ,PAVLEN=pavarea length addr| pavarea lenth addr: RX-type address or register (2) - (12).
|
| ,SCHINFO=YES| YES: indicates to retrieve model-dependent subchannel data for
| the device.
| ,SCHINFO=NO| NO: indicates do not retrieve model-dependent subchannel data for
| the device.

| Note: Retrieving subchannel data has the overhead of issuing a
| store subchannel (STSCH) instruction for each device being
| returned.

| Default : NO
| ,DEVN=devn addr| devn addr: RS-type address or register (2) - (12).
|
| ,IOCTOKEN=ioctoken addr| ioctoken addr: RX-type address or register (2) - (12).
|
| ,PLISTVER=IMPLIED_VERSION
| ,PLISTVER=MAX| Default: IMPLIED_VERSION
| ,PLISTVER=plistver| plistver: 2
|
| ,RETCODE=retcode addr| retcode addr: RX-type address or register (2) - (12).
|
| ,RSNCODE=rsncode addr| rsncode addr: RX-type address or register (2) - (12).
|

| Parameters
| The parameters are explained as follows:

| ,PAVINFO
| Specifies that the system return information about the alias UCBs for the specified base
| device number for a parallel access volume.

| ,PAVINFOSUM=NO/YES
| Specifies whether to retrieve only a sum of channel measurement data and model
| dependent subchannel data for the base device and all of its aliases.

| Note: The model dependent subchannel data is only retrieved if SCHINFO=YES.

1064 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBINFO Macro

| NO Do not just retrieve a total of channel measurement data and model
| dependent subchannel data for the base device and all of its aliases. This
| option causes each element of the PAVA array to contain information for
| the base device and each of its aliases.

| YES Retrieve only a sum of channel measurement data and model dependent
| subchannel data for the base device and all of its aliases. This option
| causes the first element of the PAVA array to contain information on the
| base device, however, the PAVACMB and PAVASMDB fields will contain
| totals for the base and all of its aliases.

| ,PAVAREA= pavarea addr
| Specifies the address of a required output field into which the system will return
| information about the alias UCBs for the specified base device number This field is
| mapped by the mapping macro IOSDPAVA.

| ,PAVLEN=pavarea lengthaddr
| Specifies the address or a register containing the length of the area specified by the
| PAVAREA parameter.

| ,SCHINFO=YES/NO
| Specifies whether to retrieve model-dependent subchannel data for the device.

| ,DEVN=devn addr
| Specifies the address of a halfword that contains the base device number in binary form.

| ,IOCTOKEN=ioctoken addr
| Specifies the address of a 48-character storage area that contains the MVS I/O
| configuration token. The caller can obtain this token by issuing the IOCINFO macro. If
| the I/O configuration token that is current when UCBINFO is invoked does not match the
| token whose address is supplied here, the system issues a return code to the caller.

| If you set the input IOCTOKEN (specified by ioctoken addr) to binary zeros, UCBINFO
| sets IOCTOKEN to the current I/O configuration token.

| ,PLISTVER=IMPLIED_VERSION
| ,PLISTVER=MAX
| ,PLISTVER=plistver
| Specifies the version of the macro. PLISTVER determines which parameter list the
| system generates. PLISTVER is an optional input parameter on all forms of the macro,
| including the list form. When using PLISTVER, specify it on all macro forms used for a
| request and with the same value on all of the macro forms. The values are:

| � IMPLIED_VERSION, which is the lowest version that allows all parameters
| specified on the request to be processed. If you omit the PLISTVER parameter,
| IMPLIED_VERSION is the default.

| � MAX, if you want the parameter list to be the largest size currently possible. This
| size might grow from release to release and affect the amount of storage that your
| program needs.

| If you can tolerate the size change, IBM recommends that you always specify
| PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
| list-form parameter list is always long enough to hold all the parameters you might
| specify on the execute form; in this way, MAX ensures that the parameter list does
| not overwrite nearby storage.

| � 2, if you use the currently available parameters.

| To code, specify in this input parameter one of the following:

| � IMPLIED_VERSION
| � MAX
| � A decimal value in the range of 1 - 3.

 UCBINFO — Return Information from a UCB 1065

 UCBINFO Macro

| ,RETCODE=retcode addr
| Specifies the address of a fullword field into which the system copies the return code
| from GPR 15.

| ,RSNCODE=rsncode addr
| Specifies the address of a fullword field into which the system copies the reason code
| from GPR 0.

| Return and Reason Codes
| When the UCBINFO PAVINFO macro returns control to your program, GPR 15 (or retcode
| addr, if you coded RETCODE) contains a return code, and GPR 0 (or rsncode addr, if you
| coded RSNCODE) contains a reason code.

| Hexadecimal
| Return Code
| Hexadecimal
| Reason Code
| Meaning and Action

| 00| None| Meaning: The PAVINFO function completed successfully.

| Action: None.

| 04| None| Meaning: Program error. No UCB exists for the device number
| specified in the DEVN parameter.

| Action: Correct the device number and reissue the macro.

| 08| 01| Meaning: Program error. A caller in AR mode specified an ALET
| that was not valid.

| Action: Correct the ALET and reissue the macro.

| 08| 02| Meaning: Program error. An error occurred when the system tried
| to access the caller's parameter list.

| Action: Ensure that you have met the environmental requirements
| for the macro, and reissue the macro.

| 08| 03| Meaning: Program error. An unauthorized caller specified the
| UCBPTR parameter. The UCBPTR parameter can be specified by
| authorized callers only.

| Action: Specify the DEVN parameter instead of the UCBPTR
| parameter to indicate the device for which the system is to obtain
| information.

| 08| 05| Meaning: Program error. An error occurred when the system
| referenced the caller-supplied area specified in the IOCTOKEN
| parameter. This reason code is valid only for callers using the
| IOCTOKEN parameter.

| Action: Correct the IOCTOKEN parameter and reissue the macro.

| 08| 0A| Meaning: Program error. An error occurred when the system
| attempted to reference the area specified by the PAVAREA
| parameter.

| Action: Correct the address specified on the PAVAREA parameter
| and reissue the macro.

| 0C| None| Meaning: Environmental error. The I/O configuration token
| supplied through the IOCTOKEN parameter is not current. This
| return code is valid only for callers using the IOCTOKEN parameter.

| Action: Obtain the current I/O configuration token by issuing an
| IOCINFO macro or by setting the input IOCTOKEN parameter in the
| UCBINFO macro to zero.

| 1C| 01| Meaning: Program error. The device number provided by the
| caller specifies a device that is not a DASD or is a PAV alias
| device.

| Action: Correct the DEVN parameter and reissue the macro.

| 1C| 02| Meaning: Program error. The work area specified with the
| PAVAREA parameter is not large enough to contain the minimum
| amount of data. No data is returned.

| Action: Check the count of the number of array elements in the
| first word of PAVAREA. Increase the size of the specified work
| area and reissue the macro.

| 20| None| Meaning: System error. An unexpected error occurred.

| Action: Supply the return code to the appropriate IBM support
| personnel.

1066 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBINFO Macro

| Hexadecimal
| Return Code
| Hexadecimal
| Reason Code
| Meaning and Action

| 28| None| Meaning: Program error. The device number provided by the
| caller is an alias device number of a parallel access volume. The
| caller must specify the base device number.

| Action: Correct the DEVN parameter and reissue the macro.

| Example
| To invoke UCBINFO to return information about alias UCBs for a base device number, code:

| UCBINFO PAVINFO,DEVN=DEVNUM,PAVAREA=INFOAREA,PAVLEN=AREALEN, X
| RETCODE=INFORTCD
| .
| .
| .
| DS ðD
| DEVNUM DS H
| INFOAREA DS CL256
| AREALEN DS F
| INFORTCD DS F

 UCBINFO — Return Information from a UCB 1067

 UCBINFO Macro

| UCBINFO PAVINFO—List Form
| Use the list form of the PAVINFO option of the UCBINFO macro together with the execute
| form for applications that require reentrant code. The list form of the macro defines an area
| of storage that the execute form uses to contain the parameters.

| The list form of the PAVINFO option of the UCBINFO macro is written as follows:

|
| name| name: symbol. Begin name in column 1.
|
| ␣| One or more blanks must precede UCBINFO.
|
| UCBINFO
|
| ␣| One or more blanks must follow UCBINFO.
|

|
| ,PLISTVER=IMPLIED_VERSION
| ,PLISTVER=MAX| Default: IMPLIED_VERSION
| ,PLISTVER=plistver| plistver: 2
|
| MF=(L,list addr)| list addr: RX-type address
| MF=(L,list addr, attr)| attr: 1- to 60-character input string
| MF=(L,list addr,0D)| Default: 0D
|
|

| Parameters
| The parameters are explained under the standard form of UCBINFO PAVINFO with the
| following exceptions:

| MF=(L,list addr)
| MF=(L,list addr,attr)
| MF=(L,list addr,0D)
| Specifies the list form of the UCBINFO PAVINFO macro.

| list addr is the name of a storage area to contain the parameters.

| attr is an optional 1- to 60-character input string, which can contain any value that is
| valid on an assembler DS pseudo-op. You can use this parameter to force boundary
| alignment of the parameter list. If you do not code attr, the system provides a value of
| X'0D', which forces the parameter list to a doubleword boundary.

1068 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBINFO Macro

| UCBINFO PAVINFO—Execute Form
| Use the execute form of the PAVINFO option of the UCBINFO macro together with the list
| form of the macro for applications that require reentrant code. The execute form of the
| macro stores the parameters into the storage area defined by the list form.

| The execute form of the PAVINFO option of the UCBINFO macro is written as follows:

|
| name| name: symbol. Begin name in column 1.
|
| ␣| One or more blanks must precede UCBINFO.
|
| UCBINFO
|
| ␣| One or more blanks must follow UCBINFO.
|

|
| PAVINFO|
|
| PAVINFOSUM=NO| Default : NO
| PAVINFOSUM=YES|
|
| ,PAVAREA=pavarea addr| pavarea addr: RX-type address or register (2) - (12).
|
| ,PAVLEN=pavarea length addr| pavarea lenth addr: RX-type address or register (2) - (12).
|
| ,DEVN=devn addr| devn addr: RX-type address or register (2) - (12).
|
| ,IOCTOKEN=ioctoken addr| ioctoken addr: RX-type address or register (2) - (12).
|
| ,PLISTVER=IMPLIED_VERSION
| ,PLISTVER=MAX| Default: IMPLIED_VERSION
| ,PLISTVER=plistver| plistver: 2
|
| ,RETCODE=retcode addr| retcode addr: RX-type address or register (2) - (12).
|
| ,RSNCODE=rsncode addr| rsncode addr: RX-type address or register (2) - (12).
|
| ,MF=(E,list addr)| list addr: RX-type address or address in register (2) - (12).
| ,MF=(E,list addr,COMPLETE)| Default: COMPLETE
|

| Parameters
| The parameters are explained under the standard form of UCBINFO PAVINFO with the
| following exceptions:

| ,MF=(E,list addr)
| ,MF=(E,list addr,COMPLETE)
| Specifies the execute form of the UCBINFO PAVINFO macro.

| list addr specifies the area that the system uses to contain the parameters.

| COMPLETE, which is the default, specifies that the macro is to check for required
| parameters and supply defaults for omitted optional parameters.

 UCBINFO — Return Information from a UCB 1069

 UCBINFO Macro

1070 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBSCAN Macro

UCBSCAN — Scan UCBs

 Description
Use the UCBSCAN macro to scan unit control blocks (UCBs) and return a copy of a UCB.

Two types of scans are available with UCBSCAN: A scan of all UCBs, and a scan of all
UCBs within a particular device class. For each type of scan, the caller may optionally:

� Restrict the scan to UCBs defined as static or installation-static.
� Restrict the scan to UCBs with 3-digit device numbers.
� Request nonbase exposures of a multiple-exposure device, supported on systems prior

to MVS/ESA SP 5.2.
| � Request alias UCBs for a parallel access volume.

� Specify the device number with which the scan should begin.

UCBSCAN presents the UCBs in ascending device number order. On each invocation,
UCBSCAN returns a copy of requested UCB segments and data in caller-supplied areas.
See OS/390 MVS Programming: Assembler Services Guide for information on accessing
UCBs.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state with any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 24- or 31-bit.
ASC mode: Primary or access register (AR).
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in the primary address space or, for AR-mode callers,

must be in an address/data space that is addressable through a
public entry on the caller's dispatchable unit access list (DU-AL).

 Programming Requirements
If in AR mode, issue SYSSTATE ASCENV=AR before issuing UCBSCAN.

 Restrictions
None.

Input Register Information
Before issuing the UCBSCAN macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Reason code if GPR 15 contains a return code of 04 or 08; otherwise, used as a

work register by the system
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

 Copyright IBM Corp. 1988, 1999 1071

 UCBSCAN Macro

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

 Performance Implications
None.

 Syntax
The standard form of the UCBSCAN macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede UCBSCAN.

UCBSCAN

␣ One or more blanks must follow UCBSCAN.

COPY

,WORKAREA=workarea addr workarea addr: RX-type address or register (2) - (12).

,UCBAREA=ucbarea addr ucbarea addr: RX-type address or register (2) - (12).

 ,CMXTAREA=cmxtarea
 addr

cmxtarea addr: RX-type address or register (2) - (12).

 ,CMXTAREA=NONE Default: NONE

 ,UCBPAREA=ucbparea
 addr

ucbparea addr: RX-type address or register (2) - (12).

 ,UCBPAREA=NONE Default: NONE

 ,DCEAREA=dcearea addr dcearea addr: RX-type address or register (2) - (12).
 ,DCEAREA=NONE Default: NONE

 ,DCELEN=length addr length addr: RS-type address or register (2) - (12).
 Note: DCELEN is valid only with DCEAREA and is required with

DCEAREA.

 ,VOLSER=volser addr volser addr: RS-type address or register (2) - (12).
 ,VOLSER=NONE Default: NONE

 ,DEVNCHAR=devnchar
 addr

devnchar addr: RS-type address or register (2) - (12).

 ,DEVN=devn addr devn addr: RS-type address or register (2) - (12).
 ,DEVN=0 Default: 0

 ,DYNAMIC=NO Default: NO
 ,DYNAMIC=YES

 ,RANGE=3DIGIT Default: 3DIGIT
 ,RANGE=ALL

 ,NONBASE=NO Default: NO
 ,NONBASE=YES

| ,UNBOUND_ALIAS=NO| Default: NO
| ,UNBOUND_ALIAS=YES

1072 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBSCAN Macro

| ,UNBOUND_ALIAS=ONLY
|

 ,DEVCLASS=ALL Default: ALL
 ,DEVCLASS=CHAR
 ,DEVCLASS=COMM
 ,DEVCLASS=CTC
 ,DEVCLASS=DASD
 ,DEVCLASS=DISP
 ,DEVCLASS=TAPE
 ,DEVCLASS=UREC

 ,DEVCID=devcid addr devcid addr: RS-type address
 ,DEVCID=0 Default: 0

 ,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).
 ,IOCTOKEN=NONE Default: NONE

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 1

 ,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

 ,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

 Parameters
The parameters are explained as follows:

COPY
Specifies that a copy of the UCB is to be obtained. See OS/390 HCD Planning for a list
of the MVS services that accept a UCB copy.

Note: When you issue UCBSCAN to obtain a UCB copy, the UCBID field in the copy is
set to x‘CC’.

,WORKAREA= workarea addr
Specifies the address of a 100-character work area used by the UCBSCAN service.
The caller must initialize this work area to binary zeros before starting a UCB scan. On
subsequent invocations of UCBSCAN within the same scan, the caller must leave the
contents of this work area unchanged.

,UCBAREA= ucbarea addr
Specifies the address of a 48-character storage area that will receive a copy of the UCB
common segment and the UCB device-dependent segment. See OS/390 HCD Planning
for a list of the MVS services that accept a UCB copy.

The caller does not need to initialize this area. Use the IEFUCBOB mapping macro to
map the area. The contents of certain fields in the copy are:

� The UCBEXTP field contains either:

– The address of the CMXTAREA, if CMXTAREA is below 16 MB

– 0, if CMXTAREA is above 16 MB or if the CMXTAREA parameter is not
specified

� The UCBNXUCB field is 0, because this field is not valid in the UCB copy.

� Address fields in the copy might not contain valid addresses, so do not use these
addresses to reference the data areas they point to.

 UCBSCAN — Scan UCBs 1073

 UCBSCAN Macro

,CMXTAREA=cmxtarea addr
,CMXTAREA=NONE

Specifies the address of a 32-character storage area that will receive a copy of the UCB
common extension segment. See OS/390 HCD Planning for a list of the MVS services
that accept a UCB copy and require this segment as part of a UCB copy.

Use the UCBCMEXT DSECT in the IEFUCBOB mapping macro to map the area. If the
CMXTAREA area is below 16 MB, the UCBEXTP field in the UCBAREA area contains
the address of the CMXTAREA area, If the CMXTAREA area is above 16 MB, the
caller must explicitly supply the address of the CMXTAREA area because the UCBEXTP
field will contain 0.

The UCBIEXT field contains 0 because this field is not valid in the UCB copy.

The UCBCLEXT field contains the address of the DCEAREA if the UCB has a device
class extension and the caller specified the DCEAREA parameter. Otherwise, the field
contains 0.

Product-sensitive programming interface

,UCBPAREA= ucbparea addr
,UCBPAREA=NONE

Specifies the address of a 48-character storage area that will receive a copy of the UCB
prefix extension segment. The area can be mapped by the IOSDUPI mapping macro.

End of Product-sensitive programming interface

,DCEAREA=dcearea addr
,DCEAREA=NONE

Specifies the address of a storage area that will receive a copy of the UCB device class
extension segment. See OS/390 HCD Planning for a list of the MVS services that
accept a UCB copy and require this segment as part of a UCB copy.

,DCELEN=length addr
Specifies the address of a 2-byte field that contains the length of the area specified by
DCEAREA. The length specified must be 1 through 256 bytes. DCELEN is required
with DCEAREA.

,VOLSER=volser addr
,VOLSER=NONE

Specifies the address of a 6-character field that indicates, in EBCDIC, the volume serial
number of the device for which a UCB copy is to be obtained.

,DEVNCHAR=devnchar addr
Specifies the address of a 4-character field that is to receive the EBCDIC device number
associated with the UCB copy.

,DEVN=devn addr
,DEVN=0

Specifies (DEVN=devn addr) an input halfword that contains, in binary form, the device
number with which the scan is to begin. The default, DEVN=0, starts the scan with the
first UCB.

,DYNAMIC=NO
,DYNAMIC=YES

Specifies whether the scan should be restricted to static and installation-static UCBs
(DYNAMIC=NO) or should also include dynamic UCBs (DYNAMIC=YES).

,RANGE=3DIGIT
,RANGE=ALL

Specifies whether the scan should be restricted to UCBs with 3-digit device numbers
(3DIGIT) or should also include UCBs with 4-digit device numbers (ALL).

1074 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBSCAN Macro

,NONBASE=NO
,NONBASE=YES

Specifies whether the scan should include nonbase exposures for a multiple-exposure
device, supported on systems prior to MVS/ESA SP 5.2. NO specifies only the base
exposure, and YES specifies all exposures.

| Specifies whether the scan should include bound alias UCBs for a parallel access
| volume. NO specifies that bound UCBs will not be included. YES specifies that bound
| alias UCBs will be included.

| ,UNBOUND_ALIAS=NO
| ,UNBOUND_ALIAS=YES
| ,UNBOUND_ALIAS=ONLY
| Specifies whether the scan should include unbound alias UCBs.

| YES Include unbound alias UCBs
| NO Do not include unbound alias UCBs
| ONLY Include only unbound alias UCBs

| Note: The UNBOUND_ALIAS function is intended for IOS use only.

,DEVCLASS=ALL
,DEVCLASS=CHAR
,DEVCLASS=COMM
,DEVCLASS=CTC
,DEVCLASS=DASD
,DEVCLASS=DISP
,DEVCLASS=TAPE
,DEVCLASS=UREC

Specifies the device class that is to be scanned:

ALL Scans UCBs for all device classes
CHAR Scans UCBs for character reader device class
COMM Scans UCBs for communications device class
CTC Scans UCBs for channel to channel device class
DASD Scans UCBs for direct access device class
DISP Scans UCBs for display device class
TAPE Scans UCBs for tape device class
UREC Scans UCBs for unit record device class

,DEVCID=devcid addr
Specifies the address of an 8-bit input field that contains the hexadecimal device class
ID of the device class to be scanned.

If you specify DEVCID, only UCBs of the particular device class specified will be
presented, and the DEVCLASS parameter is ignored.

,IOCTOKEN=ioctoken addr
,IOCTOKEN=NONE

Specifies the address of a 48-character storage area that contains the MVS I/O
configuration token. The caller can obtain this token by issuing the IOCINFO macro. If
the I/O configuration token that is current when UCBSCAN is invoked does not match
the token whose address is supplied as input by ioctoken addr, the caller will be notified
through a return code.

If the input IOCTOKEN (specified by ioctoken addr) is set to binary zeros, UCBSCAN
will set IOCTOKEN to the current I/O configuration token at the start of the scan.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list the
system generates. PLISTVER is an optional input parameter on all forms of the macro,
including the list form. When using PLISTVER, specify it on all macro forms used for a
request and with the same value on all of the macro forms. The values are:

 UCBSCAN — Scan UCBs 1075

 UCBSCAN Macro

� IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER parameter,
IMPLIED_VERSION is the default.

� MAX, if you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage that your
program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the
list-form parameter list is always long enough to hold all the parameters you might
specify on the execute form; in this way, MAX ensures that the parameter list does
not overwrite nearby storage.

� 1, if you use the currently available parameters.

To code, specify in this input parameter one of the following:

 � IMPLIED_VERSION
 � MAX
� A decimal value of 1

,RETCODE=retcode addr
Specifies the fullword location where the system is to store the return code. The return
code is also in GPR 15.

,RSNCODE=rsncode addr
Specifies the fullword location where the system is to store the reason code. The
reason code is also in GPR 0.

Return and Reason Codes
When control returns from USBSCAN, GPR 15 (and retcode addr, if you coded RETCODE)
contains a return code and, for some return codes, GPR 0 (or rsncode addr, if you coded
RSNCODE) contains a reason code.

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None Meaning: UCBSCAN completed successfully.

Action: None.

04 01 Meaning: UCBSCAN processing ended. All UCBs that met the
search criteria have been presented to the caller. The contents of
UCBAREA are unchanged, and WORKAREA has been reset to
binary zeros.

Action: None.

08 01 Meaning: Program error. A caller in AR mode specified an ALET
that was not valid.

Action: Correct the ALET and reissue the macro. Possibly the
caller wrote over an area in the parameter list; look for this error.

08 02 Meaning: Program error. An error occurred when the system tried
to access the caller's parameter list.

Action: Ensure that you have met the environmental requirements
for the macro, and reissue the macro.

08 03 Meaning: Program error. An error occurred in referencing the
caller-supplied area for the UCB copy; the area was specified in the
UCBAREA parameter.

Action: Correct the UCBAREA parameter.

08 04 Meaning: Program error. An error occurred in referencing the
caller-supplied area for the UCB prefix extension segment data.
This reason code is valid only for callers using the UCBPAREA
parameter.

Action: Correct the UCBPAREA parameter.

1076 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBSCAN Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 05 Meaning: Program error. An error occurred when the system
referenced the caller-supplied area specified in the IOCTOKEN
parameter. This reason code is valid only for callers using the
IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter.

08 08 Meaning: Program error. An error occurred in referencing the
caller-supplied work area specified in the WORKAREA parameter.

Action: Correct the WORKAREA parameter.

08 09 Meaning: Program error. An error occurred in referencing the
caller-supplied CMXTAREA area. This reason code is valid only for
callers using the CMXTAREA parameter.

Action: Correct the CMXTAREA parameter.

08 0B Meaning: Program error. An error occurred in referencing the
caller-supplied DCEAREA area. This reason code is valid only for
callers using the DCEAREA parameter.

Action: Correct the DCEAREA parameter.

08 0C Meaning: Program error. The caller specified a volume serial
number that is not valid. (Note that binary zeros are not considered
valid.) This reason code is valid only for callers using the VOLSER
parameter.

Action: Correct the VOLSER parameter.

08 0D Meaning: Program error. For the DCEAREA token, the caller
specified a length that is negative, is zero, or exceeds 256 bytes.
This reason code is valid only for callers using the DCELEN
parameter.

Action: Correct the DCELEN parameter.

0C None Meaning: Environmental error. The I/O configuration has changed,
so that the I/O configuration token supplied through the IOCTOKEN
parameter is not current. This return code is valid only for callers
using the IOCTOKEN parameter.

Action: Obtain the current I/O configuration token by issuing an
IOCINFO macro or by setting the input IOCTOKEN parameter in the
UCBINFO macro to zero. Start the scan from the beginning.

20 None Meaning: System error. An unexpected error occurred.

Action: Supply the return code to the appropriate IBM support
personnel.

 UCBSCAN — Scan UCBs 1077

 UCBSCAN Macro

UCBSCAN COPY—List Form
Use the list form of the UCBSCAN macro together with the execute form for applications that
require reentrant code. The list form of the macro defines an area of storage that the
execute form uses for storing the parameters.

 Syntax
This macro is an alternative list form macro, and requires a different technique for using the
list form as compared to the conventional list form macros. See “Alternative List Form
Macros” on page 13 for further information.

The list form of the COPY function of the UCBSCAN macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede UCBSCAN.

UCBSCAN

␣ One or more blanks must follow UCBSCAN.

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 1

MF=(L,list addr) list addr: Symbol.
MF=(L,list addr,attr) attr: 1- to 60-character input string.
MF=(L,list addr,0D) Default: 0D

 Parameters
The parameters are explained under that standard form of the UCBSCAN macro with the
following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBSCAN macro.

The list addr parameter specifies the address of the storage area for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force boundary
alignment of the parameter list. If you do not code attr, the system provides a value of
0D, which forces the parameter list to a doubleword boundary.

1078 OS/390 V2R8.0 MVS Assembler Services Reference

 UCBSCAN Macro

UCBSCAN COPY—Execute Form
Use the execute form of the UCBSCAN macro together with the list form for applications that
require reentrant code. The execute form of the macro stores the parameters into the
storage area defined by the list form.

 Syntax
The execute form of the COPY function of the UCBSCAN macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede UCBSCAN.

UCBSCAN

␣ One or more blanks must follow UCBSCAN.

COPY

,WORKAREA=workarea addr workarea addr: RX-type address or register (2) - (12).

,UCBAREA=ucbarea addr ucbarea addr: RX-type address or register (2) - (12).

 ,CMXTAREA=cmxtarea
 addr

cmxtarea addr: RX-type address or register (2) - (12).

 ,CMXTAREA=NONE Default: NONE

 ,UCBPAREA=ucbparea
 addr

ucbparea addr: RX-type address or register (2) - (12).

 ,UCBPAREA=NONE Default: NONE

 ,DCEAREA=dcearea addr dcearea addr: RX-type address or register (2) - (12).
 ,DCEAREA=NONE Default: NONE

 ,DCELEN=length addr length addr: RS-type address or register (2) - (12).
 Note: DCELEN is valid only with DCEAREA and is required with

DCEAREA.

 ,VOLSER=volser addr volser addr: RS-type address or register (2) - (12).
 ,VOLSER=NONE Default: NONE

 ,DEVNCHAR=devnchar
 addr

devnchar addr: RS-type address or register (2) - (12).

 ,DEVN=devn addr devn addr: RS-type address or register (2) - (12).
 ,DEVN=0 Default: 0

 ,DYNAMIC=NO Default: NO
 ,DYNAMIC=YES

 ,RANGE=3DIGIT Default: 3DIGIT
 ,RANGE=ALL

 ,NONBASE=NO Default: NO
 ,NONBASE=YES

| ,UNBOUND_ALIAS=NO| Default: NO
| ,UNBOUND_ALIAS=YES
| ,UNBOUND_ALIAS=ONLY
|

 ,DEVCLASS=ALL Default: ALL
 ,DEVCLASS=CHAR

 UCBSCAN — Scan UCBs 1079

 UCBSCAN Macro

 ,DEVCLASS=COMM
 ,DEVCLASS=CTC
 ,DEVCLASS=DASD
 ,DEVCLASS=DISP
 ,DEVCLASS=TAPE
 ,DEVCLASS=UREC

 ,DEVCID=devcid addr devcid addr: RS-type address
 ,DEVCID=0 Default: 0

 ,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).
 ,IOCTOKEN=NONE Default: NONE

 ,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX Default: IMPLIED_VERSION
 ,PLISTVER=plistver plistver: 1

 ,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

 ,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).
,MF=(E,list addr,COMPLETE) Default: COMPLETE

 Parameters
The parameters are explained under the standard form of the COPY function of the
UCBSCAN macro with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBSCAN macro.

The list addr parameter specifies the address of the storage area for the parameter list.
COMPLETE specifies that the system is to check for required parameters and supply
defaults for optional parameters that were not specified.

1080 OS/390 V2R8.0 MVS Assembler Services Reference

 UPDTMPB Macro

UPDTMPB — Update a Message Parameter Block for Substitution Data

 Description
To build a message parameter block (MPB), you must issue both BLDMPB and UPDTMPB.
BLDMPB initializes the MPB, and UPDTMPB adds one substitution token to the MPB each
time you issue it. Issue UPDTMPB once for each substitution token in the message.

You can also use UPDTMPB to replace or change the value of a particular substitution token
in an existing MPB. See OS/390 MVS Programming: Assembler Services Guide for more
information on using UPDTMPB.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt Status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Not applicable

 Programming Requirements
You must include the mapping macro CNLMMPB.

 Restrictions
None.

Input Register Information
Before issuing the UPDTMPB macro, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using it as a
base register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0 Reason code
1 Used as a work register by system
2-13 Unchanged
14 Used as a work register by system
15 Return code

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Copyright IBM Corp. 1988, 1999 1081

 UPDTMPB Macro

 Performance Implications
None.

 Syntax
The UPDTMPB macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede UPDTMPB.

UPDTMPB

␣ One or more blanks must follow UPDTMPB.

MPBPTR=mpb addr mpb addr: RX-type address or register (2) - (12).

,MPBLEN=mpb length addr mpb length addr: RX-type address or register (2) - (12).

,SUBOOFST=new/changed blk
offset addr

new/changed blk offset addr: RX-type address or register (2) - (12).

 ,SUBCOFST=existing blk existing blk offset addr: RX-type address or register (2) - 12).
 offset addr

,TOKEN=token name addr token name addr: RX-type address or register (2) - (12).

,TOKLEN=token length addr token length addr: RX-type address or register (2) - (12).

,TOKTYPE=token type addr token type addr: RX-type address or register (2) - (12).

,SUBSDATA=sub data addr sub data addr: RX-type address or register (2) - (12).

,SUBSLEN=sub data length sub data length addr: RX-type address or register (2) - (12).
 addr

 Parameters
The parameters are explained as follows:

MPBPTR=mpb addr
specifies the address or a register containing the address of the MPB to be modified.

,MPBLEN=mpb len addr
specifies the address or a register containing the address of the length of the area
addressed by MPBPTR.

,SUBOOFST=new/changed blk offset addr
specifies the address of the area or a register into which UPDTMPB returns the value of
the offset from the start of the MPB to the new or changed substitution block. A
substitution block contains all the information that you need to format substitution data.
It consists of a token field, token length, substitution length, token type, and substitution
data.

,SUBCOFST=existing blk offset addr
specifies the address of the offset or a register containing the offset from the start of the
MPB to the existing substitution block that UPDTMPB is to update. If you do not specify
SUBCOFST, UPDTMBP will build a new substitution block.

,TOKEN=token name addr
specifies the address of the area or a register pointing to the area containing the
substitution token name.

1082 OS/390 V2R8.0 MVS Assembler Services Reference

 UPDTMPB Macro

,TOKLEN= token length addr
specifies the address of the area or a register containing the length of the TOKEN field.
If you do not specify TOKLEN, UPDTMPB uses, as a default, the length of the TOKEN
field in the DSECT mapping. You must specify TOKLEN if you use register notation for
the TOKEN keyword.

,TOKTYPE=token type addr
specifies the address of the area or a register containing the 1-byte token type. This
field can have the following values and meanings:

,SUBSDATA= sub data addr
specifies the address of the area or a register pointing to the area containing the
substitution data.

If TOKTYPE is 0, SUBSDATA can contain any text with a length defined SUBSLEN.

If TOKTYPE is 1, SUBSDATA must be eight bytes long and in the format yyyymmdd,
where:

� yyyy is the year number, expressed as a 4-digit EBCDIC string in the range 0000 to
9999.

� mm is the month number, expressed as a 2-digit EBCDIC string in the range 01 to
12.

� dd is the day number, expressed as a 2-digit EBCDIC string in the range 01 to 31.

If TOKTYPE is 2, SUBSDATA must be twelve bytes long in the format hhmmssdddddd,
where:

� hh is the hours in a 24-hour clock, expressed as a 2-digit EBCDIC string in the
range 00 to 23.

� mm is the minutes, expressed as a 2-digit EBCDIC string in the range 00 to 59.

� ss is the seconds, expressed as a 2-digit EBCDIC string in the range 00 to 59.
EBCDIC blanks are considered zeros.

� dddddd is the decimal seconds, expressed as a 6-digit EBCDIC string in the range
000000 to 999999. EBCDIC blanks are considered zeros.

If TOKTYPE is 3, SUBSDATA must be one byte long in the format d, where d is the day
number, expressed as a 1-digit EBCDIC string in the range 1 to 7. The days are
defined in parmlib member CNLcccxx. Day 1 is Sunday, 2 is Monday, and so on.

,SUBSLEN=sub data length addr
specifies the address of the area or a register pointing to the area containing the length
of the substitution data. If you do not specify SUBSLEN, UPDTMPB uses, as a default,
the length of the SUBSDATA field in the DSECT mapping. You must specify SUBSLEN
if you use register notation for the SUBSDATA parameter.

Value Meaning

0 text

1 date

2 time

3 day of week

 UPDTMPB — Update a Message Parameter Block for Substitution Data 1083

 UPDTMPB Macro

Return and Reason Codes
When UPDTMPB completes, register 15 contains one of the following hexadecimal return
codes:

When UPDTMPB completes, register 0 contains one of the following hexadecimal reason
codes:

Hexadecimal
Return Code

Meaning

00 Processing completed successfully.

0C Processing unsuccessful. See reason codes.

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

00 00 Successful processing.

0C 33 There is insufficient storage in the MPB.

0C 35 The value for TOKLEN is either zero or negative.

0C 36 The value for SUBSLEN is negative.

0C 37 The TOKTYPE value is not valid.

0C 38 SUBCOFST is not valid.

0C 3B The MPB acronym is not valid.

 Example
Build and update an MPB for a message that contains substitution data for the third day of
the week.

BLDMPBA CSECT
BLDMPBA AMODE 31
BLDMPBA RMODE ANY
 STM 14,12,12(13)
 BALR 12,ð
 USING \,12
 ST 13,SAVE+4
 LA 15,SAVE
 ST 15,8(13)
 LR 13,15
\\\
\ OBTAIN WORKING STORAGE AREA \
\\\
 GETMAIN RU,LV=STORLEN,SP=SP23ð
 LR R4,R1
\
\\\
\ CREATE MPB HEADER SECTION \
\\\
\
 BLDMPB MPBPTR=(R4),MPBLEN=MPBL,MSGID=MSGID, X
 MSGIDLEN=MIDLEN
\
\\\
\ ADD SUBSTITUTION DATA TO MPB \
\\\
\
 LR R2,R4
 A R2,MPBL
 USING VARS,R2
\
 UPDTMPB MPBPTR=(R4),MPBLEN=MPBL,SUBOOFST=VARS, X

1084 OS/390 V2R8.0 MVS Assembler Services Reference

 UPDTMPB Macro

 TOKEN=TOKN,TOKLEN=TOKL,TOKTYPE=TOKT, X
 SUBSDATA=SDATA,SUBSLEN=SDATAL
\
\
\\\
\ FREE STORAGE AREA \
\\\
\
 FREEMAIN RU,LV=STORLEN,SP=SP23ð,A=(4)
\
 L 13,SAVE+4
 LM 14,12,12(13)
 BR 14
\\\
MPBL DC A(MPBLEN)
MSGID DC CL1ð'MSGID2'
MIDLEN DC A(MIDL)
TOKN DC CL3'DAY'
TOKL DC F'3'
TOKT DC CL1'3'
SDATA DC CL1'3'
SDATAL DC A(SDL)
SAVE DC 18F'ð'
SP23ð EQU 23ð
STORLEN EQU 256
SDL EQU 6
MIDL EQU 6
MPBLEN EQU (MPBVDAT-MPB)+(MPBMID-MPBMSG)+(MPBSUB-MPBSB)+MIDL+SDL
R1 EQU 1
R2 EQU 2
R4 EQU 4
\\\
 DSECT
 CNLMMPB
VARS DSECT
VARSAREA DS CL24
VARSLEN EQU \-VARS
 END BLDMPBA

 UPDTMPB — Update a Message Parameter Block for Substitution Data 1085

 UPDTMPB Macro

1086 OS/390 V2R8.0 MVS Assembler Services Reference

 VRADATA Macro

VRADATA — Update Variable Recording Area Data

 Description
The VRADATA macro copies service information into a variable recording area (VRA),
usually the system diagnostic work area (SDWAVRA). This information can later be
recorded in the LOGREC data set if software errors occur. (See the SETRP macro,
RECORD=YES parameter description, for more information on recording the SDWA data
area.) The information copied into the VRA using this macro is in a key, length, data format
defined by the IHAVRA mapping macro. The key and length are one-byte fields; the data
can vary in length. The IHAVRA mapping macro is shown in OS/390 MVS Data Areas, Vol
5 (SSAG-XTLST) under VRAMAP.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary, secondary, or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None

 Programming Requirements
� If your program is in AR mode, issue the SYSSTATE ASCENV=AR macro before

issuing VRADATA. SYSSTATE ASCENV=AR tells the system to generate code
appropriate for AR mode.

� You must include the IHASDWA mapping macro as a DSECT in your program if you
accept the default for VRAINIT, VRACLEN, VRAMLEN, or if you specify
VRAINIT=SDWAVRA. You must also place the address of the SDWA data area into the
SDWAREG register (or default register 1) if you accept the default for any of these three
parameters.

� You must include the IHAVRA mapping macro as a DSECT in your program. If you
include the IHASDWA mapping macro, IHAVRA is automatically included.

� You can issue VRADATA more than once in a program, but you need to specify
VRAINIT, VRACLEN, and VRAMLEN only once for a particular series of updates to the
VRA.

� If you specify a key on the KEY parameter, but no data on the DATA parameter, the
length field for the VRA entry (LEN parameter) is zero. You must be running in the key
the SDWA was obtained in. Refer to OS/390 MVS Programming: Assembler Services
Guide for more information.

 Restrictions
None.

 Copyright IBM Corp. 1988, 1999 1087

 VRADATA Macro

Input Register Information
Before issuing the VRADATA macro, the AR-mode caller must ensure that the following
GPRs contain the specified information.

Register Contents
1 Address of the SDWA if you do not specify the SDWAREG parameter on this

invocation or any previous invocation of the VRADATA macro; otherwise, the
caller does not have to place any information into this register.

14 Address of the next available field in the VRA if you do not specify the VRAREG
parameter on this invocation or any previous invocation of the VRADATA macro;
otherwise, the caller does not have to place any information into this register.

Before issuing the VRADATA macro, the caller must ensure that the following ARs contain
the specified information.

Register Contents
1 ALET of the SDWA whose address is in GPR 1, only if you do not specify the

SDWAREG parameter on this invocation or any previous invocation of the
VRADATA macro; otherwise, the caller does not have to place any information
into this register.

14 ALET of the next available space in the VRA whose address is in GPR 14 only if
you do not specify the VRAREG parameter on this invocation or any previous
invocation of the VRADATA macro; otherwise, the caller does not have to place
any information into this register.

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-13 Unchanged
14 Address of the next available space in the VRA for the next invocation of

VRADATA if you did not specify the VRAREG parameter on this invocation or
any previous invocation; otherwise, unchanged.

15 Used as a work register if you did not specify the WORKREG parameter on this
invocation or any previous invocation of the VRADATA macro; otherwise,
unchanged.

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

1088 OS/390 V2R8.0 MVS Assembler Services Reference

 VRADATA Macro

 Syntax
The VRADATA macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede VRADATA.

VRADATA

␣ One or more blanks must follow VRADATA.

 VRAINIT=vra addr vra addr: RX-type address, or the symbol ‘SDWAVRA’.

Default: address of SDWAVRA

,VRACLEN=curr len addr curr len addr: RX-type address.
or (curr len addr,0) Default: address of SDWAURAL.

,VRAMLEN=max len addr max len addr: RX-type address.
Default: address of SDWAVRAL.

 ,KEY=key nmbr key nmbr: Symbol or decimal digit.

,LENADDR=data len addr data len addr: RX-type address.
,LEN=data len value data len value: Symbol or decimal digit.

Default: length of DATA storage.

 ,DATA=data addr data addr: RX-type address, or register (1) - (15).

 ,SDWAREG=reg reg: Symbol or decimal digits 1-15.

Default: 1

 ,VRAREG=(reg,descr) reg: Symbol or decimal digits 1-15.

Default: 14
descr: SET or NOTSET
Default: NOTSET if VRAINIT is specified,
otherwise SET.

 ,WORKREG=reg reg: Symbol or decimal digits 1-15.

Default: 15

 ,TYPE=LEN,TEST
 ,TYPE=LEN,NOTEST
 ,TYPE=LEN,NOT
 ,TYPE=NOLEN,TEST
 ,TYPE=NOLEN,NOTEST
 ,TYPE=NOLEN,NOT
 ,TYPE=NOL,TEST
 ,TYPE=NOL,NOTEST
 ,TYPE=NOL,NOT

Default: LEN, TEST

 Parameters
The parameters are explained as follows:

VRAINIT=vra addr
Specifies the address of the variable recording area to be initialized and updated. The
value in the register specified by the VRAREG parameter is also initialized unless
VRAREG=(,SET) is specified. If VRAINIT=SDWAVRA is specified, the SDWA data area
is also updated to indicate that the VRA contains hexadecimal data, and data in
key-length-data format. If VRAINIT is not specified, VRAINIT=SDWAVRA is assumed.

 VRADATA — Update Variable Recording Area Data 1089

 VRADATA Macro

All subsequent VRADATA macros use the specified VRAINIT value until you specify
another VRAINIT value.

,VRACLEN=curr len addr
Specifies the address of a one-byte field that contains the length of the current VRA.
This value changes as information is added in the VRA. If you do not specify
VRACLEN, you can obtain the current length of the VRA from the SDWAURAL field of
the SDWA.

,VRACLEN= (curr len addr, 0)
Specifies that the area containing the length is to be zeroed.

All subsequent VRADATA macros use the specified VRACLEN value until you specify
another VRACLEN value.

,VRAMLEN=max len addr
Specifies the address of a two-byte field that contains the maximum length of the VRA.
If you do not specify VRAMLEN, the maximum length is obtained from SDWAVRAL.

All subsequent VRADATA macros use the specified VRAMLEN value until you specify
another VRAMLEN value.

,KEY=key number
Specifies the key value to be placed in the VRAKEY field of the current VRA entry. The
IHAVRA mapping macro (VRAMAP) defines the valid key values.

,LENADDR=data len addr
,LEN=data len value

Specifies the length of the data for the VRA entry. The maximum length is 255 bytes.
Omit this parameter unless the DATA parameter is a register value or a displacement
plus a register, or if the defined data length must be overridden because it is larger than
255 bytes. For bit string data, use this parameter to indicate how many bytes the bit
string occupies. The data length field pointed to by LENADDR must be a two-byte area
with the length right-justified in the area.

,DATA=data addr
Specifies the address of the data to be copied into the VRA. The data must correspond
to the key specified by the KEY parameter. If you specify DATA, you must specify KEY.
You must also specify LEN or LENADDR if DATA has a register value or if the data
length is greater than 255 bytes.

,SDWAREG=reg
Specifies a register containing the address of the SDWA data area. You must place the
address in this register before invoking VRADATA. The VRADATA macro preserves the
contents of this register. If you do not specify SDWAREG, register 1 is the default.

,VRAREG=(reg,descr)
Specifies a register to contain the address of the next available field in the VRA and a
description of whether or not the register value is already set (SET) or not set
(NOTSET). If VRAINIT is specified, the default is NOTSET. If VRAINIT is not specified,
the default is SET. If you specify NOTSET or default to it, the system program places
the address of the VRA plus the current length in the register before updating the VRA.

After updating the VRA, the system updates the register to point to the next available
field in the VRA. If you do not specify VRAREG, register 14 is the default.

,WORKREG=reg
Specifies a work register. Each time you invoke the VRADATA macro, the contents of
this register are destroyed. If you do not specify WORKREG, register 15 is the default.

1090 OS/390 V2R8.0 MVS Assembler Services Reference

 VRADATA Macro

,TYPE=LEN,TEST
,TYPE=LEN,NOTEST
,TYPE=LEN,NOT
,TYPE=NOLEN,TEST
,TYPE=NOLEN,NOTEST
,TYPE=NOLEN,NOT
,TYPE=NOL,TEST
,TYPE=NOL,NOTEST
,TYPE=NOL,NOT

Specifies whether (LEN) or not (NOLEN) you want the current length of the VRA stored
in the VRALEN area and also specifies whether (TEST) or not (NOTEST) you want the
VRA tested to see if it is full before adding the new entry. If you specify TEST, the
current length of the VRA must already be in the VRACLEN area.

If you do not need to store the length or test to see if the new entry fits, specify NOLEN
and NOTEST. These specifications considerably reduce the amount of code generated
by the VRADATA macro. If you do not specify TYPE, the value LEN, TEST is the
default.

 ABEND Codes
None.

Return and Reason Codes
None.

 Example 1
Initialize the SDWA data area to indicate that the VRA contains hexadecimal data, in key,
length, data format. Also, move two pieces of data into the SDWAVRA, and indicate that no
test of the length of the VRA is needed, (because the data fits in the VRA). The second
request indicates that the length used is to be stored in the VRA current length field. The
pieces of data are the IHAVRA mapping macro name and the contents of a control block.

VRADATA VRAINIT=SDWAVRA,KEY=VRACBM,DATA=MYCBNAME, X
 TYPE=(NOLEN,NOTEST)
VRADATA KEY=VRACB,DATA=MYCB,TYPE=(LEN,NOTEST)

 Example 2
Initialize a variable recording area that is not the SDWA. Move in a piece of data, specifying
its length. (The piece of data is an ASID.)

VRADATA VRAINIT=LRBTUSR,VRACLEN=LRBTCLEN, X
 VRAMLEN=LBRTMLEN
VRADATA KEY=VRAAID,DATA=(REGA),LEN=ASIDLEN

 VRADATA — Update Variable Recording Area Data 1091

 VRADATA Macro

1092 OS/390 V2R8.0 MVS Assembler Services Reference

 WAIT Macro

WAIT — Wait for One or More Events

 Description
The WAIT macro informs the system that performance of the active task cannot continue
until one or more specific events, each represented by a different event control block (ECB),
have occurred. Bit 0 and bit 1 of each ECB must be set to zero before it is used. The caller
must be enabled, unlocked, and in primary address space control (ASC) mode.

The system takes the following action:

� For each event that has already occurred (each ECB is already posted), the count of the
number of events is decreased by one.

� If the number of events is zero by the time the last event control block is checked,
control is returned to the instruction following the WAIT macro.

� If the number of events is not zero by the time the last ECB is checked, control is not
returned to the issuing program until sufficient ECBs are posted to bring the number to
zero. Control is then returned to the instruction following the WAIT macro.

For more information on how to use the WAIT macro to synchronize tasks, see OS/390 MVS
Programming: Assembler Services Guide.

 Environment
The requirements for callers of WAIT are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: One of the following:

� For LINKAGE=SVC: PASN=HASN=SASN,

� For LINKAGE=SYSTEM: PASN=HASN=SASN or
PASN¬=HASN¬=SASN

AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interruptions
Locks: No locks held
Control parameters: ECB and ECBLIST must be in the home address space.

 Programming Requirements
None.

 Restrictions
The caller cannot have any EUT FRRs established.

Input Register Information
Before issuing the WAIT macro, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter, or using it as a base
register.

 Copyright IBM Corp. 1988, 1999 1093

 WAIT Macro

Output Register Information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 For LINKAGE=SYSTEM: Used as work registers by the system

For LINKAGE=SVC: Unchanged

When control returns to the caller, the access registers (AR) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The WAIT macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede WAIT.

WAIT

␣ One or more blanks must follow WAIT.

 event nmbr, event nmbr: Symbol, decimal digit, or register (0) or (2) - (12).

Default: 1
Value range: 0-255

ECB=ecb addr ecb addr: RX-type address, or register (1) or (2) - (12).
ECBLIST=ecb list addr ecb list addr: RX-type address, or register (1) or (2) - (12).

 ,LONG=NO Default: LONG=NO
 ,LONG=YES

 ,LINKAGE=SVC Default : LINKAGE=SVC
 ,LINKAGE=SYSTEM

 ,RELATED=value value: Any valid macro keyword specification.

 Parameters
The parameters are explained as follows:

event nmbr,
Specifies the number of events waiting to occur.

1094 OS/390 V2R8.0 MVS Assembler Services Reference

 WAIT Macro

ECB=ecb addr
ECBLIST=ecb list addr

Specifies the address of an ECB on a fullword boundary or the address of a virtual
storage area containing one or more consecutive fullwords on a fullword boundary.
Each fullword contains the address of an ECB; the high order bit in the last fullword
must be set to one to indicate the end of the list.

The ECB parameter is valid only if the number of events is specified as one or is
omitted. The number of ECBs in the list specified by the ECBLIST form must be equal
to or greater than the specified number of events.

If you specify ECBLIST, ecb list addr and all ECBs on the list must be in the home
address space.

,LONG=NO
,LONG=YES

Specifies whether the task is entering a long wait (YES) or a regular wait (NO).

,LINKAGE=SVC
,LINKAGE=SYSTEM

Specifies whether POST is to be called through an SVC (LINKAGE=SVC) or not
(LINKAGE=SYSTEM).

When the caller is not in cross memory mode (the primary, secondary, and home
address spaces are the same) and no EUT FRR is established, use LINKAGE=SVC.
With this parameter, linkage is through an SVC instruction.

When the caller is in cross memory mode (the primary, secondary, and home address
spaces are not the same) or if an EUT FRR is established, use LINKAGE=SYSTEM.
With this parameter, linkage is through a PC instruction. Note that the ECB must be in
the home address space.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or services to
corresponding functions or services. The format and contents of the information
specified are at the discretion of the user and may be any valid coding values.

The RELATED parameter is available on macros that provide opposite services (for
example, ATTACH/DETACH, GETMAIN/FREEMAIN, and LOAD/DELETE) and on
macros that relate to previous occurrences of the same macros (for example, CHAP and
ESTAE).

The RELATED parameter may be used, for example, as follows:

WAIT1 WAIT 1,ECB=ECB,RELATED=(RESUME1,
'WAIT FOR EVENT')

 .
 .
 .
RESUME1 POST ECB,ð,RELATED=(WAIT1,
 'RESUME WAITER')

Note: Each of these macros will fit on one line when coded, so there is no need for a
continuation indicator.

CAUTION:
A job step with all of its tasks in a WAIT condition is terminated upon expiration of the
time limits that apply to it.

 Example
You have previously initiated one or more activities to be completed asynchronously to your
processing. As each activity was initiated, you set up an ECB in which bits 0 and 1 were set
to zero. You now wish to suspend your task via the WAIT macro until a specified number of
these activities have been completed.

 WAIT — Wait for One or More Events 1095

 WAIT Macro

Completion of each activity must be made known to the system via the POST macro. POST
causes an addressed ECB to be marked complete. If completion of the event satisfies the
requirements of an outstanding WAIT, the waiting task is marked ready and will be executed
when its priority allows.

 ABEND Codes
WAIT might abnormally terminate with one of the following abend codes:

 � X'101'
 � X'201'
 � X'301'
 � X'401'

These hexadecimal codes are described in OS/390 MVS System Codes.

Return and Reason Codes
None.

 Example 1
Wait for one event to occur (with a default count).

 WAIT ECB=WAITECB
 .
 .
WAITECB DC F'ð'

 Example 2
Wait for 2 events to occur.

 WAIT 2,ECBLIST=LISTECBS
 .
 .
LISTECBS DC A(ECB1)
 DC A(ECB2)
 DC A(X'8ððððððð'+ECB3)

 Example 3
Enter a long wait for a task.

 WAIT 1,ECBLIST=LISTECBS,LONG=YES
 .
 .
 .
LISTECBS DC A(ECB1)
 DC A(ECB2)
 DC X'8ð'
 DC AL3(ECB3)

1096 OS/390 V2R8.0 MVS Assembler Services Reference

 WTL Macro

WTL — Write To Log

 Description
Note: IBM recommends you use the WTO macro with the MCSFLAG=HRDCPY parameter
instead of WTL, because WTO supplies more data than WTL.

The WTL macro causes a message to be written to the system log (SYSLOG) or the
operations log (OPERLOG) log stream depending on which one of these logs, or both, is
active.

Note: When a message is recorded in SYSLOG, the exact format of the output of the WTL
macro varies depending on the job entry subsystem (JES2 or JES3) that is being used, the
output class that is assigned to the log at system initialization, and whether DLOG is in effect
for JES3. See the following for information on the format of logged messages:

� OS/390 MVS System Messages, Volume 1 (ABA-ASA)
� OS/390 MVS System Messages, Volume 2 (ASB-EZM)
� OS/390 MVS System Messages, Volume 3 (GDE-IEB)
� OS/390 MVS System Messages, Volume 4 (IEC-IFD)
� OS/390 MVS System Messages, Volume 5 (IGD-IZP)

OS/390 JES3 Commands also contains information on the format of logged messages.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Programming Requirements
None.

 Restrictions
Message text cannot exceed 126 characters. If the message text exceeds 126 characters,
truncation occurs at the last embedded blank before the 126th character; when there are no
embedded blanks, truncation occurs after the 126th character.

Input Register Information
Before issuing the WTL macro, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter, or using it as a base
register.

 Copyright IBM Corp. 1988, 1999 1097

 WTL Macro

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code
1-14 Unchanged
15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

 Syntax
The standard form of the WTL macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede WTL.

WTL

␣ One or more blanks must follow WTL.

‘msg’ msg: Up to 126 characters.

 Parameters
The parameter is explained as follows:

‘msg’
Specifies the message to be written to the system log and/or the operations log. The
message must be enclosed in apostrophes, which will not appear in the system log.
The message can include any character that can be used in a C-type (character) DC
statement, and is assembled as a variable-length record. See “Timing and
Communication” in OS/390 MVS Programming: Assembler Services Guide for a list of
the printable EBCDIC characters passed to display devices or printers.

 ABEND Codes
None.

1098 OS/390 V2R8.0 MVS Assembler Services Reference

 WTL Macro

Return and Reason Codes
When the WTL macro returns control to your program, GPR 15 contains a return code and
GPR 0 contains a reason code. WTL issues a return code (either 00 or 04), with multiple
reason codes for each. The return codes indicate the following:

� 00 - WTL wrote the message to the system log, the operations log, or both.

� 04 - WTL could not write the message to either the system log or the operations log.

Return
Code

Reason
Code

Meaning and Action

0 None Meaning : WTL processing completed successfully. The system logged
the message in SYSLOG, and, if OPERLOG was requested, the system
logged the message in OPERLOG.

Action : None.

0 04 Meaning : WTL processing completed successfully. The message was
logged in the operations log (OPERLOG log stream). The system log
was not active.

Action : If you want the message logged in the system log, start the
system log and rerun the program.

0 08 Meaning : WTL processing completed, but the message was only logged
in the operations log because the WTL system log buffers are full.

Action : Do one of the following, if you want subsequent messages
logged in the system log:

� Enter a CONTROL M,LOGLIM command to change the allocated
number of WTL system log buffers dynamically.

� Change the LOGLIM value, specifying the number of WTL system
log buffers on the INIT statement in the CONSOLxx parmlib member.
This value will take effect at the next IPL.

0 0C Meaning : WTL processing completed, but the message was only logged
in the system log because the operations log was not active.

Action : If you want the message logged in the operations log, start the
operations log and rerun the program. This will also place the message
in the system log.

0 10 Meaning : WTL processing completed, but the message was only logged
in the system log. The message was not logged in the OPERLOG log
stream because of a storage problem.

Action : If you want the message logged in the operations log, retry the
request. This will also place the message in the system log. If the
problem persists, contact the IBM Support Center. Provide the return and
reason code.

04 04 Meaning : System error. WTL processing was not successful. Recovery
could not be established.

Action : Retry the request. If the problem persists, record the return and
reason code and supply them to the appropriate IBM support personnel.

04 08 Meaning : Environmental error. The system log and the operations log
are not active.

Action : Start the logs and rerun your program.

 WTL — Write To Log 1099

 WTL Macro

Return
Code

Reason
Code

Meaning and Action

04 0C Meaning : Environmental error. The WTL limit has been reached.

Action : Do one of the following:

1. Retry the request when the shortage is relieved.

2. Issue a CONTROL M,LOGLIM command to change the allocated
number of WTL SYSLOG buffers.

3. Change the LOGLIM value on the INIT statement in the CONSOLxx
member of SYS1.PARMLIB. This new value will take effect at the
next IPL.

Note: If the problem is persistent, you might want to perform step 2 first
and step 3 at the next IPL.

04 10 Meaning : System error. An internal error occurred. The system issues
message IEE390I.

Action : Contact the IBM Support Center. Provide the return and reason
code.

04 14 Meaning : System error. The system encountered a (VSM) error. The
system issues message IEE390I.

Action : Contact the IBM Support Center. Provide the return and reason
code.

04 18 Meaning : Environmental error. The message was not logged in either
the system log or the operations log, because neither log is active.

Action : Do one of the following:

� If you want to log the message in the operations log, start the
operations log with the VARY OPERLOG,HARDCPY command and
rerun the program.

� If you want the message logged in the system log, start the system
log (SYSLOG) with the VARY SYSLOG,HARDCPY command and
rerun the program.

04 1C Meaning : Environmental error. The message was not logged in the
system log, as requested, because the WTL limit has been reached. The
operation log was not active at the time, so the message was not logged
there either.

Action : To log the message in the system log, do the following:

� Issue a CONTROL M,LOGLIM command to change the allocated
number of WTL SYSLOG buffers.

� Change the LOGLIM value on the INIT statement in the CONSOLxx
member of SYS1.PARMLIB. This new value will take effect at the
next initialization.

� Retry the request when the storage shortage has been relieved.

If the problem persists, issue the CONTROL M,LOGLIM command first,
and change the LOGLIM value in CONSOLxx at your next IPL.

To log the message in the operations log, start the operations log and
rerun the program.

04 20 Meaning : Environmental error. The message was not logged in the
operations log, as requested, because of storage problems. The system
log was not active.

Action : To log the message in the operations log, retry the request. If the
problem persists, contact the IBM Support Center, providing the return
and reason codes.

To log the message in the system log also, start the system log and
rerun the program.

1100 OS/390 V2R8.0 MVS Assembler Services Reference

 WTL Macro

Return
Code

Reason
Code

Meaning and Action

04 24 Meaning : Environmental error. The message was not logged in the
system log because the WTL limit has been reached, and was not
logged in the operation log because of storage problems.

Action : To log the message in the operations log, retry the request. If the
problem persists, contact the IBM Support Center, providing the return
and reason codes.

 Example 1
Write a message to the system log.

WTL 'THIS IS THE STANDARD FORMAT FOR THE WTL MACRO'

 Example 2
Write a message constructed in the list form of WTL.

WTL MF=(E,(R2))

 WTL—List Form
The list form of the WTL macro is used to construct a control program parameter list. The
message parameter must be provided in the list form of the macro.

 Syntax
The list form of the WTL macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede WTL.

WTL

␣ One or more blanks must follow WTL.

‘msg’ msg: Up to 126 characters.

,MF=L

 Parameters
The parameters are explained under the standard form of the WTL macro with the following
exception:

,MF=L
Specifies the list form of the WTL macro.

 WTL — Write To Log 1101

 WTL Macro

WTL — Execute Form
The execute form of the WTL macro uses a remote control program parameter list. The
parameter list can be generated by the list form of WTL. You cannot modify the message in
the execute form.

 Syntax
The execute form of the WTL macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede WTL.

WTL

␣ One or more blanks must follow WTL.

MF=(E,list addr) list addr: RX-type address, or register (1) or (2) - (12).

 Parameters
The parameters are explained under the standard form of the WTL macro with the following
exception:

MF=(E,list addr)
Specifies the execute form of the WTL macro.

list addr specifies the area that the system uses to store the parameters.

1102 OS/390 V2R8.0 MVS Assembler Services Reference

 WTO Macro

WTO — Write to Operator

 Description
The WTO macro allows you to write messages to one or more operator consoles. See
OS/390 MVS Programming: Assembler Services Guide for more information on using WTO.

 Environment
Requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Programming Requirements
Be aware of the following when coding the WTO macro:

� If you code MCSFLAG=REG0, you must use register 0 to pass a 1-byte console ID
(right-justified and padded to the left with zeroes). However, IBM recommends using the
CONSID parameter rather than register 0.

� If you are not coding MCSFLAG=REGO, you should clear register zero.

� If the list and execute forms of the WTO macro are in separate modules, both modules
must be assembled or compiled with the same level of WTO.

� If the execute form of the macro specifies TEXT=(text addr), CART, KEY, TOKEN,
CONSID, or CONSNAME, then the list form, to ensure that the parameter list is
generated correctly, must specify the same parameters without data. For example:

WTO 'USRðð1I FOR SPECIAL REQUESTS CONTACT SYSTEM SUPPORT',CONSID=,MF=L

If you specify parameter values on the list form, the system issues an MNOTE and
ignores the data.

� For any WTO parameters that allow a register specification, the value must be
right-justified in the register.

� If you specify the TEXT keyword for a multi-line WTO, you must code its parameters in
the following way:

– On the list form, omit text addr for each line, but include line type. If you specify
text addr, the system ignores the data and issues an MNOTE.

– On the execute form, omit line type for each line, but include text addr.

� When using any parameter with an address, the data being referenced must be
accessible by the caller issuing the WTO.

 Restrictions
� You can issue a WTO of up to 10 lines. A WTO over 10 lines produces a return code

of 04. The return code indicates that only 10 lines will be processed and the rest are
ignored.

� The caller cannot have an EUT FRR established.

 Copyright IBM Corp. 1988, 1999 1103

 WTO Macro

Input Register Information
Before issuing the WTO macro, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter, or using it as a base
register, or MCSFLAG=REG0 has been coded.

Output Register Information
When control returns to the caller, the output registers contain the following values:

Register Contents
0 Used as a work register by the system unless WTO returns code X'20' in

register 15. In that case, register 0 contains the number of active WTO buffers
for the issuer's address space.

1 Message identification number if the WTO macro completed normally (you can
use this number to delete the message when it is no longer needed); otherwise,
used as a work register by the system.

2-13 Unchanged.
14 Used as a work register by the system.
15 Return code.

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
Users who cannot wait because of a WTO buffer shortage should use the
MCSFLAG=BUSYEXIT parameter and then take appropriate action on the busy return.

1104 OS/390 V2R8.0 MVS Assembler Services Reference

 WTO Macro

 Syntax
The standard form of the WTO macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede WTO.

WTO

␣ One or more blanks must follow WTO.

‘msg’
(‘text’)
(‘text’,line type)
TEXT=(text addr)
TEXT=(text addr,line type)
TEXT=((text addr,line
type),...(text addr,line type))

msg: Up to 125 characters.
text: Up to 125 characters.
text addr: RX-type address or register (2) - (12).

Note: If you code ‘msg’ or (‘text’...), it must be the first positional
parameter.

 The permissible line types, text lengths, and maximum numbers of

each line type are shown below:

line type text maximum number
C 34 char 1 C type
L 70 char 2 L type
D 70 char 10 D type
DE 70 char 1 DE type
 or
E None 1 E type

 The maximum total number of lines that can be coded in one

instruction is 10.

 ,ROUTCDE=(routing code) routing code: Decimal digit from 1 to 28. The routing code is one

or more codes, separated by commas, or a hyphen to indicate a
range.

 ,MCSFLAG=(flag name) flag name: Any combination of the following, separated by

commas:

REG0 HRDCPY
RESP REPLY
NOTIME BRDCST
CMD BUSYEXIT

 ,DESC=(descriptor code) descriptor code: Decimal number from 1 to 13. The descriptor

code is one or more codes, separated by commas.

 ,CART=cmd/resp token cmd/resp token: RX-type address or register (2) - (12).

 ,KEY=key key: RX-type address or register (2) - (12).

 ,TOKEN=token token: RX-type address or register (2) - (12).

 ,CONSID=console id console id: RX-type address or register (2) - (12).
 ,CONSNAME=console
 name

console name: RX-type address or register (2) - (12).

 WTO — Write to Operator 1105

 WTO Macro

 Parameters
The parameters are explained as follows:

‘msg’
(‘text’)
(‘text’,line type)
TEXT=(text addr)
TEXT=(text addr,line type)
TEXT=((text addr,line type),...(text addr,line type))

Specifies the message or multiple-line message to be written to one or more operator
consoles.

The parameter 'msg' is used to write a single-line message to the operator. In the
format, the message must be enclosed in apostrophes, which do not appear on the
console. To have apostrophes appear in the message text, use two apostrophes to get
one to appear. For example, ''Message Off'' would appear on a display as 'Message Off'.
The message text can include any character that can be used in a character (C-type)
DC instruction. When a program issues a WTO macro, the system translates the text;
only standard printable EBCDIC characters are passed to MCS-managed display
devices. The EBCDIC characters that can be displayed are listed in OS/390 MVS
Programming: Assembler Services Guide. All other characters are replaced by blanks.
Unless the console has dual-case capability, lowercase characters are displayed or
printed as uppercase characters.

The message is assembled as a variable-length record. The parameters TEXT=(text
addr) and TEXT=(text addr,line type) represent a 4-byte address of a message to be
displayed. The message consists of a 2-byte message length followed by the message
text. The 2-byte message length describes the length of the message text only. There
are no boundary requirements.

The parameters ('text') and (text addr,line type) are used to write a multiple-line
message to the operator. The text is one line of the multiple-line message. Inline text
consists of a character string enclosed in apostrophes (which do not appear on the
operator console). Any character valid in a C-type DC instruction can be coded. The
maximum number of characters depends on which line type is specified. The message
can be up to ten lines long; the system truncates the message at the end of the tenth
line. The ten-line limit does not include the control line (message IEE9321I), as
explained under line type C below.

Notes:

1. If the parameter (‘text’) is coded without repetition, for example, (‘text’), the
message appears as a single-line message.

2. All lines of a multiple-line WTO must be consistently specified with the message text
or the TEXT keyword. When coding the TEXT keyword for a multiple-line message:

� You can specify a maximum of 10 lines.
� Do not exceed the 70-character limit for the macro parameter value.

3. For a multiple-line message, you must clear the three high-order bytes of register 0.

The line type defines the type of information contained in the “text” field of each line of
the message:

C Indicates that the “text” parameter is the text to be contained in the control
line of the message. The control line normally contains a message title. C
may only be coded for the first line of a multiple-line message. If this
parameter is omitted and descriptor code 9 is coded, the system generates
a control line (message IEE932I) containing only a message identification
number. The control line remains static while you scroll through all the lines
of a multiple-line message displayed on an MCS console (provided that the
message is displayed in an out-of-line display area). Control lines are
optional.

1106 OS/390 V2R8.0 MVS Assembler Services Reference

 WTO Macro

L Indicates that the “text” parameter is a label line. Label lines contain
message heading information; they remain static while you scroll through all
the lines of a multiple-line message displayed on an MCS console (provided
that the message is displayed in an out-of-line display area). Label lines
are optional. If coded, lines must either immediately follow the control line,
or another label line or be the first line of the multiple-line message if there
is no control line. Only two label lines may be coded per message.

D Indicates that the “text” parameter contains the information to be conveyed
to the operator by the multiple-line message. While you scroll through all
lines of a multiple-line message displayed on an MCS console, the data
lines are paged.

DE Indicates that the “text” parameter contains the last line of information to be
passed to the operator. Specify DE on the last line of text of the WTO. If
there is no text on the last line, specify E.

E Indicates that the previous line of text was the last line of text to be passed
to the operator. The “text” parameter, if any, coded with a line type of E is
ignored. If the last line has text, specify DE.

,ROUTCDE=(routing code)
Specifies the routing code or codes to be assigned to the message.

The routing codes are:

If you omit the ROUTCDE, DESC, and CONSID or CONSNAME parameters, the system
uses the routing code specified on the ROUTCODE parameter on the DEFAULT
statement in the CONSOLxx member of SYS1.PARMLIB.

Note: Routing codes 1, 2, 3, 4, 7, 8, and 10 cause hard copy of the message when
display consoles are used, or more than one console is active. All other routing codes
may go to hard copy as a PARMLIB option or as a result of a VARY HARDCPY
command.

Message
Routing
Code

Definition

1 Master console action
2 Master console information
3 Tape pool
4 Direct access pool
5 Tape library
6 Disk library
7 Unit record pool
8 Teleprocessing control
9 System security
10 System error/maintenance/system programmer information
11 Programmer information
12 Emulators
13-20 Reserved for customer use
21-28 Reserved for IBM- or customer-defined subsystem use

 WTO — Write to Operator 1107

 WTO Macro

,MCSFLAG=(flag name)
Specifies one or more flag names whose meanings are shown below:

,DESC=(descriptor code)
Specifies the message descriptor code or codes to be assigned to the message.
Descriptor codes 1 through 6, 11 and descriptor code 12 are mutually exclusive. Codes
7 through 10, and 13, can be assigned in combination with any other code.

The descriptor codes are:

Action messages may have an * sign or @ sign displayed before the first character of
the message. The * sign indicates that the WTO was issued by an authorized program.
The @ sign indicates that the WTO was issued by an unauthorized program. These
action messages will cause the audible alarm to sound on operator consoles
so-equipped.

All WTO messages with descriptor codes of 1, 2, or 11 are action messages that have
an @ sign printed before the first character. This indicates a need for operator action.

The system holds messages with descriptor codes 1, 2, 3, or 11 until you delete them.
When you no longer need messages with descriptor codes 1, 2, 3, or 11, you should
delete those messages using the DOM macro. If messages with descriptor codes 1, 2,

Figure 70. MCSFLAG Flag Names

Flag Name Meaning

REG0 Queue the message to the console whose console ID is passed in register 0.
You can use register 0 to pass a 1-byte console ID (right-justified and padded
to the left with zeros) to identify the console to receive the message.
However, IBM recommends that you use the CONSID parameter instead of
register 0.

RESP The WTO is an immediate command response.

REPLY This WTO is a reply to a WTOR.

BRDCST Broadcast the message to all active consoles.

HRDCPY Queue the message for hard copy only.

NOTIME Do not append time to the message.

CMD The WTO is a recording of a system command issued for hardcopy log
purposes.

BUSYEXIT If there are no message or console buffers for either MCS or JES3, or there
is a JES3 WTO staging area excess, the WTO is terminated with a x‘20’
return code and a reason code, in register 0, equal to the number of active
WTO buffers for the issuer's address space. If BUSYEXIT is not specified,
the WTO will go into a wait state if WTO buffers are not available.

Message
Descriptor
Code

Definition

1 System failure
2 Immediate action required
3 Eventual action required
4 System status
5 Immediate command response
6 Job status
7 Retain action message for until the job step terminates
8 Out-of-line message
9 Operator request
10 Dynamic status displays
11 Critical eventual action requested
12 Important information messages
13 Message previously automated

1108 OS/390 V2R8.0 MVS Assembler Services Reference

 WTO Macro

3, or 11 also have descriptor code 7, the system deletes them automatically at job step.
The system adds descriptor code 7 to all messages with descriptor code 1 or 2.

On operator consoles that support color, descriptor codes determine the color in which a
message should be displayed. The colors used are described in OS/390 MVS System
Commands.

The message processing facility (MPF) can suppress messages. For MPF to suppress
messages, the hardcopy log must be active. The suppressed messages do not appear
on any console; they do appear on the hardcopy log.

,CART=cmd/resp token
Specifies an 8-character input field containing a command and response token to be
associated with this message. The command and response token is used to associate
user information with a command and its command response. You can supply any
value as a command and response token. When you specify this parameter in the list
form, code it as CART= with nothing after the equal sign.

,KEY=key
Specifies an input field containing an 8-byte key to be associated with this message.
The key must be EBCDIC if used with the MVS DISPLAY R command for retrieval
purposes, but it must not be ‘*’. If a register is used, it contains the address of the key.
When you specify this parameter in the list form, code it as KEY= with nothing after the
equal sign.

,TOKEN=token
Specifies an input field containing a 4-byte token to be associated with this message.
This field is used to identify a group of messages that can be deleted by a DOM macro
that includes TOKEN. The token must be unique within an address space and can be
any value. When you specify this parameter in the list form, code it as TOKEN= with
nothing after the equal sign.

Note: When you code the TOKEN parameter using a register, the register must contain
the token itself, rather than the address of the token.

,CONSID=console id
Specifies a 4-byte field containing the ID of the console to receive a message. Use this
ID in place of a console ID in register 0. If you specify a 4-byte console ID, or if you
specify a console ID for an extended MCS console, you must use CONSID instead of
register 0. If you specify a 1-byte console ID, you must right-justify it and pad to the left
with zeros. To view a list of valid console IDs, issue the DISPLAY CONSOLES
command.

Notes:

1. If you code the CONSID parameter using a register, the register must contain the
console ID itself, rather than the address of the console ID.

2. When you code CONSID on the list form of WTO, code it as CONSID= with nothing
after the equal sign.

3. Do not use both CONSID and register 0 to pass a console ID, because the results
are unpredictable. Be sure to clear the low-order byte of register 0 if you add the
CONSID parameter to an existing invocation of WTO.

4. CONSID is mutually exclusive with the CONSNAME parameter.

,CONSNAME=console name
Specifies an 8-byte field containing a 2- through 8-character name, left-justified and
padded with blanks, of the console to receive a message. When you specify this
parameter in the list form, code it as CONSNAME= with nothing after the equal sign.

This parameter is mutually exclusive with the CONSID parameter. Do not use
CONSNAME to pass a console name, together with register 0 to pass a console ID,
because the results are unpredictable. Be sure to clear the low-order byte of register 0
if you add the CONSNAME parameter to an existing invocation of WTO.

 WTO — Write to Operator 1109

 WTO Macro

 ABEND Codes
WTO might abnormally terminate with abend code X'D23'. See OS/390 MVS System
Codes for an explanation and programmer response for this code.

Return and Reason Codes
When the WTO macro returns control to your program, GPR 15 contains one of the following
return codes:

Hexadecimal
Return Code

Meaning and Action

00 Meaning : Processing completed successfully.

Action : None.

04 Meaning : Program error. One of the following occurred:

� The number of lines passed was 0. The request was ignored.

� The number of lines passed was greater than 10. Only 10 lines were
processed.

� The message text length for a line was less than 1. All lines up to the error
line were processed.

Action :

� Make sure your text is properly referenced. If you are using the TEXT
parameter, make sure it is pointing to valid data.

� Make sure your message text contains no more than 10 lines.

� Make sure your message text is defined correctly. If you are using the
TEXT parameter, make sure the first two bytes of data in the area pointed
to by the TEXT parameter value contain the length of the message text.

In all cases, correct the problem and retry the request.

0C Meaning : Program error. A line type is not valid. An end has been forced at
the point of the error unless the first line is an E line, in which case the request
was ignored. All messages up to this one in the multiline request were
processed.

Action : Determine if a line type value on your multiline message was not
syntactically correct. Correct the problem and retry the request.

20 Meaning : Environmental error. WTO processing has been terminated because
it would have caused a wait state, and BUSYEXIT was specified. Register 0
contains the number of active WTO buffers for the issuer's address space.

Action : Retry the request when the buffer storage constraint has been relieved.

30 Meaning : Environmental error. For routing code 11, the required resource was
not available and the request was ignored. For any other routing code, the
request was processed.

Action : Retry the request when the resource you need is available.

 Example 1
Issue a WTO with routing codes 1 and 10, descriptor code 2.

 WTO 'USRðð1I CRITICAL RESOURCE SHORTAGE DETECTED', X
 ROUTCDE=(1,1ð), X
 DESC=(2)

1110 OS/390 V2R8.0 MVS Assembler Services Reference

 WTO Macro

 Example 2
Issue a WTO using the TEXT parameter. The message is to be sent to a console whose ID
is contained in register 5 as a command response. A command and response token is also
defined for this message. This example assumes a console ID was stored in field
SAVECNID and a cart in SAVECART prior to issuing the WTO.

Rð EQU ð
R4 EQU 4
R5 EQU 5
 .
 .
 .

LA R4,MYMSG ADDRESS OF MESSAGE AREA
 L R5,SAVECNID CONSOLE ID

XR Rð,Rð CLEAR REGISTER ð
 WTO TEXT=(R4),CONSID=(R5),CART=SAVECART, X
 DESC=(5)
 .
 .
 .
MYMSG DC AL2(L'CATTXT)
CATTXT DC C'USR1ððI PROCESSING COMPLETE, NO ERRORS.'
SAVECART DS CL8
SAVECNID DS F

 Example 3
Issue a multiline message using the TEXT parameter. This is an important information
message which is not to be sent to the hardcopy log.

Rð EQU ð
 .
 .
 .

XR Rð,Rð CLEAR REGð BEFORE MULTILINE
 WTO TEXT=((MESSAG1,D),(MESSAG2,D),(MESSAG3,DE)), X
 DESC=(7,12)
 .
 .
 .
MESSAG1 DC AL2(L'MSG1TXT)
MSG1TXT DC C'USRðð5I ALL JOBS REQUIRING MORE THAN 2 TAPES MUST BE RUNX

ON THIRD SHIFT'
MESSAG2 DC AL2(L'MSG2TXT)
MSG2TXT DC C'JOBS REQUIRING 2 TAPES MAY BE RUN ON SECOND SHIFT'
MESSAG3 DC AL2(L'MSG3TXT)
MSG3TXT DC C'OR ON FIRST SHIFT WITH THE OPERATOR'S PERMISSION.'

 WTO — Write to Operator 1111

 WTO Macro

 WTO—List Form
Use the list form of the WTO macro together with the execute form of the macro for
applications that require reentrant code. The list form of the macro defines an area of
storage, which the execute form of the macro uses to store the parameters.

 Syntax
The list form of the WTO macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede WTO.

WTO

␣ One or more blanks must follow WTO.

‘msg’
(‘text’)
(‘text’,line type)
TEXT=
TEXT=((,line type),(,line
type),...(,line type))

msg: Up to 125 characters.
text: Up to 125 characters.

Notes:

1. If you code ‘msg’ or (‘text’...), it must be the first parameter you
code.

2. For a single-line WTO, the parameter value is not required on
TEXT for the list form. Code only TEXT=. Then code
TEXT=(text addr) on the execute form.

 The permissible line types, text lengths, and maximum numbers of

each line type are shown below:
line type text maximum number
C 34 char 1 C type
L 70 char 2 L type
D 70 char 10 D type
DE 70 char 1 DE type
 or
E None 1 E type

 The maximum total number of lines that can be coded in one

instruction is 10.

 ,ROUTCDE=(routing code) routing code: Decimal digit from 1 to 28. The routing code is one

or more codes, separated by commas, or a hyphen to indicate a
range.

 ,MCSFLAG=(flag name) flag name: Any combination of the following, separated by

commas:

REG0 HRDCPY
RESP REPLY
NOTIME BRDCST
CMD BUSYEXIT

 ,DESC=(descriptor code) descriptor code: Decimal digit from 1 to 13. The descriptor code

is one or more codes, separated by commas.

 ,CART= Parameter value not required for list form. Code only CART=.

If you code CART on the list form of WTO, you must code CART
on the execute form.

 ,KEY= Parameter value not required for list form. Code only KEY=.

If you code KEY on the list form of WTO, you must code KEY on
the execute form.

1112 OS/390 V2R8.0 MVS Assembler Services Reference

 WTO Macro

 ,TOKEN= Parameter value not required for list form. Code only TOKEN=.

If you code TOKEN on the list form of WTO, you must code
TOKEN on the execute form.

 ,CONSID=
 ,CONSNAME=

Parameter value not required for list form. Code only CONSID= or
CONSNAME=.
If you code CONSID (or CONSNAME) on the list form of WTO, you
must code CONSID (or CONSNAME) on the execute form.

,MF=L

 Parameters
The parameters are explained under the standard form of the WTO macro, with the following
exception:

,MF=L
Specifies the list form of the WTO macro.

 Example
Set up the list form of a WTO, and send an immediate action message to the master
console.

MYLIST WTO 'USRðð1I CRITICAL RESOURCE SHORTAGE DETECTED', X
 ROUTCDE=(1,1ð), X
 DESC=(2),CONSID=,MF=L

 WTO — Write to Operator 1113

 WTO Macro

 WTO—Execute Form
Use the execute form of the WTO macro together with the list form of the macro for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

The message cannot be modified on the execute form of the macro if you code inline text
(‘msg’ or (‘text’...)) on the list form.

 Syntax
The execute form of the WTO macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede WTO.

WTO

␣ One or more blanks must follow WTO.

TEXT=(text addr)
TEXT=((text addr,),(text
addr,),...(text addr,))

text addr: RX-type address or register (2) - (12).

Notes:

1. If you code TEXT=(text addr) on the execute form of WTO,
you must code TEXT= on the list form.

2. If you specify inline text on the list form (‘msg’ or (‘text’...)), do
not code the TEXT keyword on the execute form.

 ,CART=cmd/resp token cmd/resp token: RX-type address or register (2) - (12).

If you code CART on the execute form of WTO, you must code
CART on the list form.

 ,KEY=key key: RX-type address or register (2) - (12).

If you code KEY on the execute form of WTO, you must code KEY
on the list form.

 ,TOKEN=token token: RX-type address or register (2) - (12).

If you code TOKEN on the execute form of WTO, you must code
TOKEN on the list form.

 ,CONSID=console id
 ,CONSNAME=console name

console id: RX-type address or register (2) - (12).
console name: RX-type address or register (2) - (12).
If you code CONSID (or CONSNAME) on the execute form of
WTO, you must code CONSID (or CONSNAME) on the list form.

,MF=(E,list addr) list addr: RX-type address, or register (1) - (12).

 Parameters
The parameters are explained under the standard form of the WTO macro, with the following
exception:

,MF=(E,list addr)
Specifies the execute form of the WTO macro.

list addr specifies the area that the system uses to store the parameters.

1114 OS/390 V2R8.0 MVS Assembler Services Reference

 WTO Macro

 Example 1
Write a message with a prebuilt parameter list pointed to by register 1.

WTO MF=(E,(1))

 Example 2
Issue a WTO whose list form is defined at label MYLIST, and is pointed to by register 2.
Send the WTO to the console with an ID of 1, pointed to by register 4.

R2 EQU 2
R4 EQU 4
 .
 .
 .

LA R2,MYLIST ADDRESS OF PARAMETER LIST
 L R4,MYCONID CONSOLE ID
 WTO MF=(E,(R2)),CONSID=R4
 .
 .
 .
MYCONID DC F'1'

 WTO — Write to Operator 1115

 WTO Macro

1116 OS/390 V2R8.0 MVS Assembler Services Reference

 WTOR Macro

WTOR — Write to Operator with Reply

 Description
The WTOR macro causes a message requiring a reply to be written to one or more operator
consoles and the hardcopy log. The macro also provides the information required by the
system to return the reply to the issuing program. See OS/390 MVS Programming:
Assembler Services Guide for more information on using the WTOR macro.

For information about how to select the macro for an MVS/SP version other than the current
version, see “Selecting the Macro Level” on page 7.

 Environment
Requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

 Programming Requirements
Be aware of the following when coding the WTOR macro:

� If the list and execute forms of the WTOR macro are in separate modules, both modules
must be assembled or compiled with the same level of WTOR.

� The parameter list for WTOR must begin on a fullword boundary.

� If the execute form of the macro specifies RPLYISUR, CART, CONSID, CONSNAME,
KEY, or TOKEN, the list form, to ensure that the parameter list is generated correctly,
must specify the same parameters without data. If you specify parameter values on the
list form, the system issues an MNOTE and ignores the data.

� For any WTOR parameters that allow a register specification, the value must be
right-justified in the register.

 Restrictions
� The WTOR macro can issue only single-line messages.
� The caller cannot have an EUT FRR established.

Input Register Information
Before issuing the WTOR macro, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter, or using it as a base
register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Used as a work register by the system.
1 Message identification number if the WTOR macro completed normally (you can

use this number to delete the message when it is no longer needed); otherwise,
used as a work register by the system.

 Copyright IBM Corp. 1988, 1999 1117

 WTOR Macro

2-13 Unchanged.
14 Used as a work register by the system.
15 Return code.

When control returns to the caller, the access registers (ARs) contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a
service. If the system changes the contents of registers on which the caller depends, the
caller must save them before issuing the service, and restore them after the system returns
control.

 Performance Implications
None.

1118 OS/390 V2R8.0 MVS Assembler Services Reference

 WTOR Macro

 Syntax
The standard form of the WTOR macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede WTOR.

WTOR

␣ One or more blanks must follow WTOR.

‘msg’,reply addr,reply
 length,ecb addr
TEXT=(text addr,reply

addr,reply length,ecb addr)

msg: Up to 121 characters.
text addr: RX-type address or register (2) - (12).
reply addr: A-type address, or register (2) - (12).
reply length: Symbol, decimal number, or register (2) - (12). The
minimum length is 1; the maximum length is 119.
ecb addr: A-type address, or register (2) - (12).

 ,ROUTCDE=(routing code) routing code: Decimal digit from 1 to 28. The routing code is one

or more codes, separated by commas, or a hyphen to indicate a
range.

 ,MCSFLAG=(flag name) flag name: Any combination of the following, separated by

commas:

REG0 HRDCPY
RESP REPLY
NOTIME BRDCST
CMD

 ,DESC=(descriptor code) descriptor code: Decimal number 7 or 13. If you code both 7 and

13, separate them with commas.

 ,MSGTYP=(msg type) msg type: Any of the following:

N SESS,JOBNAMES
Y SESS,STATUS
SESS JOBNAMES,STATUS
JOBNAMES SESS,JOBNAMES,STATUS
STATUS

 ,RPLYISUR=reply console reply console: RX-type address or register (2) - (12).

 ,CART=cmd/resp token cmd/resp token: RX-type address or register (2) - (12).

 ,CONSID=console id console id: RX-type address or register (2) - (12).
 ,CONSNAME=console name console name: RX-type address or register (2) - (12).

 ,KEY=key key: RX-type address or register (2) - (12).

 ,TOKEN=token token: RX-type address or register (2) - (12).

 WTOR — Write to Operator with Reply 1119

 WTOR Macro

 Parameters
The parameters are explained as follows:

‘msg’,reply addr,reply length,ecb addr
TEXT=(text addr,reply addr,reply length,ecb addr)

‘msg’ is used to write the message to the operator. The message must be enclosed in
apostrophes, which do not appear on the console. It can include any character that can
be used in a character (C-type) DC instruction. When a program issues a WTOR
macro, the system translates the text; only standard printable EBCDIC characters are
passed to the display devices. All other characters are replaced by blanks. A list of
these EBCDIC characters is provided in OS/390 MVS Programming: Assembler
Services Guide. Unless the console has dual-case capability, lowercase characters are
converted to uppercase by the display station or printer and displayed or printed as
uppercase characters.

The message is assembled as a variable-length record. text addr contains an address
that points to a message to be displayed. The message contains a 2-byte text field
length followed by the text. The 2-byte message length describes the length of the
message text only. There are no boundary requirements.

Note: All WTOR messages are action messages. An indicator is printed before the
first character of an action message to indicate a need for operator action. Action
messages will cause the audible alarm to sound on operator consoles so-equipped.

reply addr specifies the address in virtual storage of the area into which the system is to
place the reply. The reply is left-justified at this address.

reply length specifies the length, in bytes, of the reply message.

ecb addr specifies the address of the event control block (ECB) to be used by the
system to indicate the completion of the reply and the ID of the replying console. The
value of the ECB data must point to a fullword boundary. The ECB should be zeroed
before the WTOR issued. After the system receives the reply, the ECB appears as
follows:

Note: Use RPLYISUR to obtain the 4-byte console id and console name of the console
issuing the reply.

,ROUTCDE=(routing code)
Specifies the routing code or codes to be assigned to the message.

The routing codes are:

Offset Length(bytes) Contents
0 1 Completion code
1 2 Not part of the intended programming interface
3 1 1-byte console ID in binary

Message
Routing
Code

Definition

1 Master console action
2 Master console information
3 Tape pool
4 Direct access pool
5 Tape library
6 Disk library
7 Unit record pool
8 Teleprocessing control
9 System security
10 System error/maintenance/system programmer information
11 Programmer information
12 Emulators
13-20 Reserved for customer use
21-28 Reserved for IBM- or customer-defined subsystem use

1120 OS/390 V2R8.0 MVS Assembler Services Reference

 WTOR Macro

If you omit the ROUTCDE, and CONSID or CONSNAME parameters, the system uses
the routing code specified on the ROUTCODE parameter on the DEFAULT statement in
the CONSOLxx member of SYS1.PARMLIB.

,MCSFLAG= (flag name)
Specifies one or more flag names whose meanings are shown below:

,DESC=(descriptor code)
Specifies the message descriptor code or codes to be assigned to the message. Valid
descriptor codes for the WTOR macro are:

7 Retain action message for life-of-task
13 Message previously automated

All WTOR messages are action messages that have an @ sign displayed before the
first character. This indicates a need for operator action.

The system adds descriptor code 7 to all WTOR messages. The system holds all
WTOR messages until one of the following events occurs:

� The system deletes the WTOR message when the reply is received.

� You delete the WTOR message using the DOM macro. You should delete any
unanswered WTOR messages that are no longer current.

� The system deletes the WTOR message at task termination.

The message processing facility (MPF) can suppress messages. For MPF to suppress
messages, the hardcopy log must be active. The suppressed messages do not appear
on any console; they do appear on the hardcopy log.

,MSGTYP=(msg type)
Specifies how the message is to be routed to consoles on which the MONITOR
command is active. If you specify anything other than MSGTYP=N, which is the default,
your message is routed according to your specification on MSGTYP, and the ROUTCDE
parameter is ignored.

For SESS, JOBNAMES, or STATUS, the message is to be routed to the console that
issued the MONITOR SESS, MONITOR JOBNAMES, or MONITOR STATUS command,
respectively. When the message type is identified by the operating system, the
message is routed to only those consoles that requested the information.

Figure 71. MCSFLAG Flag Names

Flag Name Meaning

REG0 Queue the message to the console whose console ID is passed in register 0.
You can use register 0 to pass a 1-byte console ID (right-justified and padded
to the left with zeros) to identify the console to receive the message.
However, IBM recommends you use the CONSID parameter instead of
register 0.

RESP The WTOR is an immediate command response.

REPLY This is a reply to a WTOR.

BRDCST Broadcast the message to all active consoles.

HRDCPY Queue the message for hard copy only.

NOTIME Do not append time to the message.

CMD The WTOR is a recording of a system command issued for hardcopy log
purposes.

 WTOR — Write to Operator with Reply 1121

 WTOR Macro

For Y or N, the message type describes what functions (MONITOR SESS, MONITOR
JOBNAMES, and MONITOR STATUS) are desired. N, or omission of the MSGTYP
parameter, indicates that the message is to be routed as specified in the ROUTCDE
parameter. Y creates an area in the WTO parameter list in which you can set message
type information if you are coding a WTOR without any of the following parameters:

 � KEY
 � TOKEN
 � CONSID
 � CONSNAME
 � TEXT
 � RPLYISUR
 � CART
 � LINKAGE
 � SYNCH

IBM recommends that you do not use MSGTYP=Y.

,RPLYISUR =reply console
Specifies a 12-byte field where the system will place the 8-byte console name and the
4-byte console ID of the console through which the operator replies to this message.
When you specify this keyword in the list form, code it as RPLYISUR= with nothing after
the equal sign.

,CART=cmd/resp token
Specifies an 8-byte field containing a command and response token to be associated
with this message. The command and response token is used to associate user
information with a command and its command response. When you specify this
keyword in the list form, code it as CART= with nothing after the equal sign.

,CONSID=console id
Specifies a 4-byte field containing the ID of the console to receive a message. To view
a list of valid console IDs, issue the DISPLAY CONSOLES command. Use this ID in
place of a console ID in register 0. If you specify a 4-byte console ID, or if you specify a
console ID for an extended MCS console, you must use CONSID instead of register 0.
If you specify a 1-byte console ID, you must right-justify it and pad to the left with zeros.

Notes:

1. If you code the CONSID parameter using a register, the register must contain the
console ID itself, rather than the address of the console ID.

2. When you code CONSID on the list form of WTOR, code it as CONSID= with
nothing after the equal sign.

3. Do not use both CONSID and register 0 to pass a console ID, because the results
are unpredictable.

4. CONSID is mutually exclusive with the CONSNAME parameter.

,CONSNAME=console name
Specifies an 8-byte field containing a 2- through 8- character name, left-justified and
padded with blanks, of the console to receive a message. This parameter is mutually
exclusive with the CONSID parameter. When you specify this keyword in the list form,
code it as CONSNAME= with nothing after the equal sign. Do not use CONSNAME to
pass a console name, together with register 0 to pass a console ID, because the results
are unpredictable. Be sure to clear the low-order byte of register 0 if you add the
CONSNAME parameter to an existing invocation of WTOR.

1122 OS/390 V2R8.0 MVS Assembler Services Reference

 WTOR Macro

,KEY=key
Specifies a field containing an 8-byte key to be associated with this message. The key
must be EBCDIC if used with the MVS DISPLAY R command for retrieval purposes, but
it must not be ‘*’. The key must be left-justified and padded on the right with blanks. If
a register is used, it contains the address of the key. When this keyword is specified in
the list form, it must be coded as KEY= with nothing after the equal sign.

,TOKEN=token
Specifies a field containing a 4-byte token to be associated with this message. This field
is used to identify a group of messages that can be deleted by a DOM macro that
includes TOKEN. The token must be unique within an address space and can be any
value. When you specify this keyword on the list form, code it as TOKEN= with nothing
after the equal sign.

Note: When you code the TOKEN parameter using a register, the register must contain
the token itself, rather than the address of the token.

 ABEND Codes
WTOR might abnormally terminate with abend code X'D23'. See OS/390 MVS System
Codes for an explanation and programmer response for this code.

Return and Reason Codes
When the WTOR macro returns control to your program, GPR 15 contains one of the
following return codes.

Hexadecimal
Return Code

Meaning and Action

00 Meaning : Processing completed successfully.

Action : None. Be sure to delete the request by issuing the DOM macro.

04 Meaning : Program error. One of the following occurred:

� The number of lines passed was 0; the request was ignored.

� The message text length for a line was less than 1; all lines up to the error
line were processed.

Action : Correct the problem and retry the request. If you used the TEXT
parameter, verify the data pointed to by the parameter.

 Example 1
Issue a WTOR to a console whose ID is in register 4.

WTOR 'USR9ð2A REPLY YES OR NO TO CONTINUE.',REPLY,L8,REPECB, X
 CONSID=(R4),RPLYISUR=CONINFO
 .
 .
 .
R4 EQU 4
L8 EQU 8
REPLY DS CL8
REPECB DS F
CONINFO DS CL12

 WTOR — Write to Operator with Reply 1123

 WTOR Macro

 Example 2
Issue a WTOR with the TEXT parameter. The message is to go to a specific console whose
name is in field TOCON.

R4 EQU 4
LENG72 EQU 72
 .
 .
 .
 LA R4,CATMSG
 WTOR TEXT=(CATMSG,REPAREA,LENG72,IDSECB), X
 CONSNAME=TOCON, X
 RPLYISUR=IDSAREA
 .
 .
 .
CATMSG DC AL2(L'REP99)
REP99 DC C'USR999A ENTER LIST OF USERIDS.'
TOCON DC CL8'ALTCON '
REPAREA DS CL72
IDSECB DS F
IDSAREA DS CL12

 Example 3
Issue a WTOR using the TEXT parameter with the list and execute forms of the macro. The
console ID to which the message is to be queued is assumed to be in field MYCONID. On
the TEXT parameter for the execute form, commas mark the positions of reply addr and ecb
addr; for the list form, a comma marks the position of reply length.

R12 EQU 12
C5ð EQU 5ð LENGTH OF REPLY AREA
 USING \,R12
 .
 .
 .
 WTOR MF=(E,M2,EXTENDED),TEXT=(MESSAGE,,C5ð,),CONSID=MYCONID, X
 RPLYISUR=MYCONAR
 .
 .
 .
M2 DS ðH
 WTOR TEXT=(,RAREA,,MYECB),CONSID=,ROUTCDE=(2),RPLYISUR=,MF=L
MYCONID DS F
RAREA DS CL5ð
MYECB DS F
MYCONAR DS CL12
MESSAGE DC AL2(L'MTEXT)
MTEXT DC C'USR93ðA REQUEST IS AMBIGUOUS. RESPECIFY DEVICE.'
 END

1124 OS/390 V2R8.0 MVS Assembler Services Reference

 WTOR Macro

 WTOR—List Form
Use the list form of the WTOR macro together with the execute form of the macro for
applications that require reentrant code. The list form of the macro defines an area of
storage, which the execute form of the macro uses to store the parameters.

The message parameter must be provided in the list form.

 Syntax
The list form of the WTOR macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede WTOR.

WTOR

␣ One or more blanks must follow WTOR.

‘msg’,reply addr,reply
 length,ecb addr
TEXT=(,reply addr,reply
 length,ecb addr)

msg: Up to 121 characters.
reply addr: A-type address.
reply length: Symbol or decimal number. The minimum length is
1; the maximum length is 119.
ecb addr: A-type address.

Notes:

1. If you code ‘msg’,reply addr,reply length,ecb addr, it must be
the first parameter you code.

2. If you do not code reply addr on the list form of WTOR, mark
its position with a comma, and code reply addr on the execute
form. The same is true for reply length and ecb addr.

 ,ROUTCDE=(routing code) routing code: Decimal digit from 1 to 28. The routing code is one

or more codes, separated by commas, or a hyphen to indicate a
range.

 ,MCSFLAG=(flag name) flag name: Any combination of the following, separated by

commas:

REG0 HRDCPY
RESP REPLY
NOTIME BRDCST
CMD

 ,DESC=(descriptor code) descriptor code: Decimal number 7 or 13. If you code both 7 and

13, separate them with commas.

 ,RPLYISUR= Parameter value not required for list form. Code only RPLYISUR=.

If you code RPLYISUR on the list form of WTOR, you must code
RPLYISUR on the execute form.

 ,CART= Parameter value not required for list form. Code only CART=.

If you code CART on the list form of WTOR, you must code CART
on the execute form.

 ,CONSID=
 ,CONSNAME=

Parameter value not required for list form. Code only CONSID= or
CONSNAME=.
If you code CONSID (or CONSNAME) on the list form of WTOR,
you must code CONSID (or CONSNAME) on the execute form.

 ,KEY= Parameter value not required for list form. Code only KEY=.

If you code KEY on the list form of WTOR, you must code KEY on
the execute form.

 WTOR — Write to Operator with Reply 1125

 WTOR Macro

 ,TOKEN= Parameter value not required for list form. Code only TOKEN=.

If you code TOKEN on the list form of WTOR, you must code
TOKEN on the execute form.

,MF=L

 Parameters
The parameters are explained under the standard form of the WTOR macro, with the
following exception:

,MF=L
Specifies the list form of the WTOR macro.

 WTOR—Execute Form
Use the execute form of the WTOR macro together with the list form of the macro for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

The message cannot be modified on the execute form of the macro if you code inline text
(‘msg’...) on the list form.

 Syntax
The execute form of the WTOR macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede WTOR.

WTOR

␣ One or more blanks must follow WTOR.

,reply addr,reply length,ecb addr
TEXT=(text addr,reply addr,reply
length,ecb addr)

reply addr: RX-type address, or register (2) - (12).
reply length: Symbol, decimal number, or register 2-12. The
minimum length is 1; the maximum length is 119.
ecb addr: RX-type address, or register (2) - (12).
text addr: RX-type address or register (2) - (12).

Notes:

1. If you code reply addr,reply length,ecb addr, it must be the first
parameter you code and must be preceded by a comma.

2. If you specify inline text on the list form (‘msg’...), do not code
the TEXT keyword on the execute form.

3. If you do not code reply addr on the execute form of WTOR,
mark its position with a comma, and code reply addr on the list
form. The same is true for reply length and ecb addr.

 ,RPLYISUR=reply console reply console: RX-type address or register (2) - (12).

If you code RPLYISUR on the execute form of WTOR, you must
code RPLYISUR on the list form.

 ,CART=cmd/resp token cmd/resp token: RX-type address or register (2) - (12).

If you code CART on the execute form of WTOR, you must code
CART on the list form.

1126 OS/390 V2R8.0 MVS Assembler Services Reference

 WTOR Macro

 ,CONSID=console id
 ,CONSNAME=console name

console id: RX-type address or register (2) - (12).
console name: RX-type address or register (2) - (12).
If you code CONSID (or CONSNAME) on the execute form of
WTOR, you must code CONSID (or CONSNAME) on the list form.

 ,KEY=key key: RX-type address or register (2) - (12).

If you code KEY on the execute form of WTOR, you must code
KEY on the list form.

 ,TOKEN=token token: RX-type address or register (2) - (12).

If you code TOKEN on the execute form of WTOR, you must code
TOKEN on the list form.

,MF=(E,list addr)
,MF=(E,list addr,EXTENDED)

list addr: RX-type address, or register (1) - (12).

 Parameters
The parameters are explained under the standard form of the WTOR macro, with the
following exception:

,reply addr,reply length,ecb addr
If you code reply addr,reply length,ecb addr, it must be the first parameter you code and
must be preceded by a comma.

,MF=(E,list addr)
,MF=(E,list addr,EXTENDED)

Specifies the execute form of the WTOR macro.

list addr specifies the area that the system uses to store the parameters.

If you specify reply addr, reply length, ecb addr, or RPLYISUR on the execute form of
WTOR, together with one or more of the following parameters, you must specify
EXTENDED for the system to generate the parameter list correctly:

 KEY
 TOKEN
 CONSID
 CONSNAME
 TEXT
 RPLYISUR
 CART

 WTOR — Write to Operator with Reply 1127

 WTOR Macro

1128 OS/390 V2R8.0 MVS Assembler Services Reference

 XCTL and XCTLX Macros

XCTL and XCTLX — Pass Control to a Program in Another Load Module

 Description
The XCTL macro passes control to a specified entry name in a load module; the entry name
must be a member name, an alias in a directory of a partitioned data set, or have been
specified in an IDENTIFY macro. The system brings the load module (called the target
module) containing the entry name into storage if a usable copy is not already available.
Control passes from the program that issues the XCTL or XCTLX (called the XCTL issuer)
to the target module; control does not return to the XCTL issuer. Rather, control returns to
the program that caused the XCTL issuer to run. The use count for the XCTL issuer's load
module is decremented by 1. If the use count becomes zero, the system deletes the XCTLX
issuer's module and reassigns that storage.

Descriptions of the XCTL and XCTLX macro in this book are:

� The standard form of the XCTL macro, which includes general information about the
XCTL and XCTLX macros with specific information about the XCTL macro. The syntax
of the XCTL macro and all XCTL parameters are described.

� The standard form of the XCTLX macro, which presents information specific to the
XCTLX macro. The topic explains the syntax of the XCTLX macro and the parameters
that are valid only on XCTLX.

� The list form of the XCTL and XCTLX macros.

� The execute form of the XCTL and XCTLX macros.

The XCTL or XCTLX issuer can pass data to the target module in register 1 in several ways:

� Using XCTL without LSEARCH and PARAM, placing the data directly in register 1. This
choice is not available to the caller in AR mode.

� Using the execute form of the macro, placing the address of the data on the MF
parameter. For this choice, the issuer might have used the CALL macro to build a user
parameter list.

� Using the execute form of XCTL or XCTLX, specifying the location or locations of the
data on the PARAM parameter. XCTL or XCTLX builds a list of the addresses (a user
parameter list) at the location you specify on the MF parameter.

The data passed to the target module must not reside within the XCTL issuer's module; if the
system deletes the XCTL issuer's module, any data in that module is not available. For
more help in understanding passing parameters with XCTL and XCTLX, see “Examples of
Passing Data to the Target Module” on page 1135.

The target module gets control in the residency mode and addressing mode established by
the link-edit. If XCTL=YES was specified on the ESTAE or ESTAEX macro that set up
recovery for the XCTL issuer, then the ESTAE-type recovery routine covers the target
module also.

The target module must return to the program that caused the XCTL issuer to run.
According to linkage conventions, the target module is responsible for restoring the status of
the program that originally caused the XCTL issuer to run. The status includes the contents
of registers 2 through 14, as well as other information that is expected by the program that
caused the XCTL issuer to run, such as:

� The program interruption control area (PICA)
� The program mask.

The system abnormally terminates the task under either of the following conditions:

� The system cannot locate the entry point that is to receive control

 Copyright IBM Corp. 1988, 1999 1129

 XCTL and XCTLX Macros

� The XCTL issuer added entries to the linkage stack, and did not remove those entries
prior to issuing the XCTL.

 Environment
The requirements for the caller are:

Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=SASN=HASN
AMODE: 24-bit or 31-bit
ASC mode: Primary or access register
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must reside in the primary address space
User parameters: Must reside in the primary address space

 Syntax
The standard form of the XCTL macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede XCTL.

XCTL

␣ One or more blanks must follow XCTL.

 (reg1), reg1 and reg2: Decimal digits in the
 (reg1,reg2), order 2 through 12.

EP=entry name entry name: Symbol.
EPLOC=entry name addr entry name addr: A-type address or register (2) - (12).
DE=list entry addr list entry addr: A-type address, or register (2) - (12).

 ,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).

 ,LSEARCH=NO Default: LSEARCH=NO
 ,LSEARCH=YES

 Parameters
The parameters are explained as follows:

(reg1),
(reg1,reg2),

specifies the register or range of registers to be restored before the target routine gets
control from the save area at the address contained in register 13. Note that the
registers must be specified as decimal numbers; forms like “(R2,R12)” are not accepted.

EP=entry name
EPLOC=entry name addr
DE=list entry addr

specifies the entry name, the address of the entry name, or the address of a 62-byte list
entry for the entry name that was constructed using the BLDL macro. If EPLOC is
coded, the name must be padded to eight bytes, if necessary.

The system ignores the information you specify on the DE parameter if the parameter
does one or both of the following:

1130 OS/390 V2R8.0 MVS Assembler Services Reference

 XCTL and XCTLX Macros

� Specifies an entry in an authorized library (that is, defined in IEAAPFxx member of
parmlib)

� Requests access to a program or library that is controlled by the system
authorization facility (SAF)

Instead, the system uses the BLDL macro to construct a new list entry containing the
DE information.

Note : When you use the DE parameter with the XCTL macro, DE specifies the address
of a list that was created by a BLDL macro. BLDL and XCTL must be issued from the
same task; otherwise, the system might terminate the program with an abend code of
106 and a return code of 15. Therefore, do not issue an ATTACH or a DETACH macro
between issuances of the BLDL and the XCTL macros.

,DCB=dcb addr
specifies the address of the opened data control block for the partitioned data set
containing the entry name described above. This parameter must indicate the same
DCB used in the BLDL mentioned above. The DCB must not be defined in the XCTL
issuer.

If the DCB parameter is omitted or if DCB=0 is specified when the XCTL macro is
issued by the job step task, the data sets referred to by either the STEPLIB or JOBLIB
DD statement are first searched for the entry name. If the entry name is not found, the
link library is searched.

If the DCB parameter is omitted or if DCB=0 is specified when the XCTL macro is
issued by a subtask, the data sets associated with one or more data control blocks
referred to by the TASKLIB operand of previous ATTACH macros in the subtasking
chain are first searched for the entry point name. If the entry point name is not found,
the search is continued as if the XCTL had been issued by the job step task.

Note: The DCB must reside in 24-bit addressable storage.

,LSEARCH=NO
,LSEARCH=YES

specifies whether (YES) or not (NO) you want the search limited to the job pack area
and the first library in the normal search sequence.

Note: When you use LSEARCH on XCTL, the system does not pass the contents of
register 1 to the target module, unless you specify MF=(E,(1)) on the execute form.

Return and Reason Codes
None.

 Example
Pass control through the address of the entry name (XCTLEP), and have registers 2 through
12 restored.

XCTL (2,12),EPLOC=XCTLEP

 XCTL and XCTLX — Pass Control to a Program in Another Load Module 1131

 XCTL and XCTLX Macros

XCTLX — Pass Control to a Program in Another Load Module
The XCTLX macro performs the same function as XCTL: it causes control to pass to a
specified entry name in another load module, the target module. XCTLX is intended for use
by programs running in access register (AR) mode. Programs running in primary mode can
also use XCTLX.

If your program runs in AR mode, before you issue the XCTLX macro, issue the SYSSTATE
ASCENV=AR macro to tell the XCTLX macro to generate code appropriate for AR mode.

 Syntax
The XCTLX macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede XCTLX.

XCTLX

␣ One or more blanks must follow XCTLX.

 (reg1), reg1 and reg2: Decimal digits in the order 2 through 12.
 (reg1,reg2),

EP=entry name entry name: Symbol.
EPLOC=entry name addr entry name addr: A-type address or register (2) - (12).
DE=list entry addr list entry addr: A-type address, or register (2) - (12).

 ,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).

 ,LSEARCH=NO Default: LSEARCH=NO
 ,LSEARCH=YES

 Parameters
The parameters are described under the syntax of the standard form of the XCTL macro.

1132 OS/390 V2R8.0 MVS Assembler Services Reference

 XCTL and XCTLX Macros

XCTL and XCTLX—List Form
Two parameter lists are used on XCTL or XCTLX: a control parameter list and an optional
user parameter list. The list form uses only the control parameter list. The execute form
builds a user parameter list and passes it to the target module.

 Syntax
The list form of the XCTL or XCTLX macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede XCTL or XCTLX.

XCTL
XCTLX

␣ One or more blanks must follow XCTL or XCTLX.

 EP=entry name, entry name: Symbol.

EPLOC=entry name addr, entry name addr: A-type addresses.
DE=list entry addr, list entry addr: A-type address.

 ,DCB=dcb addr, dcb addr: A-type address.

 ,LSEARCH=NO, Default: LSEARCH=NO
 ,LSEARCH=YES,

,SF=L

 Parameters
The parameters are explained under the standard form of the XCTL macro, with the
following exception:

,SF=L
specifies the list form of the XCTL or XCTLX macro.

Note: If you code LSEARCH in either the list or execute form of the macro, you must code
it in both.

 XCTL and XCTLX — Pass Control to a Program in Another Load Module 1133

 XCTL and XCTLX Macros

XCTL or XCTLX—Execute Form
Two parameter lists are available in the XCTL or XCTLX macro: a control parameter list and
an optional user parameter list. The control parameter list can be either inline or remote
(that is, in an area you specifically obtained); the user parameter list must be remote.

 Syntax
The execute form of the XCTL or XCTLX macro is written as follows:

 name name: Symbol. Begin name in column 1.

␣ One or more blanks must precede XCTL or XCTLX.

XCTL
XCTLX

␣ One or more blanks must follow XCTL or XCTLX.

 (reg1), reg1 and reg2: Decimal digits or RX-type addresses, and
 (reg1,reg2), in the order 2 through 12.

 EP=entry name, entry name: Symbol.

EPLOC=entry name addr, entry name addr: RX-type address or register (2) - (12).
DE=list entry addr, list entry addr: RX-type address, or register (2) - (12).

 ,DCB=dcb addr, dcb addr: RX-type address, or register (2) - (12).

 ,PARAM=(parm), parm: RX-type address, or register (2) - (12).
 ,PARAM=(parm),VL=1, parm is one or more addresses, separated by commas. For

example, PARAM=(parm,parm,parm)

 ,LSEARCH=NO, Default: LSEARCH=NO
 ,LSEARCH=YES,

,MF=(E,user area) user area: RX-type address, or register (1) or (2) - (12).
,SF=(E,ctrl area) ctrl area: RX-type address, or register (2) - (12) or (15).
,MF=(E,user area),SF=(E,ctrl
 area)

 Parameters
The parameters are explained under the standard form of the XCTL macro, with the
following exceptions:

PARAM=(parm)
PARAM=(parm),VL=1

specifies one or more parameters to be passed to the target module. XCTL builds
the user parameter list consisting of a fullword address for each parameter in the
order specified, placed at the location designated by MF=(E,user area). When the
target module gets control, register 1 contains the address of the location
designated by user area.

If the caller is in AR mode, XCTLX builds the user parameter list so that the
addresses passed to the target module are in the first half of the parameter list, and
their corresponding ALETs are in the last half of the list. See Figure 2 on page 4
for more information about the format of the user parameter list.

Use VL=1 if you are passing the target module a variable number of parameters.
VL=1 causes the high-order bit of the last address parameter to be set to 1; the
target module can check the last bit to find the end of the list.

1134 OS/390 V2R8.0 MVS Assembler Services Reference

 XCTL and XCTLX Macros

LSEARCH=NO
LSEARCH=YES

specifies whether (YES) or not (NO) you want the search limited to the job pack
area and to the first library in the normal search sequence.

Notes:

1. Do not use register 1 to pass parameters to the target module unless you use
XCTL (not XCTLX) and omit both LSEARCH and PARAM.

2. If you code LSEARCH in either the list or execute form of the macro, you must
code it in both.

,MF=(E,user area)
,SF=(E,ctrl area)
,MF=(E,user area),SF=(E,ctrl area)

specifies the execute form of the XCTL macro.

Use MF=(E,user area) to specify the address of data you want the target module to
receive in register 1. If you specify PARAM, MF=(E,user area) is required and identifies
the remote location where you want XCTL or XCTLX to build the parameter list.

Use SF=(E,ctrl area) to point to a remote control parameter list. If you do not specify
SF, XCTL builds the control parameter list inline.

Examples of Passing Data to the Target Module
These examples all perform the following function: pass control using the address of the
entry name (XCTLEP), have registers 2 through 12 restored, and have the target module
receive data in register 1. The control parameter list is inline.

 Example 1
An XCTL issuer (not in AR mode) wants to pass a 6-byte token to the target module. The
issuer puts the token into register 1 and issues the macro.

XCTL (2,12),EPLOC=XCTLEP

When the target module receives control, register 1 contains the token.

 Example 2
An XCTL issuer (not in AR mode) wants to pass data that resides at the location
ADDRDATA.

XCTL (2,12),EPLOC=XCTLEP,MF=(E,ADDRDATA)

When the target module receives control, register 1 contains the address of ADDRDATA.

 Example 3
An XCTLX issuer (in primary or AR mode) wants to pass an address of a parameter list that
was built by the CALL macro. The parameter list resides at the location PARM1.
Additionally, the issuer wants to limit the search for the target module.

XCTLX (2,12),EPLOC=XCTLEP,LSEARCH=YES,MF=(E,PARM1)

When the target module receives control, register 1 contains the address of PARM1.

 Example 4
An XCTLX issuer (in primary or AR mode) wants to pass a parameter list consisting of the
addresses of three parameters. The issuer wants XCTLX to build a user parameter list at
the address contained in register 3, and then pass this address to the target module. The
three parameters are DATA1, DATA2, and DATA3.

XCTLX (2,12),EPLOC=XCTLEP,PARAM=(DATA1,DATA2,DATA3),MF=(E,(3))

When the target module receives control, register 1 contains the address of the user
parameter list that contains the fullword addresses of DATA1, DATA2, and DATA3, in that
order.

 XCTL and XCTLX — Pass Control to a Program in Another Load Module 1135

 XCTL and XCTLX Macros

1136 OS/390 V2R8.0 MVS Assembler Services Reference

 Appendix A. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service may
be used. Any functionally equivalent product, program, or service that does not infringe any
IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in
this document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only
and do not in any manner serve as an endorsement of those Web sites. The materials at
those Web sites are not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling:
(i) the exchange of information between independently created programs and other programs
(including this one) and (ii) the mutual use of the information which has been exchanged,
should contact:

IBM Corporation
Mail Station P300
522 South Road

 Copyright IBM Corp. 1988, 1999 1137

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it
are provided by IBM under terms of the IBM Customer Agreement, IBM International
Program License Agreement, or any equivalent agreement between us.

If you are viewing this information softcopy, the photographs and color illustrations may not
appear.

Programming Interface Information
This book is intended to help the customer to code macros that are available to all
assembler language programs. This book documents intended Programming Interfaces that
allow the customer to write programs to obtain services of OS/390.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or other
countries or both:

 � AD/Cycle
 � AFP
 � CICS
 � DFSMS/MVS
 � ESA/390
 � Hiperspace
 � IBM
 � IBMLink
 � MVS/DFP
 � MVS/ESA
 � MVS/SP
 � MVS/XA
 � OS/390
 � RACF
 � SP
 � SP1
 � SP2
 � Sysplex Timer

1138 OS/390 V2R8.0 MVS Assembler Services Reference

 Index

Numerics
31-bit addressing mode

macros requiring expansion
CALL 115
ESTAE macro 457
EVENTS 469
STIMER macro 931
SYNCH 983
WTOR macro 1117
XCTL macro 1129

A
abend

interrupting scheduled 457
ABEND macro 27 —30
abnormal termination

caused by failure to remove a subtask 357
of a task 27

access list entry token
See ALET

access register mode
See AR mode

action message 1108, 1120
address space control mode

See ASC mode
addressing mode

See AMODE
addressing mode and the services 1
ALESERV macro 31 —42
ALET qualification

of parameters 3
AMODE (addressing mode)

changing
using the LINK macro 813

AR (access register) mode
description 2

ASASYMBM service 43 —45
ASC (address space control) mode

defining 2
ATTACH and ATTACHX macros 47 —61

B
BLDMPB macro 63 —66
BLSABDPL macro 67 —70
BLSACBSP macro 71 —72
BLSADSY macro 73 —74
BLSAPCQE macro 75 —76
BLSQFXL macro 77 —78
BLSQMDEF macro 79 —82

BLSQMFLD macro 83 —93
BLSQSHDR macro 95 —96
BLSRDRPX macro 97
BLSRESSY macro 99 —100
BLSRNAMP macro 101 —102
BLSRPRD macro 103
BLSRPWHS macro 105 —106
BLSRSASY macro 107 —108
BLSRXMSP macro 109 —110
BLSRXSSP macro 111 —112
BLSUPPR2 macro 113 —114

C
CALL macro 115 —118
callable service

coding 20
cell pool

creating 139
deleting 139
obtaining 139
placing start/end addresses of cell pool extents in a

buffer 139
returning 139
services 139

central storage
loading virtual storage 833

CHAP macro 119 —121
coding the callable services 20
coding the macros 15
completed ECB

list 472
completion of an event

signalling 849
compression

services 161
configuration token

See I/O configuration token
contention queue element create service

parameter list
initialization 76

continuation line 18
control

passing between control sections 115
passing to another load module 813

control block
specifying a formatting model field 83

control block format model
defining 79

CONVCON macro 123 —130
CONVTOD macro 131 —137
CPOOL macro 139 —149

 Copyright IBM Corp. 1988, 1999 1139

CPU timer
obtaining value 151

CPUTIMER macro 151 —153
relationship to STIMER macro 151

CSRCESRV macro 155 —160
CSRCMPSC macro 161 —166
CSREVW callable service 167 —170
CSRIDAC callable service 171 —174
CSRL16J callable service 175 —177
CSRPACT callable service 179 —181
CSRPBLD callable service 183 —185
CSRPCON callable service 187 —189
CSRPDAC callable service 191 —193
CSRPDIS callable service 195 —197
CSRPEXP callable service 199 —202
CSRPFR1 callable service 207 —210
CSRPFRE callable service 203 —205
CSRPGET callable service 211 —213
CSRPGT1 callable service 215 —217
CSRPQCL callable service 219 —221
CSRPQEX callable service 223 —226
CSRPQPL callable service 227 —229
CSRPRFR callable service 231 —233
CSRPRFR1 callable service 235 —237
CSRPRGT callable service 239 —241
CSRPRGT1 callable service 243 —245
CSRREFR callable service 247 —249
CSRSAVE callable service 251 —253
CSRSCOT callable service 255 —257
CSRSI 259
CSRVIEW callable service 277 —280
CSVAPF macro 281 —289
CSVINFO macro 291 —301
CSVQUERY macro 303 —312
CSVRTLS macro 313 —344

D
data

compressing 161
expanding 161

data sharing with IARVSERV macro 525
DELETE macro 345 —347

relationship to LOAD macro 345
DEQ macro 349 —356
DETACH macro 357 —359
device measurement block index

obtaining 639
dispatching priority

changing 119
DIV macro 361 —381

use with IARVSERV macro 362
DOM macro 383 —385
downward incompatible macro

list 7

DSPSERV macro
for data spaces 387—399
for hiperspaces 401—413
limitation with IARVSERV macro 390

dumping service
defining a control block format model 79
formatting routine parameters 67, 99
specifying a formatting model field 83

E
ECB (event control block)

initializing 472
list of completed 472
setting 849

EDT (eligible device table)
obtaining information 415

EDTINFO macro 415 —435
eligible device table

See EDT
ENQ macro 437 —446
ESPIE environment

deleting 447
determining 447
establishing 447

ESPIE macro 447 —455
ESTAE and ESTAEX macros 457 —467
ETR (external time reference)

checking for TOD clock synchronization with 927
event

signalling completion 849
event control block

See ECB
EVENTS macro 469 —476
events table

creating 469, 471
deleting 469, 472
format 472

exit routine
end-of-task 27

extended SPIE macro
See ESPIE macro

external time reference
See ETR

F
FREEMAIN macro 477 —484

G
GETMAIN macro 485 —495
global serialization queue

extracting information 497
GQSCAN macro 497 —508

1140 OS/390 V2R8.0 MVS Assembler Services Reference

H
hiperspace

reading 509
writing 509

HSPSERV macro 509 —517

I
I/O configuration token

obtaining 639
IARR2V macro 519 —523
IARVSERV macro 525 —534

data sharing 525
IDENTIFY macro 535 —536
IEAFP macro 537 —540
IEAINTKN macro 541 —542
IEALSQRY macro 543 —545
IEANTCR callable service 547 —552
IEANTDL callable service 556
IEANTDL macro 553
IEANTRT callable service 557 —560
IEATDUMP macro 577
IEAVAPE callable service 579 —581
IEAVDPE callable service 583 —586
IEAVPSE callable service 587 —590
IEAVRLS callable service 591 —594
IEAVXFR callable service 595 —599
IEFDDSRV macro 601 —606
IEFPRMLB macro 607 —630
IEFSSI macro 631 —637
incident token

building 541
input/output supervisor

See IOS
installation exit routine

See exit routine
IOCINFO macro 639 —643
IOS (input/output supervisor)

obtaining information 645
IOSCHPD macro 645 —649
IXGBRWSE macro 651 —686
IXGCONN macro 687 —703
IXGDELET macro 705
IXGIMPRT macro 719 —730
IXGINVNT macro 731 —774
IXGOFFLD macro 782
IXGQUERY macro 790
IXGUPDAT macro 798
IXGWRITE macro 799 —812

L
LINK and LINKX macros 813 —821
linkage stack

query macro 543

list
of completed ECBs 472

LOAD macro 823 —828
relationship to DELETE macro 345

load module
adding an entry name 535
bringing into virtual storage 823
deleting 345
passing control 813
releasing control 345
responsibility count 823

Logrec Data Set
symptom record entries from SYMREC macro 977

LSEXPAND macro 829 —831

M
macro

coding 15
forms 13
level

selecting 7
sample 15
selecting level 7
user parameter, passing 3
X-macros

using 12
message

deleting 383
module

See load module
multiple timer

setting 937

O
operator message

deleting 383

P
paging service

PGLOAD macro 833
PGOUT macro 837
PGRLSE macro 841
PGSER macro 845

parameter list
used in EVENTS processing 472

partitioned data set
See PDS

PGLOAD macro 833 —835
PGOUT macro 837 —839
PGRLSE macro 841 —843
PGSER macro 845 —848
POST macro 849 —851

 Index 1141

process symptom record 977
program object

bringing into virtual storage 823

Q
QRYLANG macro 853 —857

R
recovery routine

establishing an ESTAE-type 457
REFPAT macro 859 —865
RESERVE macro 867 —874
residency mode

See RMODE
responsibility count

for a load module 823
RETURN macro 875 —876
 routine.exit routine

See recovery

S
SAVE macro 877 —878
serially reusable resource

releasing 349
requesting control 437

service
ALET qualification 3
summary 21

services
addressing mode 1
ASC mode

defining 2
using 1

SETRP macro 879 —884
shared DASD

reserve a device 867
sharing storage with IARVSERV macro 525
SNAP and SNAPX macros 885 —898
specify program interruption exit

See SPIE macro
specify task abnormal exit

See STAE macro
SPIE macro 899 —904
SPLEVEL macro 905 —908
STAE macro 909 —914
STATUS macro 915 —919
STCKCONV macro 921 —926
STCKSYNC macro 927 —930
STIMER macro 931 —935

relationship to CPUTIMER macro 151
STIMERM macro 937 —948
storage

See virtual storage

STORAGE macro 949 —960
subtask

changing status 915
detaching 357

symptom record 977
SYMRBLD macro 961 —976
SYMREC macro 977 —982
SYNCH and SYNCHX macros 983 —988
synchronous exit 986
SYSSTATE macro 989 —992
system information service

retrieve system information 259

T
task

creating 47
TCBTOKEN macro 993 —996
TESTART macro 997 —1000
time interval

testing 937
TIME macro 1001 —1010
time-of-day clock

See TOD clock
timer

setting a multiple 937
TIMEUSED macro 1011 —1013
TOD (time-of-day) clock

checking for synchronization with ETR 927
converting value 131, 921
obtaining contents 927, 1001

TRANMSG macro 1015 —1027
TTIMER macro 1029 —1031

U
UCB (unit control block)

scanning 1071
UCBDEVN macro 1033 —1035
UCBINFO macro 1037 —1069
UCBSCAN macro 1071 —1080
unit control block

See UCB
UPDTMPB macro 1081 —1085
user parameter

passing 3

V
variable recording area

See VRA
virtual storage

allocating 477, 485
bringing in a load module 823
bringing in a program object 823
loading 833, 845

1142 OS/390 V2R8.0 MVS Assembler Services Reference

virtual storage (continued)
page-ahead function 833
paging out 837, 845
planning for future needs 833
releasing 345
releasing contents 841, 845
sharing with IARVSERV macro 525

VRA (variable recording area)
updating data 1087

VRADATA macro 1087 —1091

W
WAIT macro 1093 —1096
WTL macro 1097 —1102
WTO macro 1103 —1115
WTOR macro 1117 —1127

X
X-macros

using 12
XCTL and XCTLX macros 1129 —1135

 Index 1143

Communicating Your Comments to IBM

OS/390
MVS Programming: Assembler Services
Reference

Publication No. GC28-1910-08

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a reader's comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

– FAX: (International Access Code)+1+914+432-9405

� If you prefer to send comments electronically, use one of these network IDs:

– IBM Mail Exchange: USIB6TC9 at IBMMAIL
– Internet e-mail: mhvrcfs@us.ibm.com
– World Wide Web: http://www.ibm.com/s390/os390/

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your
comments by phone.

Reader's Comments — We'd Like to Hear from You

OS/390
MVS Programming: Assembler Services
Reference

Publication No. GC28-1910-08

You may use this form to communicate your comments about this publication, its organization, or subject matter, with the
understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you. Your comments will be sent to the author's department for whatever review and action, if any,
are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any requests
for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office
serving your locality.

Today's date:

What is your occupation?

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

How did you use this publication?

Is there anything you especially like or dislike about the organization, presentation, or writing in this manual? Helpful
comments include general usefulness of the book; possible additions, deletions, and clarifications; specific errors and
omissions.

Page Number: Comment:

Name Address

Company or Organization

Phone No.

[] As an introduction [] As a text (student)

[] As a reference manual [] As a text (instructor)

[] For another purpose (explain)

Cut or Fold
Along Line

Cut or Fold
Along Line

Reader's Comments — We'd Like to Hear from You
GC28-1910-08 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie NY 12601-5400

Fold and Tape Please do not staple Fold and Tape

GC28-1910-08

IBM

Program Number: 5647-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC28-191ð-ð8

	Contents
	Figures
	About This Book
	Who Should Use This Book
	How to Use This Book
	Where to Find More Information

	Summary of Changes
	Using the Services
	Addressing Mode (AMODE)
	Address Space Control (ASC) Mode
	ALET Qualification
	User Parameters

	Register Use
	Handling Return Codes and Reason Codes
	Handling Program Errors
	Handling Environmental and System Errors

	Selecting the Macro Level
	Specifying a Macro Version Number
	How to Request a Macro Version Using PLISTVER
	Hints for Using PLISTVER

	Using X-Macros
	Macro Forms
	Conventional List Form Macros
	Alternative List Form Macros

	Coding the Macros
	Continuation Lines

	Coding the Callable Services
	Including Equate (EQU) Statements
	Link-Editing Linkage-Assist Routines

	Service Summary

	ABEND — Abnormally Terminate a Task
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2
	Example 3

	ALESERV — Control Entries in the Access List
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example of Adding an Entry to a DU-AL

	ALESERV—List Form
	Parameters

	ALESERV—Execute Form
	Syntax
	Parameters

	ASASYMBM — Substitute Text for Symbols
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	Return and Reason Codes
	Examples of Calls to ASASYMBM

	ATTACH and ATTACHX — Create a New Task
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2
	Example 3
	Example 4

	ATTACHX—Create a New Task
	Syntax
	Parameters
	Example

	ATTACH and ATTACHX—List Form
	Syntax
	Parameters

	ATTACH and ATTACHX—Execute Form
	Syntax
	Parameters

	BLDMPB — Build a Message Parameter Block
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	Return and Reason Codes
	Example

	BLSABDPL — Map Dump Formatting Exit Data
	Description
	Environment
	Programming Requirements
	Restrictions
	Register Information
	Performance Implications
	Syntax
	Parameters
	Example

	BLSACBSP — Map the Control Block Status (CBSTAT) Parameter List
	Description
	Environment
	Programming Requirements
	Restrictions
	Register Information
	Performance Implications
	Syntax
	Parameters
	Example

	BLSADSY — Map the Add Symptom Service Parameter List
	Description
	Environment
	Programming Requirements
	Restrictions
	Register Information
	Performance Implications
	Syntax
	Parameters
	Example

	BLSAPCQE — Map the Contention Queue Element (CQE) Create Service Parameter List
	Description
	Environment
	Programming Requirements
	Restrictions
	Register Information
	Performance Implications
	Syntax
	Parameters
	Example

	BLSQFXL — Map the Format Exit Routine List (FXL)
	Description
	Environment
	Programming Requirements
	Restrictions
	Register Information
	Performance Implications
	Syntax
	Parameters
	Example

	BLSQMDEF — Define a Control Block Format Model
	Description
	Environment
	Programming Requirements
	Restrictions
	Register Information
	Performance Implications
	Syntax
	Parameters

	BLSQMFLD — Specify a Formatting Model Field
	Description
	Environment
	Programming Requirements
	Restrictions
	Register Information
	Performance Implications
	Syntax
	Parameters
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	BLSQSHDR — Generate Model Subheader
	Description
	Environment
	Programming Requirements
	Restrictions
	Register Information
	Performance Implications
	Syntax
	Parameters
	Examples

	BLSRDRPX — Map Dump Record Prefix
	Description
	Environment
	Programming Requirements
	Restrictions
	Register Information
	Performance Implications
	Syntax
	Parameters

	BLSRESSY — Map IPCS Symbol Table Data
	Description
	Environment
	Programming Requirements
	Restrictions
	Register Information
	Performance Implications
	Syntax
	Parameters
	Example

	BLSRNAMP — Map the Name Service Parameter List
	Description
	Environment
	Programming Requirements
	Restrictions
	Register Information
	Performance Implications
	Syntax
	Parameters
	Example

	BLSRPRD — Map Dump Record
	Description
	Environment
	Programming Requirements
	Restrictions
	Register Information
	Performance Implications
	Syntax
	Parameters

	BLSRPWHS — Map the WHERE Service Parameter List
	Description
	Environment
	Programming Requirements
	Restrictions
	Register Information
	Performance Implications
	Syntax
	Parameters
	Example

	BLSRSASY — Map IPCS Storage Map Data
	Description
	Environment
	Programming Requirements
	Restrictions
	Register Information
	Performance Implications
	Syntax
	Parameters
	Example

	BLSRXMSP — Map the Storage Map Service Parameter List
	Description
	Environment
	Programming Requirements
	Restrictions
	Register Information
	Performance Implications
	Syntax
	Parameters
	Example

	BLSRXSSP — Map the Symbol Service Parameter List
	Description
	Environment
	Programming Requirements
	Restrictions
	Register Information
	Performance Implications
	Syntax
	Parameters
	Example

	BLSUPPR2 — Map the Expanded Print Service Parameter List
	Description
	Environment
	Programming Requirements
	Restrictions
	Register Information
	Performance Implications
	Syntax
	Parameters
	Example

	CALL — Pass Control to a Control Section
	Description
	Environment
	Programming Requirements
	Register Information
	Syntax
	Parameters
	Return and Reason Codes
	Example

	CALL—List Form
	Syntax
	Parameters

	CALL—Execute Form
	Syntax
	Parameters

	CHAP — Change Dispatching Priority
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2

	CONVCON — Retrieve Console Information
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	CONVTOD — Convert to Time-of-Day Clock Format
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2
	Example 3

	CONVTOD—List Form
	Syntax
	Parameters

	CONVTOD—Execute Form
	Syntax
	Parameters

	CPOOL — Perform Cell Pool Services
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	CPOOL—List Form
	Syntax
	Parameters

	CPOOL—Execute Form
	Syntax
	Parameters

	CPUTIMER — Provide Current CPU Timer Value
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return Codes
	Example 1
	Example 2
	Example 3
	Example 4

	CSRCESRV — Compress and Expand Data
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information for SERVICE;QUERY
	Output Register Information for SERVICE;QUERY
	Input Register Information for SERVICE;COMPRESS
	Output Register Information for SERVICE;COMPRESS
	Input Register Information for SERVICE;EXPAND
	Output Register Information for SERVICE;EXPAND
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRCMPSC — Compress and Expand Data
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	Abend Codes
	Return and Reason Codes
	Example 1
	Example 2
	Example 3

	CSREVW — View an Object and Sequentially Access It
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRIDAC — Request or Terminate Access to a Data Object
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRL16J — Transfer Control with All Registers Intact
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRPACT — Activate Previously Connected Storage
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRPBLD — Build a Cell Pool and Initialize an Anchor
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRPCON — Connect Cell Storage to an Extent
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRPDAC — Deactivate an Extent
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRPDIS — Disconnect the Cell Storage for an Extent
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRPEXP — Expand a Cell Pool
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRPFRE — Return a Cell to a Cell Pool
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRPFR1 — Return a Cell to a Cell Pool
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRPGET — Allocate a Cell from a Cell Pool
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRPGT1 — Allocate a Cell from a Cell Pool
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRPQCL — Query a Cell
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRPQEX — Query a Cell Pool Extent
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRPQPL — Query the Cell Pool
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRPRFR — Return a Cell to a Cell Pool (Register Interface)
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRPRFR1 — Return a Cell to a Cell Pool (Register Interface)
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRPRGT — Allocate a Cell from a Cell Pool (Register Interface)
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRPRGT1 — Allocate a Cell from a Cell Pool (Register Interface)
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRREFR — Refresh an Object
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRSAVE — Save Changes Made to a Permanent Object
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRSCOT — Save Object Changes in a Scroll Area
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSRSI — System Information Service
	Description
	Environment
	Programming Requirements
	Restrictions:
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	Return Codes

	CSRSIC C/370 Header File

	CSRVIEW — View an Object
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSVAPF — Query the List of APF-Authorized Libraries
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2
	CSVAPF—List Form
	Parameters

	CSVAPF—Execute Form
	Parameters

	CSVINFO — Obtain Information about Loaded Modules
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	CSVINFO—List Form
	Syntax
	Parameters

	CSVINFO—Execute Form
	Syntax
	Parameters

	CSVINFO—Modify Form
	Syntax
	Parameters

	CSVQUERY — Contents Supervisor Query Service
	Description
	Environment
	Input Register Information
	Output Register Information
	Programming Requirements
	Restrictions
	Performance Implications
	Syntax
	Parameters
	Return and Reason Codes

	CSVQUERY—List Form
	Syntax
	Parameters

	CSVQUERY—Execute Form
	Syntax
	Parameters

	CSVQUERY—Modify Form
	Syntax
	Parameters

	CSVRTLS — Define the RTLS Configuration
	REQUEST=CONNECT Option of CSVRTLS
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	REQUEST=LOAD Option of CSVRTLS
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	REQUEST=DELETE Option of CSVRTLS
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	REQUEST=DISCONNECT Option of CSVRTLS
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	REQUEST=LIST Option of CSVRTLS
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	DELETE — Relinquish Control of a Load Module
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	DEQ — Release a Serially Reusable Resource
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2

	DEQ—List Form
	Parameters

	DEQ—Execute Form
	Parameters

	DETACH — Detach a Subtask
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2

	DIV — Data-in-Virtual
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2

	DIV—List Form
	Syntax
	Parameters

	DIV—Execute Form
	Syntax
	Parameters

	DIV—Modify Form
	Syntax
	Parameters

	DOM — Delete Operator Message
	Description
	Environment
	Programming Requirements
	Restrictions
	Register Information
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	Example 1
	Example 2
	Example 3

	DSPSERV — Create, Delete, and Control Data Spaces
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2

	DSPSERV—List Form
	Syntax

	DSPSERV—Execute Form
	Syntax

	DSPSERV — Create, Delete, and Control Hiperspaces
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	DSPSERV—List Form
	Syntax
	Parameters

	DSPSERV—Execute Form
	Syntax
	Parameters

	EDTINFO — Obtain Eligible Device Table Information
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	Return and Reason Codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	EDTINFO—List Form
	Syntax
	Parameters

	EDTINFO—Execute Form
	Syntax
	 Parameters

	EDTINFO—Modify Form
	Syntax
	 Parameters

	ENQ — Request Control of a Serially Reusable Resource
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2
	Example 3

	ENQ—List Form
	Parameters

	ENQ—Execute Form
	Parameters

	ESPIE — Extended SPIE
	Description
	Environment
	Programming Requirements
	Restrictions
	Performance Implications
	ABEND Codes
	SET Option
	Input Register Information
	Output Register Information
	Syntax
	Parameters
	Return and Reason Codes
	Example

	ESPIE—List Form
	Syntax
	Parameters
	Example

	ESPIE—Execute Form
	Syntax
	Parameters
	Example
	RESET Option
	Input Register Information
	Output Register Information
	Syntax
	Parameters
	Return and Reason Codes
	Example
	TEST Option
	Input Register Information
	Output Register Information
	Syntax
	Parameters
	Return and Reason Codes
	Example

	ESTAE and ESTAEX — Extended Specify Task Abnormal Exit
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2

	ESTAEX —Extended Specify Task Abnormal Exit
	Environment
	Programming Requirements
	Restrictions
	Syntax
	Parameters
	Return and Reason Codes

	ESTAE and ESTAEX—List Form
	Syntax
	Parameters

	ESTAE and ESTAEX—Execute Form
	Syntax
	Parameters

	EVENTS — Wait for One or More Events to Complete
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	Using the EVENTS Macro
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2

	FREEMAIN — Free Virtual Storage
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2
	Example 3

	FREEMAIN—List Form
	Parameters

	FREEMAIN—Execute Form
	Parameters

	GETMAIN — Allocate Virtual Storage
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2
	Example 3

	GETMAIN—List Form
	GETMAIN—Execute Form

	GQSCAN — Extract Information From Global Resource Serialization Queue
	Description
	Environment
	Programming Requirements
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	GQSCAN—List Form
	GQSCAN—Execute Form

	HSPSERV — Read from and Write to a Hiperspace
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	HSPSERV—List Form
	Syntax
	Parameters

	HSPSERV—Execute Form
	Syntax
	Parameters

	HSPSERV—Modify Form
	Syntax
	Parameters

	IARR2V — Convert a Central Storage Address to a Virtual Storage Address
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2
	Example 3
	Example 4

	IARVSERV — Request to Share Virtual Storage
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	IARVSERV— List Form
	IARVSERV— Execute Form

	IDENTIFY — Add an Entry Name
	Description
	Syntax
	Parameters
	Return Codes
	Example

	IEAFP — Floating Point Services
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	IEAINTKN — Build Incident Token
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	IEALSQRY — Linkage Stack Query
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	ABEND Codes
	Return Codes
	Example

	IEANTCR — Create a Name/Token Pair
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	IEANTDL — Delete a Name/Token Pair
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	IEANTRT — Retrieve the Token from a Name/Token Pair
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2

	IEATDUMP — Transaction dump request
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	 IEAVAPE — Allocate_Pause_Element
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return Codes

	 IEAVDPE — Deallocate_Pause_Element
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return Codes

	 IEAVPSE — Pause Service
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return Codes

	 IEAVRLS — Release
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return Codes

	 IEAVXFR — Transfer Service
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return Codes

	IEFDDSRV — Receive Device Information For an Allocation Request
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	IEFDDSRV—List Form
	IEFDDSRV—Execute Form

	IEFPRMLB — Logical Parmlib Support
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications

	REQUEST=ALLOCATE Option of IEFPRMLB
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	REQUEST=FREE Option of IEFPRMLB
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	REQUEST=LIST Option of IEFPRMLB
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	REQUEST=READMEMBER Option of IEFPRMLB
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	IEFSSI — Dynamically Query a Subsystem
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	REQUEST=QUERY Parameter of IEFSSI
	Syntax for REQUEST=QUERY
	Parameters for REQUEST=QUERY
	ABEND Codes
	Return and Reason Codes
	Example

	IOCINFO — Obtain MVS I/O Configuration Information
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	IOCINFO—List Form
	IOCINFO—Execute Form

	IOSCHPD — IOS CHPID Description Service
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	IXGBRWSE — Browse/Read a Log Stream
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	REQUEST=START Option of IXGBRWSE
	Syntax for REQUEST=START
	Parameters for REQUEST=START
	REQUEST=READCURSOR Option of IXGBRWSE
	Syntax for REQUEST=READCURSOR
	Parameters for REQUEST=READCURSOR
	REQUEST=READBLOCK Option of IXGBRWSE
	Syntax for REQUEST=READBLOCK
	Parameters for REQUEST=READBLOCK
	REQUEST=RESET Option of IXGBRWSE
	Syntax for REQUEST=RESET
	Parameters for REQUEST=RESET
	REQUEST=END Option of IXGBRWSE
	Syntax for REQUEST=END
	Parameters for REQUEST=END
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	IXGCONN — Connect/Disconnect to Log Stream
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	IXGDELET — Deleting Log Data from a Log Stream
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	IXGIMPRT — Import Log Blocks
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	IXGINVNT — Managing the LOGR Inventory Couple Data Set
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	REQUEST=DEFINE TYPE=LOGSTREAM Option of IXGINVNT
	Syntax for REQUEST=DEFINE TYPE=LOGSTREAM
	Parameters for REQUEST=DEFINE,TYPE=LOGSTREAM
	REQUEST=DEFINE TYPE=STRUCTURE Option of IXGINVNT
	Syntax for REQUEST=DEFINE TYPE=STRUCTURE
	Parameters for REQUEST=DEFINE,TYPE=STRUCTURE
	REQUEST=UPDATE Option of IXGINVNT
	Syntax for REQUEST=UPDATE
	Parameters for REQUEST=UPDATE
	REQUEST=DELETE Option of IXGINVNT
	Syntax for REQUEST=DELETE
	Parameters for REQUEST=DELETE
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10
	Example 11

	IXGOFFLD — Initiate Offload
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	IXGQUERY — Query a Log Stream
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	IXGUPDAT — Update Log Stream Control Information
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	IXGWRITE — Write Log Data to a Log Stream
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2
	Example 3

	LINK and LINKX — Pass Control to a Program in Another Load Module
	Description
	Environment
	Programming Requirements
	Restrictions
	Register Information
	Performance Implications
	Syntax
	Parameters
	Return and Reason Codes
	Example 1
	Example 2

	LINKX — Pass Control to a Program in Another Load Module
	Environment
	Programming Requirements
	Register Information
	Syntax
	Parameters

	LINK and LINKX—List Form
	Syntax
	Parameters

	LINK and LINKX—Execute Form
	Syntax
	Parameters

	LOAD — Bring a Load Module into Virtual Storage
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	Return and Reason Codes
	Example 1
	Example 2

	LOAD—List Form
	Syntax
	Parameters

	LOAD—Execute Form
	Syntax
	Parameters

	LSEXPAND — Expand a Linkage Stack to a Specified Size
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return Codes
	Example 1
	Example 2

	PGLOAD — Load Virtual Storage Areas into Central Storage
	Description
	Syntax
	Parameters
	Example 1
	Example 2
	Example 3

	PGLOAD—List Form
	Syntax
	Parameters

	PGOUT — Page Out Virtual Storage Areas from Central Storage
	Description
	Syntax
	Parameters
	Example 1
	Example 2

	PGOUT—List Form
	Syntax
	Parameters

	PGRLSE — Release Virtual Storage Contents
	Description
	Syntax
	Parameters
	Example 1
	Example 2

	PGRLSE—List Form
	Syntax
	Parameters

	PGRLSE—Execute Form
	Syntax
	Parameters

	PGSER — Page Services
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	POST — Signal Event Completion
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	Return and Reason Codes
	Example 1
	Example 2

	QRYLANG — Determine Languages Available for Message Translation
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	Return and Reason Codes
	Example

	REFPAT — Define and End a Reference Pattern
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	Return and Reason Codes
	Example 1
	Example 2

	REFPAT—List Form
	Syntax
	Parameters

	REFPAT—Execute Form
	Syntax
	Parameters

	RESERVE — Reserve a Device (Shared DASD)
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	RESERVE—List Form
	Parameters

	RESERVE—Execute Form
	Parameters

	RETURN — Return Control
	Description
	Syntax
	Parameters
	Example

	SAVE — Save Register Contents
	Description
	Syntax
	Parameters
	Example

	SETRP — Set Return Parameters
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2

	SNAP and SNAPX — Dump Virtual Storage and Continue
	Description
	Environment
	Input Register Information
	Output Register Information
	Programming Requirements
	Restrictions
	Performance Implications
	Syntax
	Parameters
	Return and Reason Codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	SNAPX — Dump Virtual Storage and Continue
	Syntax
	Parameters

	SNAP and SNAPX—List Form
	Syntax
	Parameters

	SNAP and SNAPX—Execute Form
	Syntax
	Parameters

	SPIE — Specify Program Interruption Exit
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	SPIE—List Form
	Syntax
	Parameters

	SPIE—Execute Form
	Syntax
	Parameters

	SPLEVEL — Set Macro Level
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2

	STAE — Specify Task Abnormal Exit
	Description
	Syntax
	Parameters
	Example

	STAE—List Form
	Syntax
	Parameters

	STAE—Execute Form
	Syntax
	Parameters
	Example

	STATUS — Start and Stop a Subtask
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	Return Codes
	Example 1
	Example 2

	STCKCONV — Store Clock Conversion Routine
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return Codes
	Example 1
	Example 2

	STCKCONV—.List Form
	Syntax
	Parameter
	Example

	STCKCONV—Execute Form
	Syntax
	Parameters
	Example

	STCKSYNC — Store Clock Synchronous Service
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return Codes
	Example 1
	Example 2

	STIMER — Set Interval Timer
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	STIMERM — Set, Test, Cancel Multiple Interval Timer
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return Codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8

	STIMERM—List Form
	Syntax
	Parameters
	Example 1
	Example 2
	Example 3

	STIMERM—Execute Form
	Syntax
	Parameters
	Example 1
	Example 2
	Example 3

	STORAGE — Obtain and Release Storage
	Description
	Environment
	Programming Requirements
	Restrictions
	Register Information
	Performance Implications

	OBTAIN Option of STORAGE
	Input Register Information
	Output Register Information
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	RELEASE Option of STORAGE
	Input Register Information
	Output Register Information
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples of the OBTAIN and RELEASE Options
	Example 1
	Example 2
	Example 3
	Example 4

	SYMRBLD — Building a Symptom Record
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	Syntax
	Parameters
	Syntax
	Parameters
	Syntax
	Parameters
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes (for SYMRBLD COMPLETE,INVOKE=YES)
	Syntax
	Parameters
	Example

	SYMREC — Process a Symptom Record
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	SYMREC—List Form
	Syntax
	Parameters

	SYMREC—Execute Form
	Syntax
	Parameters

	SYNCH and SYNCHX — Take a Synchronous Exit to a Processing Program
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	Return and Reason Codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	SYNCHX - Take a Synchronous Exit to a Processing Program
	Environment
	Programming Requirements
	Register Information
	Syntax
	Parameters

	SYNCH and SYNCHX—List Form
	Syntax
	Parameters
	Example

	SYNCH and SYNCHX—Execute Form
	Syntax
	Parameters
	Example

	SYSSTATE — Set Address Space Control (ASC) Mode
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2

	TCBTOKEN — Request or Translate the TTOKEN
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return Codes
	Example

	TCBTOKEN—List Form
	Syntax
	Parameters

	TCBTOKEN—Execute Form
	Syntax
	Parameters

	TESTART — Tests the Validity of ALETs
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return Codes
	Example 1
	Example 2

	TIME — Obtain Time and Date
	Description
	LINKAGE=SYSTEM
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return Codes
	Example 1
	Example 2

	LINKAGE=SYSTEM—List Form
	Syntax
	Parameters
	Example

	LINKAGE=SYSTEM—Execute Form
	Syntax
	Parameters
	Example

	LINKAGE=SVC
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2
	Example 3

	TIMEUSED — Obtain Accumulated CPU or Vector Time
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return Codes
	Example 1
	Example 2

	TRANMSG — Translate Messages
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	Return and Reason Codes
	If you translate multiple lines of message text
	If TRANMSG processing ended prematurely

	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	TTIMER — Test Interval Timer
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return Codes
	Example 1
	Example 2

	UCBDEVN — Return EBCDIC Device Number for a UCB
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	Return and Reason Codes
	Example

	UCBINFO — Return Information from a UCB
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications

	UCBINFO DEVCOUNT
	Syntax
	Parameters
	Return and Reason Codes
	Example

	UCBINFO DEVCOUNT—List Form
	Parameters

	UCBINFO DEVCOUNT—Execute Form
	Parameters

	UCBINFO DEVINFO
	Syntax
	Parameters
	Return and Reason Codes
	Example

	UCBINFO DEVINFO—List Form
	Parameters

	UCBINFO DEVINFO—Execute Form
	Parameters

	UCBINFO PATHINFO
	Syntax
	Parameters
	Return and Reason Codes
	Example

	UCBINFO PATHINFO—List Form
	Parameters

	UCBINFO PATHINFO—Execute Form
	Parameters

	UCBINFO PATHMAP
	Syntax
	Parameters
	Return and Reason Codes
	Example

	UCBINFO PATHMAP—List Form
	Parameters

	UCBINFO PATHMAP—Execute Form
	Parameters

	UCBINFO PRFXDATA
	Syntax
	Parameters
	Return and Reason Codes
	Example

	UCBINFO PRFXDATA—List Form
	Parameters

	UCBINFO PRFXDATA—Execute Form
	Parameters

	UCBINFO PAVINFO
	Syntax
	Parameters
	Return and Reason Codes
	Example

	UCBINFO PAVINFO—List Form
	Parameters

	UCBINFO PAVINFO—Execute Form
	Parameters

	UCBSCAN — Scan UCBs
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	Return and Reason Codes

	UCBSCAN COPY—List Form
	Syntax
	Parameters

	UCBSCAN COPY—Execute Form
	Syntax
	Parameters

	UPDTMPB — Update a Message Parameter Block for Substitution Data
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	Return and Reason Codes
	Example

	VRADATA — Update Variable Recording Area Data
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2

	WAIT — Wait for One or More Events
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	Example
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2
	Example 3

	WTL — Write To Log
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2

	WTL—List Form
	Syntax
	Parameters

	WTL — Execute Form
	Syntax
	Parameters

	WTO — Write to Operator
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2
	Example 3

	WTO—List Form
	Syntax
	Parameters
	Example

	WTO—Execute Form
	Syntax
	Parameters
	Example 1
	Example 2

	WTOR — Write to Operator with Reply
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example 1
	Example 2
	Example 3

	WTOR—List Form
	Syntax
	Parameters

	WTOR—Execute Form
	Syntax
	Parameters

	XCTL and XCTLX — Pass Control to a Program in Another Load Module
	Description
	Environment
	Syntax
	Parameters
	Return and Reason Codes
	Example

	XCTLX — Pass Control to a Program in Another Load Module
	Syntax
	Parameters

	XCTL and XCTLX—List Form
	Syntax
	Parameters

	XCTL or XCTLX—Execute Form
	Syntax
	Parameters
	Examples of Passing Data to the Target Module
	Example 1
	Example 2
	Example 3
	Example 4

	Appendix A. Notices
	Programming Interface Information
	Trademarks

	Index

